//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Vectorization transformations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" #include "mlir/Dialect/Vector/VectorOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace mlir; using namespace mlir::edsc; using namespace mlir::edsc::intrinsics; using namespace mlir::linalg; using llvm::dbgs; #define DEBUG_TYPE "linalg-vectorization" /// Return the unique instance of OpType in `block` if it is indeed unique. /// Return null if none or more than 1 instances exist. template static OpType getSingleOpOfType(Block &block) { OpType res; block.walk([&](OpType op) { if (res) { res = nullptr; return WalkResult::interrupt(); } res = op; return WalkResult::advance(); }); return res; } /// Helper data structure to represent the result of vectorization. /// In certain specific cases, like terminators, we do not want to propagate/ enum VectorizationStatus { /// Op failed to vectorize. Failure = 0, /// Op vectorized and custom function took care of replacement logic NoReplace, /// Op vectorized into a new Op whose results will replace original Op's /// results. NewOp // TODO: support values if Op vectorized to Many-Ops whose results we need to // aggregate for replacement. }; struct VectorizationResult { /// Return status from vectorizing the current op. enum VectorizationStatus status = VectorizationStatus::Failure; /// New vectorized operation to replace the current op. /// Replacement behavior is specified by `status`. Operation *newOp; }; /// Return a vector type of the same shape and element type as the (assumed) /// ShapedType of `v`. static VectorType extractVectorTypeFromShapedValue(Value v) { auto st = v.getType().cast(); if (st.isa() && st.getShape().empty()) return VectorType(); return VectorType::get(st.getShape(), st.getElementType()); } /// Build a vector.transfer_read from `source` at indices set to all `0`. /// If source has rank zero, build an std.load. /// Return the produced value. static Value buildVectorRead(OpBuilder &builder, Value source) { edsc::ScopedContext scope(builder); auto shapedType = source.getType().cast(); if (VectorType vectorType = extractVectorTypeFromShapedValue(source)) { SmallVector indices(shapedType.getRank(), std_constant_index(0)); return vector_transfer_read(vectorType, source, indices); } return std_load(source); } /// Build a vector.transfer_write of `value` into `dest` at indices set to all /// `0`. If `dest` has null rank, build an std.store. /// Return the produced value or null if no value is produced. static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) { edsc::ScopedContext scope(builder); Operation *write; auto shapedType = dest.getType().cast(); if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) { SmallVector indices(shapedType.getRank(), std_constant_index(0)); if (vectorType != value.getType()) value = vector_broadcast(vectorType, value); write = vector_transfer_write(value, dest, indices); } else { write = std_store(value, dest); } LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); if (!write->getResults().empty()) return write->getResult(0); return Value(); } /// If value of assumed VectorType has a shape different than `shape`, buil and /// return a new vector.broadcast to `shape`. /// Otherwise, just return value. static Value broadcastIfNeeded(OpBuilder &builder, Value value, ArrayRef shape) { auto vecType = value.getType().dyn_cast(); if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape)) return value; auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() : value.getType()); return builder.create( builder.getInsertionPoint()->getLoc(), newVecType, value); } // Custom vectorization function type. Produce a vector form of Operation* // assuming all its vectorized operands are already in the BlockAndValueMapping. // Return nullptr if the Operation cannot be vectorized. using CustomVectorizationHook = std::function; /// Helper function to vectorize the terminator of a `linalgOp`. New result /// vector values are appended to `results`. /// Return VectorizationStatus::NoReplace to signal the vectorization algorithm /// that it should not try to map produced operations: this is the purpose of /// the `results` argument to capture such values and make them available for /// RAUW to the vectorization algorithm. /// This function is meant to be used as a CustomVectorizationHook. static VectorizationResult vectorizeLinalgYield(OpBuilder &builder, Operation *op, const BlockAndValueMapping &bvm, LinalgOp linalgOp, SmallVectorImpl &results) { auto yieldOp = dyn_cast(op); if (!yieldOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; for (auto outputs : llvm::enumerate(yieldOp.values())) { // TODO: Scan for an opportunity for reuse. // TODO: use a map. Value vectorValue = bvm.lookup(outputs.value()); Value result = buildVectorWrite(builder, vectorValue, linalgOp.getOutput(outputs.index())); if (result) results.push_back(result); } return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; } /// Generic vectorization for