//===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/lldb-python.h" #include "NativeProcessLinux.h" // C Includes #include #include #include #include #include // C++ Includes #include #include #include // Other libraries and framework includes #include "lldb/Core/Debugger.h" #include "lldb/Core/EmulateInstruction.h" #include "lldb/Core/Error.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/State.h" #include "lldb/Host/common/NativeBreakpoint.h" #include "lldb/Host/common/NativeRegisterContext.h" #include "lldb/Host/Host.h" #include "lldb/Host/HostInfo.h" #include "lldb/Host/HostNativeThread.h" #include "lldb/Host/ThreadLauncher.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/Process.h" #include "lldb/Target/ProcessLaunchInfo.h" #include "lldb/Utility/LLDBAssert.h" #include "lldb/Utility/PseudoTerminal.h" #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #include "Plugins/Process/Utility/LinuxSignals.h" #include "Utility/StringExtractor.h" #include "NativeThreadLinux.h" #include "ProcFileReader.h" #include "Procfs.h" // System includes - They have to be included after framework includes because they define some // macros which collide with variable names in other modules #include #include #include #include #include #include #if defined (__arm64__) || defined (__aarch64__) // NT_PRSTATUS and NT_FPREGSET definition #include #endif #include "lldb/Host/linux/Personality.h" #include "lldb/Host/linux/Ptrace.h" #include "lldb/Host/linux/Signalfd.h" #include "lldb/Host/android/Android.h" #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff // Support hardware breakpoints in case it has not been defined #ifndef TRAP_HWBKPT #define TRAP_HWBKPT 4 #endif // We disable the tracing of ptrace calls for integration builds to // avoid the additional indirection and checks. #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION #define PTRACE(req, pid, addr, data, data_size, error) \ PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) #else #define PTRACE(req, pid, addr, data, data_size, error) \ PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) #endif using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_linux; using namespace llvm; // Private bits we only need internally. namespace { const UnixSignals& GetUnixSignals () { static process_linux::LinuxSignals signals; return signals; } Error ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) { // Grab process info for the running process. ProcessInstanceInfo process_info; if (!platform.GetProcessInfo (pid, process_info)) return Error("failed to get process info"); // Resolve the executable module. ModuleSP exe_module_sp; ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); Error error = platform.ResolveExecutable( exe_module_spec, exe_module_sp, executable_search_paths.GetSize () ? &executable_search_paths : NULL); if (!error.Success ()) return error; // Check if we've got our architecture from the exe_module. arch = exe_module_sp->GetArchitecture (); if (arch.IsValid ()) return Error(); else return Error("failed to retrieve a valid architecture from the exe module"); } void DisplayBytes (StreamString &s, void *bytes, uint32_t count) { uint8_t *ptr = (uint8_t *)bytes; const uint32_t loop_count = std::min(DEBUG_PTRACE_MAXBYTES, count); for(uint32_t i=0; iPrintf("PTRACE_POKETEXT %s", buf.GetData()); break; } case PTRACE_POKEDATA: { DisplayBytes(buf, &data, 8); verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); break; } case PTRACE_POKEUSER: { DisplayBytes(buf, &data, 8); verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); break; } case PTRACE_SETREGS: { DisplayBytes(buf, data, data_size); verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); break; } case PTRACE_SETFPREGS: { DisplayBytes(buf, data, data_size); verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); break; } case PTRACE_SETSIGINFO: { DisplayBytes(buf, data, sizeof(siginfo_t)); verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); break; } case PTRACE_SETREGSET: { // Extract iov_base from data, which is a pointer to the struct IOVEC DisplayBytes(buf, *(void **)data, data_size); verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); break; } default: { } } } } // Wrapper for ptrace to catch errors and log calls. // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) long PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, const char* reqName, const char* file, int line) { long int result; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); PtraceDisplayBytes(req, data, data_size); error.Clear(); errno = 0; if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); else result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); if (result == -1) error.SetErrorToErrno(); if (log) log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", reqName, pid, addr, data, data_size, result, file, line); PtraceDisplayBytes(req, data, data_size); if (log && error.GetError() != 0) { const char* str; switch (error.GetError()) { case ESRCH: str = "ESRCH"; break; case EINVAL: str = "EINVAL"; break; case EBUSY: str = "EBUSY"; break; case EPERM: str = "EPERM"; break; default: str = error.AsCString(); } log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); } return result; } #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION // Wrapper for ptrace when logging is not required. // Sets errno to 0 prior to calling ptrace. long PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) { long result = 0; error.Clear(); errno = 0; if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); else result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); if (result == -1) error.SetErrorToErrno(); return result; } #endif //------------------------------------------------------------------------------ // Static implementations of NativeProcessLinux::ReadMemory and // NativeProcessLinux::WriteMemory. This enables mutual recursion between these // functions without needed to go thru the thread funnel. size_t DoReadMemory( lldb::pid_t pid, lldb::addr_t vm_addr, void *buf, size_t size, Error &error) { // ptrace word size is determined by the host, not the child static const unsigned