a single operation `op`, given already vectorized /// operands carried by `bvm`. Vectorization occurs as follows: /// 1. Try to apply any of the `customVectorizationHooks` and return its /// result on success. /// 2. Clone any constant in the current scope without vectorization: each /// consumer of the constant will later determine the shape to which the /// constant needs to be broadcast to. /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose /// of the `customVectorizationHooks` to cover such cases. /// 4. Clone `op` in vector form to a vector of shape prescribed by the first /// operand of maximal rank. Other operands have smaller rank and are /// broadcast accordingly. It is assumed this broadcast is always legal, /// otherwise, it means one of the `customVectorizationHooks` is incorrect. /// /// This function assumes all operands of `op` have been vectorized and are in /// the `bvm` mapping. As a consequence, this function is meant to be called on /// a topologically-sorted list of ops. /// This function does not update `bvm` but returns a VectorizationStatus that /// instructs the caller what `bvm` update needs to occur. static VectorizationResult vectorizeOneOp(OpBuilder &builder, Operation *op, const BlockAndValueMapping &bvm, ArrayRef customVectorizationHooks) { LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); // 1. Try to apply any CustomVectorizationHook. if (!customVectorizationHooks.empty()) { for (auto &customFunc : customVectorizationHooks) { VectorizationResult result = customFunc(op, bvm); if (result.status == VectorizationStatus::Failure) continue; return result; } } // 2. Constant ops don't get vectorized but rather broadcasted at their users. // Clone so that the constant is not confined to the linalgOp block . if (isa(op)) return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)}; // 3. Only ElementwiseMappable are allowed in the generic vectorization. if (!op->hasTrait()) return VectorizationResult{VectorizationStatus::Failure, nullptr}; // 4. Generic vectorization path for ElementwiseMappable ops. // a. first get the first max ranked shape. SmallVector firstMaxRankedShape; for (Value operand : op->getOperands()) { auto vt = bvm.lookup(operand).getType().dyn_cast(); if (vt && firstMaxRankedShape.size() < vt.getShape().size()) firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); } // b. broadcast each op if needed. auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { return firstMaxRankedShape.empty() ? bvm.lookup(v) : broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape); }); // c. for elementwise, the result is the vector with the firstMaxRankedShape auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { return firstMaxRankedShape.empty() ? t : VectorType::get(firstMaxRankedShape, t); }); // Build and return the new op. OperationState state(op->getLoc(), op->getName()); state.addAttributes(op->getAttrs()); state.addOperands(llvm::to_vector<4>(vectorizedOperands)); state.addTypes(llvm::to_vector<4>(returnTypes)); return VectorizationResult{VectorizationStatus::NewOp, builder.createOperation(state)}; } /// Generic vectorization function that rewrites the body of a `linalgOp` into /// vector form. Generic vectorization proceeds as follows: /// 1. The region for the linalg op is created if necessary. /// 2. Values defined above the region are mapped to themselves and will be /// broadcasted on a per-need basis by their consumers. /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d /// load). /// TODO: Reuse opportunities for RAR dependencies. /// 4. Register CustomVectorizationHook for YieldOp to capture the results. /// 5. Iteratively call vectorizeOneOp on the region operations. static Optional vectorizeAsLinalgGeneric( OpBuilder &builder, LinalgOp linalgOp, ArrayRef customVectorizationHooks = {}) { // 1. Certain Linalg ops do not have a region but only a region builder. // If so, build the region so we can vectorize. std::unique_ptr owningRegion; Region *region; if (linalgOp->getNumRegions() > 0) { region = &linalgOp->getRegion(0); } else { // RAII avoid remaining in block. OpBuilder::InsertionGuard g(builder); owningRegion = std::make_unique(); region = owningRegion.get(); Block *block = builder.createBlock(region); auto elementTypes = llvm::to_vector<4>( llvm::map_range(linalgOp.getShapedOperandTypes(), [](ShapedType t) { return t.getElementType(); })); block->addArguments(elementTypes); linalgOp.getRegionBuilder()(*block, /*captures=*/{}); } Block *block = ®ion->front(); BlockAndValueMapping bvm; // 2. Values defined above the region can only be broadcast for now. Make them // map to themselves. llvm::SetVector valuesSet; mlir::getUsedValuesDefinedAbove(*region, valuesSet); bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); // 3. Turn all BBArgs into vector.transfer_read / load. SmallVector indexings; for (auto bbarg : block->getArguments()) { Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber()); Value vectorRead = buildVectorRead(builder, vectorArg); LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" << bbarg.getArgNumber() << "): " << vectorRead); bvm.map(bbarg, vectorRead); bvm.map(vectorArg, vectorRead); } // 4. Register CustomVectorizationHook for yieldOp. SmallVector results; CustomVectorizationHook vectorizeYield = [&](Operation *op, const BlockAndValueMapping &bvm) -> VectorizationResult { return vectorizeLinalgYield(builder, op, bvm, linalgOp, results); }; // Append the vectorizeYield hook. auto hooks = llvm::to_vector<4>(customVectorizationHooks); hooks.push_back(vectorizeYield); // 5. Iteratively call `vectorizeOneOp` to each op in the slice. for (Operation &op : block->getOperations()) { VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks); if (result.status == VectorizationStatus::Failure) { LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); return llvm::None; } if (result.status == VectorizationStatus::NewOp) { LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " << *result.newOp;); bvm.map(op.getResults(), result.newOp->getResults()); } } return VectorizedLinalgOp{{results}}; } /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. static bool hasOnlyScalarElementwiseOp(Region &r) { if (!llvm::hasSingleElement(r)) return false; for (Operation &op : r.front()) { if (!(isa(op) || op.hasTrait()) || llvm::any_of(op.getResultTypes(), [](Type type) { return !type.isIntOrIndexOrFloat(); })) return false; } return true; } // Return true if the op is an element-wise linalg op. static bool isElementwise(Operation *op) { auto linalgOp = dyn_cast(op); if (!linalgOp) return false; if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) return false; // TODO: relax the restrictions on indexing map. for (unsigned i = 0, e = linalgOp.getNumOutputs(); i < e; i++) { if (!linalgOp.getOutputIndexingMap(i).isIdentity()) return false; } // Currently bound the input indexing map to minor identity as other // permutations might require adding transpose ops to convert the vector read // to the right shape. for (unsigned i = 0, e = linalgOp.getNumInputs(); i < e; i++) { if (!linalgOp.getInputIndexingMap(i).isMinorIdentity()) return false; } if (linalgOp->getNumRegions() != 1) return false; return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); } static Optional vectorizeContraction(OpBuilder &builder, LinalgOp linalgOp) { assert(isaContractionOpInterface(linalgOp) && "expected vectorizeContraction preconditions to be met"); Location loc = linalgOp.getLoc(); // Vectorize other ops as vector contraction. // TODO: interface. LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " << "Rewrite linalg op as vector.contract: "; linalgOp.dump()); // Special function that describes how to vectorize the multiplication op in a // linalg contraction. CustomVectorizationHook vectorizeContraction = [&](Operation *op, const BlockAndValueMapping &bvm) -> VectorizationResult { if (!isa(op)) return VectorizationResult{VectorizationStatus::Failure, nullptr}; auto outShape = linalgOp.getOutputShapedType(0).getShape(); auto vType = outShape.empty() ? op->getResult(0).getType() : VectorType::get(outShape, op->getResult(0).getType()); auto zero = builder.create(loc, vType, builder.getZeroAttr(vType)); Operation *contract = builder.create( loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, linalgOp.indexing_maps(), linalgOp.iterator_types()); return VectorizationResult{VectorizationStatus::NewOp, contract}; }; return vectorizeAsLinalgGeneric(builder, linalgOp, {vectorizeContraction}); } LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { auto linalgOp = cast(op); // All types must be static shape to go to vector. for (Value operand : linalgOp.getShapedOperands()) if (!operand.getType().cast().hasStaticShape()) return failure(); for (Type outputTensorType : linalgOp.getOutputTensorTypes()) if (!outputTensorType.cast().hasStaticShape()) return failure(); if (isElementwise(op)) return success(); return success(isaContractionOpInterface(linalgOp)); } Optional mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op) { if (failed(vectorizeLinalgOpPrecondition(op))) return llvm::None; edsc::ScopedContext scope(builder, op->getLoc()); if (isElementwise(op)) { LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " << "Vectorize linalg op as a generic: " << *op); return vectorizeAsLinalgGeneric(builder, cast(op)); } return vectorizeContraction(builder, cast(op)); } //----------------------------------------------------------------------------// // Misc. vectorization patterns. //----------------------------------------------------------------------------// /// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and /// TransferWriteOp. For now, this only applies when all low and high paddings /// are determined to be zero. LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite( linalg::PadTensorOp padOp, PatternRewriter &rewriter) const { // Helper function to determine whether an OpFoldResult is not a zero Index. auto isNotZeroIndex = [](OpFoldResult ofr) { if (Attribute attr = ofr.dyn_cast()) return attr.cast().getInt() != 