word_size = sizeof(void*); unsigned char *dst = static_cast(buf); size_t bytes_read; size_t remainder; long data; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); if (log) ProcessPOSIXLog::IncNestLevel(); if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, pid, word_size, (void*)vm_addr, buf, size); assert(sizeof(data) >= word_size); for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); if (error.Fail()) { if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_read; } remainder = size - bytes_read; remainder = remainder > word_size ? word_size : remainder; // Copy the data into our buffer for (unsigned i = 0; i < remainder; ++i) dst[i] = ((data >> i*8) & 0xFF); if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) { uintptr_t print_dst = 0; // Format bytes from data by moving into print_dst for log output for (unsigned i = 0; i < remainder; ++i) print_dst |= (((data >> i*8) & 0xFF) << i*8); log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)vm_addr, print_dst, (unsigned long)data); } vm_addr += word_size; dst += word_size; } if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_read; } size_t DoWriteMemory( lldb::pid_t pid, lldb::addr_t vm_addr, const void *buf, size_t size, Error &error) { // ptrace word size is determined by the host, not the child static const unsigned word_size = sizeof(void*); const unsigned char *src = static_cast(buf); size_t bytes_written = 0; size_t remainder; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); if (log) ProcessPOSIXLog::IncNestLevel(); if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, pid, word_size, (void*)vm_addr, buf, size); for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { remainder = size - bytes_written; remainder = remainder > word_size ? word_size : remainder; if (remainder == word_size) { unsigned long data = 0; assert(sizeof(data) >= word_size); for (unsigned i = 0; i < word_size; ++i) data |= (unsigned long)src[i] << i*8; if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)vm_addr, *(const unsigned long*)src, data); if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) { if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } } else { unsigned char buff[8]; if (DoReadMemory(pid, vm_addr, buff, word_size, error) != word_size) { if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } memcpy(buff, src, remainder); if (DoWriteMemory(pid, vm_addr, buff, word_size, error) != word_size) { if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff); } vm_addr += word_size; src += word_size; } if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } //------------------------------------------------------------------------------ /// @class Operation /// @brief Represents a NativeProcessLinux operation. /// /// Under Linux, it is not possible to ptrace() from any other thread but the /// one that spawned or attached to the process from the start. Therefore, when /// a NativeProcessLinux is asked to deliver or change the state of an inferior /// process the operation must be "funneled" to a specific thread to perform the /// task. The Operation class provides an abstract base for all services the /// NativeProcessLinux must perform via the single virtual function Execute, thus /// encapsulating the code that needs to run in the privileged context. class Operation { public: Operation () : m_error() { } virtual ~Operation() {} virtual void Execute (NativeProcessLinux *process) = 0; const Error & GetError () const { return m_error; } protected: Error m_error; }; //------------------------------------------------------------------------------ /// @class ReadOperation /// @brief Implements NativeProcessLinux::ReadMemory. class ReadOperation : public Operation { public: ReadOperation( lldb::addr_t addr, void *buff, size_t size, size_t &result) : Operation (), m_addr (addr), m_buff (buff), m_size (size), m_result (result) { } void Execute (NativeProcessLinux *process) override; private: lldb::addr_t m_addr; void *m_buff; size_t m_size; size_t &m_result; }; void ReadOperation::Execute (NativeProcessLinux *process) { m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); } //------------------------------------------------------------------------------ /// @class WriteOperation /// @brief Implements NativeProcessLinux::WriteMemory. class WriteOperation : public Operation { public: WriteOperation( lldb::addr_t addr, const void *buff, size_t size, size_t &result) : Operation (), m_addr (addr), m_buff (buff), m_size (size), m_result (result) { } void Execute (NativeProcessLinux *process) override; private: lldb::addr_t m_addr; const void *m_buff; size_t m_size; size_t &m_result; }; void WriteOperation::Execute(NativeProcessLinux *process) { m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); } //------------------------------------------------------------------------------ /// @class ReadRegOperation /// @brief Implements NativeProcessLinux::ReadRegisterValue. class ReadRegOperation : public Operation { public: ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, RegisterValue &value) : m_tid(tid), m_offset(static_cast (offset)), m_reg_name(reg_name), m_value(value) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; uintptr_t m_offset; const char *m_reg_name; RegisterValue &m_value; }; void ReadRegOperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) if (m_offset > sizeof(struct user_pt_regs)) { uintptr_t offset = m_offset - sizeof(struct user_pt_regs); if (offset > sizeof(struct user_fpsimd_state)) { m_error.SetErrorString("invalid offset value"); return; } elf_fpregset_t regs; int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); if (m_error.Success()) { ArchSpec arch; if (monitor->GetArchitecture(arch)) m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); else m_error.SetErrorString("failed to get architecture"); } } else { elf_gregset_t regs; int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); if (m_error.Success()) { ArchSpec arch; if (monitor->GetArchitecture(arch)) m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); else m_error.SetErrorString("failed to get architecture"); } } #elif defined (__mips__) elf_gregset_t