0; Value v = ofr.get(); if (auto constOp = v.getDefiningOp()) return constOp.getValue() != 0; return true; }; auto resultShapedType = padOp.result().getType().cast(); // Bail on non-static shapes. if (!resultShapedType.hasStaticShape()) return failure(); // If any pad_low is not a static 0, needs a mask. Bail for now. if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex)) return failure(); VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result()); if (!vectorType) return failure(); // Only support padding with a constant for now, i.e. either: // 1. A BBarg from a different block. // 2. A value defined outside of the current block. Block &block = padOp.region().front(); auto yieldOp = cast(block.getTerminator()); assert(yieldOp.getNumOperands() == 1 && "expected single operand yield"); Value padValue = yieldOp.values().front(); Operation *definingOp = padValue.getDefiningOp(); if (definingOp && definingOp->getBlock() == &block) return failure(); if (!definingOp && padValue.cast().getOwner() == &block) return failure(); // TODO: if any pad_high is not a static 0, needs a mask. For now, just bail. if (llvm::any_of(padOp.getMixedHighPad(), [&](OpFoldResult ofr) { return isNotZeroIndex(ofr); })) return failure(); // Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] + // TransferWriteOp@[0..0]. SmallVector indices( resultShapedType.getRank(), rewriter.create(padOp.getLoc(), 0)); Value read = rewriter.create( padOp.getLoc(), vectorType, padOp.source(), indices, padValue); Value init = rewriter.create(padOp.getLoc(), resultShapedType.getShape(), resultShapedType.getElementType()); rewriter.replaceOpWithNewOp(padOp, read, init, indices); return success(); } // TODO: cleanup all the convolution vectorization patterns. template LogicalResult ConvOpVectorization::matchAndRewrite( ConvOp op, PatternRewriter &rewriter) const { Location loc = op.getLoc(); MLIRContext *context = op.getContext(); edsc::ScopedContext scope(rewriter, loc); ShapedType inShapeType = op.getInputShapedType(0); ShapedType kShapeType = op.getInputShapedType(1); ArrayRef inShape = inShapeType.getShape(); ArrayRef kShape = kShapeType.getShape(); if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape()) return failure(); SmallVector mapping; SmallVector vectorDims; // Fail to apply when the size of not vectorized dimension is not 1. for (unsigned i = 0; i < N; i++) { if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) return failure(); if (mask[i] && inShape[i] != kShape[i]) return failure(); if (mask[i]) { mapping.push_back(getAffineDimExpr(i, context)); vectorDims.push_back(inShape[i]); } } Value input = op.getInput(0); Value kernel = op.getInput(1); Value output = op.getOutputBuffer(0); unsigned rank = inShapeType.getRank(); unsigned numDims = mapping.size(); Type elemType = inShapeType.getElementType(); auto map = AffineMap::get(rank, 0, mapping, context); SmallVector zeros(rank, std_constant_index(0)); auto vecType = VectorType::get(vectorDims, elemType); auto inputVec = vector_transfer_read(vecType, input, zeros, map); auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map); auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType)); std::array indexingMaps{ AffineMap::getMultiDimIdentityMap(numDims, context), AffineMap::getMultiDimIdentityMap(numDims, context), AffineMap::get(numDims, 0, {}, context)}; std::vector iteratorTypes(numDims, "reduction"); auto result = rewriter.create( loc, inputVec, kernelVec, acc, rewriter.getAffineMapArrayAttr(indexingMaps), rewriter.getStrArrayAttr(iteratorTypes)); rewriter.create(loc, result, output, ValueRange(zeros)); rewriter.eraseOp(op); return success(); } using ConvOpConst = ConvOpVectorization; /// Inserts tiling, promotion and vectorization pattern for ConvOp /// conversion into corresponding pattern lists. template static void populateVectorizationPatterns(OwningRewritePatternList &tilingPatterns, OwningRewritePatternList &promotionPatterns, OwningRewritePatternList &vectorizationPatterns, ArrayRef tileSizes, MLIRContext *context) { if (tileSizes.size() < N) return; constexpr static StringRef kTiledMarker = "TILED"; constexpr static StringRef kPromotedMarker = "PROMOTED"; tilingPatterns.insert>( context, LinalgTilingOptions().setTileSizes(tileSizes), LinalgTransformationFilter(ArrayRef{}, Identifier::get(kTiledMarker, context))); promotionPatterns.insert>( context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), LinalgTransformationFilter(Identifier::get(kTiledMarker, context), Identifier::get(kPromotedMarker, context))); SmallVector mask(N); int offset = tileSizes.size() - N; std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), [](int64_t i) -> bool { return i > 1; }); vectorizationPatterns.insert>(context, mask); } void mlir::linalg::populateConvVectorizationPatterns( MLIRContext *context, SmallVectorImpl &patterns, ArrayRef tileSizes) { OwningRewritePatternList tiling, promotion, vectorization; populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns( tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns( tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns( tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns( tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns( tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns( tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns( tiling, promotion, vectorization, tileSizes, context); populateVectorizationPatterns( tiling, promotion, vectorization, tileSizes, context); patterns.push_back(std::move(tiling)); patterns.push_back(std::move(promotion)); patterns.push_back(std::move(vectorization)); } //----------------------------------------------------------------------------// // Forwarding patterns //----------------------------------------------------------------------------// /// Check whether there is any interleaved use of any `values` between `firstOp` /// and `secondOp`. Conservatively return `true` if any op or value is in a /// different block. static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, ValueRange values) { if (firstOp->getBlock() != secondOp->getBlock() || !firstOp->isBeforeInBlock(secondOp)) { LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << "interleavedUses precondition failed, firstOp: " << *firstOp << ", second op: " << *secondOp); return true; } for (auto v : values) { for (auto &u : v.getUses()) { Operation *owner = u.getOwner(); if (owner == firstOp || owner == secondOp) continue; // TODO: this is too conservative, use dominance info in the future. if (owner->getBlock() == firstOp->getBlock() && (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) continue; LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << " found interleaved op " << *owner << ", firstOp: " << *firstOp << ", second op: " << *secondOp); return true; } } return false; } /// Return the unique subview use of `v` if it is indeed unique, null otherwise. static SubViewOp getSubViewUseIfUnique(Value v) { SubViewOp subViewOp; for (auto &u : v.getUses()) { if (auto newSubViewOp = dyn_cast(u.getOwner())) { if (subViewOp) return SubViewOp(); subViewOp = newSubViewOp; } } return subViewOp; } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { // Transfer into `view`. Value viewOrAlloc = xferOp.source(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return failure(); LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return failure(); Value subView = subViewOp.getResult(); LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << "with subView " << subView); // Find the copy into `subView` without interleaved uses. CopyOp copyOp; for (auto &u : subView.getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { if (newCopyOp.getOutputBuffer(0) != subView) continue; LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << "copy candidate " << *newCopyOp); if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return failure(); LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << "with copy " << *copyOp); // Find the fill into `viewOrAlloc` without interleaved uses before the copy. FillOp maybeFillOp; for (auto &u : viewOrAlloc.getUses()) { if (auto newFillOp = dyn_cast(u.getOwner())) { if (newFillOp.getOutputBuffer(0) != viewOrAlloc) continue; LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << "fill candidate " << *newFillOp); if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) continue; maybeFillOp = newFillOp; break; } } // Ensure padding matches. if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) return failure(); if (maybeFillOp) LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << "with maybeFillOp " << *maybeFillOp); // `in` is the subview that linalg.copy reads. Replace it. Value in = copyOp.getInput(0); // linalg.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_read, the attribute must be reset // conservatively. Value res = rewriter.create( xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); if (maybeFillOp) rewriter.eraseOp(maybeFillOp); rewriter.eraseOp(copyOp); rewriter.replaceOp(xferOp, res); return success(); } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { // Transfer into `viewOrAlloc`. Value viewOrAlloc = xferOp.source(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return failure(); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return failure(); Value subView = subViewOp.getResult(); // Find the copy from `subView` without interleaved uses. CopyOp copyOp; for (auto &u : subViewOp.getResult().getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { if (newCopyOp.getInput(0) != subView) continue; if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return failure(); // `out` is the subview copied into that we replace. Value out = copyOp.getOutputBuffer(0); // Forward vector.transfer into copy. // linalg.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_write, the attribute must be reset // conservatively. rewriter.create( xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), xferOp.permutation_map(), ArrayAttr()); rewriter.eraseOp(copyOp); rewriter.eraseOp(xferOp); return success(); }