regs; PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); if (m_error.Success()) { lldb_private::ArchSpec arch; if (monitor->GetArchitecture(arch)) m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); else m_error.SetErrorString("failed to get architecture"); } #else Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); lldb::addr_t data = static_cast(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error)); if (m_error.Success()) m_value = data; if (log) log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, m_reg_name, data); #endif } //------------------------------------------------------------------------------ /// @class WriteRegOperation /// @brief Implements NativeProcessLinux::WriteRegisterValue. class WriteRegOperation : public Operation { public: WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, const RegisterValue &value) : m_tid(tid), m_offset(offset), m_reg_name(reg_name), m_value(value) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; uintptr_t m_offset; const char *m_reg_name; const RegisterValue &m_value; }; void WriteRegOperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) if (m_offset > sizeof(struct user_pt_regs)) { uintptr_t offset = m_offset - sizeof(struct user_pt_regs); if (offset > sizeof(struct user_fpsimd_state)) { m_error.SetErrorString("invalid offset value"); return; } elf_fpregset_t regs; int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); if (m_error.Success()) { ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); } } else { elf_gregset_t regs; int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); if (m_error.Success()) { ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); } } #elif defined (__mips__) elf_gregset_t regs; PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); if (m_error.Success()) { ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); PTRACE(PTRACE_SETREGS, m_tid, NULL, ®s, sizeof regs, m_error); } #else void* buf; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); buf = (void*) m_value.GetAsUInt64(); if (log) log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); #endif } //------------------------------------------------------------------------------ /// @class ReadGPROperation /// @brief Implements NativeProcessLinux::ReadGPR. class ReadGPROperation : public Operation { public: ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) : m_tid(tid), m_buf(buf), m_buf_size(buf_size) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; }; void ReadGPROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); #else PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); #endif } //------------------------------------------------------------------------------ /// @class ReadFPROperation /// @brief Implements NativeProcessLinux::ReadFPR. class ReadFPROperation : public Operation { public: ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) : m_tid(tid), m_buf(buf), m_buf_size(buf_size) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; }; void ReadFPROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); #else PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); #endif } //------------------------------------------------------------------------------ /// @class ReadDBGROperation /// @brief Implements NativeProcessLinux::ReadHardwareDebugInfo. class ReadDBGROperation : public Operation { public: ReadDBGROperation(lldb::tid_t tid, unsigned int &count_wp, unsigned int &count_bp) : m_tid(tid), m_count_wp(count_wp), m_count_bp(count_bp) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; unsigned int &m_count_wp; unsigned int &m_count_bp; }; void ReadDBGROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_ARM_HW_WATCH; struct iovec ioVec; struct user_hwdebug_state dreg_state; ioVec.iov_base = &dreg_state; ioVec.iov_len = sizeof (dreg_state); PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, ioVec.iov_len, m_error); m_count_wp = dreg_state.dbg_info & 0xff; regset = NT_ARM_HW_BREAK; PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, ioVec.iov_len, m_error); m_count_bp = dreg_state.dbg_info & 0xff; #endif } //------------------------------------------------------------------------------ /// @class ReadRegisterSetOperation /// @brief Implements NativeProcessLinux::ReadRegisterSet. class ReadRegisterSetOperation : public Operation { public: ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; const unsigned int m_regset; }; void ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) { PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); } //------------------------------------------------------------------------------ /// @class WriteGPROperation /// @brief Implements NativeProcessLinux::WriteGPR. class WriteGPROperation : public Operation { public: WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) : m_tid(tid), m_buf(buf), m_buf_size(buf_size) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; }; void WriteGPROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); #else PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); #endif } //------------------------------------------------------------------------------ /// @class WriteFPROperation /// @brief Implements NativeProcessLinux::WriteFPR. class WriteFPROperation : public Operation { public: WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) : m_tid(tid), m_buf(buf), m_buf_size(buf_size) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; }; void WriteFPROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); #else PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); #endif } //------------------------------------------------------------------------------ /// @class WriteDBGROperation /// @brief Implements NativeProcessLinux::WriteHardwareDebugRegs. class WriteDBGROperation : public Operation { public: WriteDBGROperation(lldb::tid_t tid, lldb::addr_t *addr_buf, uint32_t *cntrl_buf, int type, int count) : m_tid(tid), m_address(addr_buf), m_control(cntrl_buf), m_type(type), m_count(count) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; lldb::addr_t * m_address; uint32_t * m_control; int m_type; int m_count; }; void WriteDBGROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) struct iovec ioVec; struct user_hwdebug_state dreg_state; memset (&dreg_state, 0, sizeof (dreg_state)); ioVec.iov_len = (__builtin_offsetof (struct user_hwdebug_state, dbg_regs[m_count - 1]) + sizeof (dreg_state.dbg_regs [m_count - 1])); if (m_type == 0) m_type = NT_ARM_HW_WATCH; else m_type = NT_ARM_HW_BREAK; for (int i = 0; i < m_count; i++) { dreg_state.dbg_regs[i].addr = m_address[i]; dreg_state.dbg_regs[i].ctrl = m_control[i]; } PTRACE(PTRACE_SETREGSET, m_tid, &m_type, &ioVec, ioVec.iov_len, m_error); #endif } //------------------------------------------------------------------------------ /// @class WriteRegisterSetOperation /// @brief Implements NativeProcessLinux::WriteRegisterSet. class WriteRegisterSetOperation : public Operation { public: WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; const unsigned int m_regset; }; void WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) { PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); } //------------------------------------------------------------------------------ /// @class ResumeOperation /// @brief Implements NativeProcessLinux::Resume. class ResumeOperation : public Operation { public: ResumeOperation(lldb::tid_t tid, uint32_t signo) : m_tid(tid), m_signo(signo) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; uint32_t m_signo; }; void ResumeOperation::Execute(NativeProcessLinux *monitor) { intptr_t data = 0; if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) data = m_signo; PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); if (m_error.Fail()) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); } } //------------------------------------------------------------------------------ /// @class SingleStepOperation /// @brief Implements NativeProcessLinux::SingleStep. class SingleStepOperation : public Operation { public: SingleStepOperation(lldb::tid_t tid, uint32_t signo) : m_tid(tid), m_signo(signo) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; uint32_t m_signo; }; void SingleStepOperation::Execute(NativeProcessLinux *monitor) { intptr_t data = 0; if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) data = m_signo; PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); } //------------------------------------------------------------------------------ /// @class SiginfoOperation /// @brief Implements NativeProcessLinux::GetSignalInfo. class SiginfoOperation : public Operation { public: SiginfoOperation(lldb::tid_t tid, void *info) : m_tid(tid), m_info(info) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; void *m_info; }; void SiginfoOperation::Execute(NativeProcessLinux *monitor) { PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); } //------------------------------------------------------------------------------ /// @class EventMessageOperation /// @brief Implements NativeProcessLinux::GetEventMessage. class EventMessageOperation : public Operation { public: EventMessageOperation(lldb::tid_t tid, unsigned long *message) : m_tid(tid), m_message(message) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; unsigned long *m_message; }; void EventMessageOperation::Execute(NativeProcessLinux *monitor) { PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); } class DetachOperation : public Operation { public: DetachOperation(lldb::tid_t tid) : m_tid(tid) { } void Execute(NativeProcessLinux *monitor) override; private: lldb::tid_t m_tid; }; void DetachOperation::Execute(NativeProcessLinux *monitor) { PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); } } // end of anonymous namespace // Simple helper function to ensure flags are enabled on the given file // descriptor. static Error EnsureFDFlags(int fd, int flags) { Error error; int status = fcntl(fd, F_GETFL); if (status == -1) { error.SetErrorToErrno(); return error; } if (fcntl(fd, F_SETFL, status | flags) == -1) { error.SetErrorToErrno(); return error; } return error; } // This class encapsulates the privileged thread which performs all ptrace and wait operations on // the inferior. The thread consists of a main loop which waits for events and processes them // - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in // the inferior process. Upon receiving this signal we do a waitpid to get more information // and dispatch to NativeProcessLinux::MonitorCallback. // - requests for ptrace operations: These initiated via the DoOperation method, which funnels // them to the Monitor thread via m_operation member. The Monitor thread is signaled over a // pipe, and the completion of the operation is signalled over the semaphore. // - thread exit event: this is signaled from the Monitor destructor by closing the write end // of the command pipe. class NativeProcessLinux::Monitor { private: // The initial monitor operation (launch or attach). It returns a inferior process id. std::unique_ptr m_initial_operation_up; ::pid_t m_child_pid = -1; NativeProcessLinux * m_native_process; enum { READ, WRITE }; int m_pipefd[2] = {-1, -1}; int m_signal_fd = -1; HostThread m_thread; // current operation which must be executed on the priviliged thread Mutex m_operation_mutex; Operation *m_operation = nullptr; sem_t m_operation_sem; Error m_operation_error; unsigned m_operation_nesting_level = 0; static constexpr char operation_command = 'o'; static constexpr char begin_block_command = '{'; static constexpr char end_block_command = '}'; void HandleSignals(); void HandleWait(); // Returns true if the thread should exit. bool HandleCommands(); void MainLoop(); static void * RunMonitor(void *arg); Error WaitForAck(); void BeginOperationBlock() { write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command); WaitForAck(); } void EndOperationBlock() { write(m_pipefd[WRITE], &end_block_command, sizeof operation_command); WaitForAck(); } public: Monitor(const InitialOperation &initial_operation, NativeProcessLinux *native_process) : m_initial_operation_up(new InitialOperation(initial_operation)), m_native_process(native_process) { sem_init(&m_operation_sem, 0, 0); } ~Monitor(); Error Initialize(); void Terminate(); void DoOperation(Operation *op); class ScopedOperationLock { Monitor &m_monitor; public: ScopedOperationLock(Monitor &monitor) : m_monitor(monitor) { m_monitor.BeginOperationBlock(); } ~ScopedOperationLock() { m_monitor.EndOperationBlock(); } }; }; constexpr char NativeProcessLinux::Monitor::operation_command; constexpr char NativeProcessLinux::Monitor::begin_block_command; constexpr char NativeProcessLinux::Monitor::end_block_command; Error NativeProcessLinux::Monitor::Initialize() { Error error; // We get a SIGCHLD every time something interesting happens with the inferior. We shall be // listening for these signals over a signalfd file descriptors. This allows us to wait for // multiple kinds of events with select. sigset_t signals; sigemptyset(&signals); sigaddset(&signals, SIGCHLD); m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC); if (m_signal_fd < 0) { return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s", __FUNCTION__, strerror(errno)); } if (pipe2(m_pipefd, O_CLOEXEC) == -1) { error.SetErrorToErrno(); return error; } if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) { return error; } static const char g_thread_name[] = "lldb.process.nativelinux.monitor"; m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr); if (!m_thread.IsJoinable()) return Error("Failed to create monitor thread for NativeProcessLinux."); // Wait for initial operation to complete. return WaitForAck(); } void NativeProcessLinux::Monitor::DoOperation(Operation *op) { if (m_thread.EqualsThread(pthread_self())) { // If we're on the Monitor thread, we can simply execute the operation. op->Execute(m_native_process); return; } // Otherwise we need to pass the operation to the Monitor thread so it can handle it. Mutex::Locker lock(m_operation_mutex); m_operation = op; // notify the thread that an operation is ready to be processed write(m_pipefd[WRITE], &operation_command, sizeof operation_command); WaitForAck(); } void NativeProcessLinux::Monitor::Terminate() { if (m_pipefd[WRITE] >= 0) { close(m_pipefd[WRITE]); m_pipefd[WRITE] = -1; } if (m_thread.IsJoinable()) m_thread.Join(nullptr); } NativeProcessLinux::Monitor::~Monitor() { Terminate(); if (m_pipefd[READ] >= 0) close(m_pipefd[READ]); if (m_signal_fd >= 0) close(m_signal_fd); sem_destroy(&m_operation_sem); } void NativeProcessLinux::Monitor::HandleSignals() { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); // We don't really care about the content of the SIGCHLD siginfo structure, as we will get // all the information from waitpid(). We just need to read all the signals so that we can // sleep next time we reach select(). while (true) { signalfd_siginfo info; ssize_t size = read(m_signal_fd, &info, sizeof info); if (size == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) break; // We are done. if (errno == EINTR) continue; if (log) log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s", __FUNCTION__, strerror(errno)); break; } if (size != sizeof info) { // We got incomplete information structure. This should not happen, let's just log // that. if (log) log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: " "structure size is %zd, read returned %zd bytes", __FUNCTION__, sizeof info, size); break; } if (log) log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__, Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo); } } void NativeProcessLinux::Monitor::HandleWait() { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); // Process all pending waitpid notifications. while (true) { int status = -1; ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG); if (wait_pid == 0) break; // We are done. if (wait_pid == -1) { if (errno == EINTR) continue; if (log) log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s", __FUNCTION__, m_child_pid, strerror(errno)); break; } bool exited = false; int signal = 0; int exit_status = 0; const char *status_cstr = NULL; if (WIFSTOPPED(status)) { signal = WSTOPSIG(status); status_cstr = "STOPPED"; } else if (WIFEXITED(status)) { exit_status = WEXITSTATUS(status); status_cstr = "EXITED"; exited = true; } else if (WIFSIGNALED(status)) { signal = WTERMSIG(status); status_cstr = "SIGNALED"; if (wait_pid == abs(m_child_pid)) { exited = true; exit_status = -1; } } else status_cstr = "(\?\?\?)"; if (log) log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)" "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status); m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status); } } bool NativeProcessLinux::Monitor::HandleCommands() { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); while (true) { char command = 0; ssize_t size = read(m_pipefd[READ], &command, sizeof command); if (size == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) return false; if (errno == EINTR) continue; if (log) log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno)); return true; } if (size == 0) // end of file - write end closed { if (log) log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__); assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected"); return true; // We are done. } switch (command) { case operation_command: m_operation->Execute(m_native_process); break; case begin_block_command: ++m_operation_nesting_level; break; case end_block_command: assert(m_operation_nesting_level > 0); --m_operation_nesting_level; break; default: if (log) log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'", __FUNCTION__, command); } // notify calling thread that the command has been processed sem_post(&m_operation_sem); } } void NativeProcessLinux::Monitor::MainLoop() { ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error); m_initial_operation_up.reset(); m_child_pid = -getpgid(child_pid), sem_post(&m_operation_sem); while (true) { fd_set fds; FD_ZERO(&fds); // Only process waitpid events if we are outside of an operation block. Any pending // events will be processed after we leave the block. if (m_operation_nesting_level == 0) FD_SET(m_signal_fd, &fds); FD_SET(m_pipefd[READ], &fds); int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1; int r = select(max_fd, &fds, nullptr, nullptr, nullptr); if (r < 0) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); if (log) log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s", __FUNCTION__, strerror(errno)); return; } if (FD_ISSET(m_pipefd[READ], &fds)) { if (HandleCommands()) return; } if (FD_ISSET(m_signal_fd, &fds)) { HandleSignals(); HandleWait(); } } } Error NativeProcessLinux::Monitor::WaitForAck() { Error error; while (sem_wait(&m_operation_sem) != 0) { if (errno == EINTR) continue; error.SetErrorToErrno(); return error; } return m_operation_error; } void * NativeProcessLinux::Monitor::RunMonitor(void *arg) { static_cast(arg)->MainLoop(); return nullptr; } NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module, char const **argv, char const **envp, const std::string &stdin_path, const std::string &stdout_path, const std::string &stderr_path, const char *working_dir, const ProcessLaunchInfo &launch_info) : m_module(module), m_argv(argv), m_envp(envp), m_stdin_path(stdin_path), m_stdout_path(stdout_path), m_stderr_path(stderr_path), m_working_dir(working_dir), m_launch_info(launch_info) { } NativeProcessLinux::LaunchArgs::~LaunchArgs() { } // ----------------------------------------------------------------------------- // Public Static Methods // ----------------------------------------------------------------------------- Error NativeProcessLinux::LaunchProcess ( Module *exe_module, ProcessLaunchInfo &launch_info, NativeProcessProtocol::NativeDelegate &native_delegate, NativeProcessProtocolSP &native_process_sp) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); Error error; // Verify the working directory is valid if one was specified. const char* working_dir = launch_info.GetWorkingDirectory (); if (working_dir) { FileSpec working_dir_fs (working_dir, true); if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) { error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); return error; } } const FileAction *file_action; // Default of NULL will mean to use existing open file descriptors. std::string stdin_path; std::string stdout_path; std::string stderr_path; file_action = launch_info.GetFileActionForFD (STDIN_FILENO); if (file_action) stdin_path = file_action->GetPath (); file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); if (file_action) stdout_path = file_action->GetPath (); file_action = launch_info.GetFileActionForFD (STDERR_FILENO); if (file_action) stderr_path = file_action->GetPath (); if (log) { if (!stdin_path.empty ()) log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); else log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); if (!stdout_path.empty ()) log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); else log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); if (!stderr_path.empty ()) log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); else log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); } // Create the NativeProcessLinux in launch mode. native_process_sp.reset (new NativeProcessLinux ()); if (log) { int i = 0; for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) { log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); ++i; } } if (!native_process_sp->RegisterNativeDelegate (native_delegate)) { native_process_sp.reset (); error.SetErrorStringWithFormat ("failed to register the native delegate"); return error; } std::static_pointer_cast (native_process_sp)->LaunchInferior ( exe_module, launch_info.GetArguments ().GetConstArgumentVector (), launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), stdin_path, stdout_path, stderr_path, working_dir, launch_info, error); if (error.Fail ()) { native_process_sp.reset (); if (log) log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); return error; } launch_info.SetProcessID (native_process_sp->GetID ()); return error; } Error NativeProcessLinux::AttachToProcess ( lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, NativeProcessProtocolSP &native_process_sp) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); // Grab the current platform architecture. This should be Linux, // since this code is only intended to run on a Linux host. PlatformSP platform_sp (Platform::GetHostPlatform ()); if (!platform_sp) return Error("failed to get a valid default platform"); // Retrieve the architecture for the running process. ArchSpec process_arch; Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); if (!error.Success ()) return error; std::shared_ptr native_process_linux_sp (new NativeProcessLinux ()); if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) { error.SetErrorStringWithFormat ("failed to register the native delegate"); return error; } native_process_linux_sp->AttachToInferior (pid, error); if (!error.Success ()) return error; native_process_sp = native_process_linux_sp; return error; } // ----------------------------------------------------------------------------- // Public Instance Methods // ----------------------------------------------------------------------------- NativeProcessLinux::NativeProcessLinux () : NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), m_arch (), m_supports_mem_region (eLazyBoolCalculate), m_mem_region_cache (), m_mem_region_cache_mutex () { } //------------------------------------------------------------------------------ // NativeProcessLinux spawns a new thread which performs all operations on the inferior process. // Refer to Monitor and Operation classes to see why this is necessary. //------------------------------------------------------------------------------ void NativeProcessLinux::LaunchInferior ( Module *module, const char *argv[], const char *envp[], const std::string &stdin_path, const std::string &stdout_path, const std::string &stderr_path, const char *working_dir, const ProcessLaunchInfo &launch_info, Error &error) { if (module) m_arch = module->GetArchitecture (); SetState (eStateLaunching); std::unique_ptr args( new LaunchArgs( module, argv, envp, stdin_path, stdout_path, stderr_path, working_dir, launch_info)); StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error); if (!error.Success ()) return; } void NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); // We can use the Host for everything except the ResolveExecutable portion. PlatformSP platform_sp = Platform::GetHostPlatform (); if (!platform_sp) { if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); error.SetErrorString ("no default platform available"); return; } // Gather info about the process. ProcessInstanceInfo process_info; if (!platform_sp->GetProcessInfo (pid, process_info)) { if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); error.SetErrorString ("failed to get process info"); return; } // Resolve the executable module ModuleSP exe_module_sp; FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, executable_search_paths.GetSize() ? &executable_search_paths : NULL); if (!error.Success()) return; // Set the architecture to the exe architecture. m_arch = exe_module_sp->GetArchitecture(); if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); m_pid = pid; SetState(eStateAttaching); StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error); if (!error.Success ()) return; } void NativeProcessLinux::Terminate () { m_monitor_up->Terminate(); } ::pid_t NativeProcessLinux::Launch(LaunchArgs *args, Error &error) { assert (args && "null args"); const char **argv = args->m_argv; const char **envp = args->m_envp; const char *working_dir = args->m_working_dir; lldb_utility::PseudoTerminal terminal; const size_t err_len = 1024; char err_str[err_len]; lldb::pid_t pid; NativeThreadProtocolSP thread_sp; lldb::ThreadSP inferior; // Propagate the environment if one is not supplied. if (envp == NULL || envp[0] == NULL) envp = const_cast(environ); if ((pid = terminal.Fork(err_str, err_len)) == static_cast (-1)) { error.SetErrorToGenericError(); error.SetErrorStringWithFormat("Process fork failed: %s", err_str); return -1; } // Recognized child exit status codes. enum { ePtraceFailed = 1, eDupStdinFailed, eDupStdoutFailed, eDupStderrFailed, eChdirFailed, eExecFailed, eSetGidFailed }; // Child process. if (pid == 0) { // FIXME consider opening a pipe between parent/child and have this forked child // send log info to parent re: launch status, in place of the log lines removed here. // Start tracing this child that is about to exec. PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error); if (error.Fail()) exit(ePtraceFailed); // terminal has already dupped the tty descriptors to stdin/out/err. // This closes original fd from which they were copied (and avoids // leaking descriptors to the debugged process. terminal.CloseSlaveFileDescriptor(); // Do not inherit setgid powers. if (setgid(getgid()) != 0) exit(eSetGidFailed); // Attempt to have our own process group. if (setpgid(0, 0) != 0) { // FIXME log that this failed. This is common. // Don't allow this to prevent an inferior exec. } // Dup file descriptors if needed. if (!args->m_stdin_path.empty ()) if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) exit(eDupStdinFailed); if (!args->m_stdout_path.empty ()) if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) exit(eDupStdoutFailed); if (!args->m_stderr_path.empty ()) if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) exit(eDupStderrFailed); // Close everything besides stdin, stdout, and stderr that has no file // action to avoid leaking for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) if (!args->m_launch_info.GetFileActionForFD(fd)) close(fd); // Change working directory if (working_dir != NULL && working_dir[0]) if (0 != ::chdir(working_dir)) exit(eChdirFailed); // Disable ASLR if requested. if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) { const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); if (old_personality == -1) { // Can't retrieve Linux personality. Cannot disable ASLR. } else { const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); if (new_personality == -1) { // Disabling ASLR failed. } else { // Disabling ASLR succeeded. } } } // Execute. We should never return... execve(argv[0], const_cast(argv), const_cast(envp)); // ...unless exec fails. In which case we definitely need to end the child here. exit(eExecFailed); } // // This is the parent code here. // Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); // Wait for the child process to trap on its call to execve. ::pid_t wpid; int status; if ((wpid = waitpid(pid, &status, 0)) < 0) { error.SetErrorToErrno(); if (log) log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, error.AsCString ()); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. SetState (StateType::eStateInvalid); return -1; } else if (WIFEXITED(status)) { // open, dup or execve likely failed for some reason. error.SetErrorToGenericError(); switch (WEXITSTATUS(status)) { case ePtraceFailed: error.SetErrorString("Child ptrace failed."); break; case eDupStdinFailed: error.SetErrorString("Child open stdin failed."); break; case eDupStdoutFailed: error.SetErrorString("Child open stdout failed."); break; case eDupStderrFailed: error.SetErrorString("Child open stderr failed."); break; case eChdirFailed: error.SetErrorString("Child failed to set working directory."); break; case eExecFailed: error.SetErrorString("Child exec failed."); break; case eSetGidFailed: error.SetErrorString("Child setgid failed."); break; default: error.SetErrorString("Child returned unknown exit status."); break; } if (log) { log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", __FUNCTION__, WEXITSTATUS(status)); } // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. SetState (StateType::eStateInvalid); return -1; } assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && "Could not sync with inferior process."); if (log) log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); error = SetDefaultPtraceOpts(pid); if (error.Fail()) { if (log) log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", __FUNCTION__, error.AsCString ()); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. SetState (StateType::eStateInvalid); return -1; } // Release the master terminal descriptor and pass it off to the // NativeProcessLinux instance. Similarly stash the inferior pid. m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); m_pid = pid; // Set the terminal fd to be in non blocking mode (it simplifies the // implementation of ProcessLinux::GetSTDOUT to have a non-blocking // descriptor to read from). error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); if (error.Fail()) { if (log) log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", __FUNCTION__, error.AsCString ()); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. SetState (StateType::eStateInvalid); return -1; } if (log) log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); thread_sp = AddThread (pid); assert (thread_sp && "AddThread() returned a nullptr thread"); std::static_pointer_cast (thread_sp)->SetStoppedBySignal (SIGSTOP); ThreadWasCreated(pid); // Let our process instance know the thread has stopped. SetCurrentThreadID (thread_sp->GetID ()); SetState (StateType::eStateStopped); if (log) { if (error.Success ()) { log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); } else { log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", __FUNCTION__, error.AsCString ()); return -1; } } return pid; } ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) { lldb::ThreadSP inferior; Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); // Use a map to keep track of the threads which we have attached/need to attach. Host::TidMap tids_to_attach; if (pid <= 1) { error.SetErrorToGenericError(); error.SetErrorString("Attaching to process 1 is not allowed."); return -1; } while (Host::FindProcessThreads(pid, tids_to_attach)) { for (Host::TidMap::iterator it = tids_to_attach.begin(); it != tids_to_attach.end();) { if (it->second == false) { lldb::tid_t tid = it->first; // Attach to the requested process. // An attach will cause the thread to stop with a SIGSTOP. PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error); if (error.Fail()) { // No such thread. The thread may have exited. // More error handling may be needed. if (error.GetError() == ESRCH) { it = tids_to_attach.erase(it); continue; } else return -1; } int status; // Need to use __WALL otherwise we receive an error with errno=ECHLD // At this point we should have a thread stopped if waitpid succeeds. if ((status = waitpid(tid, NULL, __WALL)) < 0) { // No such thread. The thread may have exited. // More error handling may be needed. if (errno == ESRCH) { it = tids_to_attach.erase(it); continue; } else { error.SetErrorToErrno(); return -1; } } error = SetDefaultPtraceOpts(tid); if (error.Fail()) return -1; if (log) log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); it->second = true; // Create the thread, mark it as stopped. NativeThreadProtocolSP thread_sp (AddThread (static_cast (tid))); assert (thread_sp && "AddThread() returned a nullptr"); // This will notify this is a new thread and tell the system it is stopped. std::static_pointer_cast (thread_sp)->SetStoppedBySignal (SIGSTOP); ThreadWasCreated(tid); SetCurrentThreadID (thread_sp->GetID ()); } // move the loop forward ++it; } } if (tids_to_attach.size() > 0) { m_pid = pid; // Let our process instance know the thread has stopped. SetState (StateType::eStateStopped); } else { error.SetErrorToGenericError(); error.SetErrorString("No such process."); return -1; } return pid; } Error NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { long ptrace_opts = 0; // Have the child raise an event on exit. This is used to keep the child in // limbo until it is destroyed. ptrace_opts |= PTRACE_O_TRACEEXIT; // Have the tracer trace threads which spawn in the inferior process. // TODO: if we want to support tracing the inferiors' child, add the // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) ptrace_opts |= PTRACE_O_TRACECLONE; // Have the tracer notify us before execve returns // (needed to disable legacy SIGTRAP generation) ptrace_opts |= PTRACE_O_TRACEEXEC; Error error; PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); return error; } static ExitType convert_pid_status_to_exit_type (int status) { if (WIFEXITED (status)) return ExitType::eExitTypeExit; else if (WIFSIGNALED (status)) return ExitType::eExitTypeSignal; else if (WIFSTOPPED (status)) return ExitType::eExitTypeStop; else { // We don't know what this is. return ExitType::eExitTypeInvalid; } } static int convert_pid_status_to_return_code (int status) { if (WIFEXITED (status)) return WEXITSTATUS (status); else if (WIFSIGNALED (status)) return WTERMSIG (status); else if (WIFSTOPPED (status)) return WSTOPSIG (status); else { // We don't know what this is. return ExitType::eExitTypeInvalid; } } // Handles all waitpid events from the inferior process. void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, int signal, int status) { Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); // Certain activities differ based on whether the pid is the tid of the main thread. const bool is_main_thread = (pid == GetID ()); // Handle when the thread exits. if (exited) { if (log) log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); // This is a thread that exited. Ensure we're not tracking it anymore. const bool thread_found = StopTrackingThread (pid); if (is_main_thread) { // We only set the exit status and notify the delegate if we haven't already set the process // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) // for the main thread. const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); if (!already_notified) { if (log) log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); // The main thread exited. We're done monitoring. Report to delegate. SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); // Notify delegate that our process has exited. SetState (StateType::eStateExited, true); } else { if (log) log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); } } else { // Do we want to report to the delegate in this case? I think not. If this was an orderly // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, // and we would have done an all-stop then. if (log) log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); } return; } // Get details on the signal raised. siginfo_t info; const auto err = GetSignalInfo(pid, &info); if (err.Success()) { // We have retrieved the signal info. Dispatch appropriately. if (info.si_signo == SIGTRAP) MonitorSIGTRAP(&info, pid); else MonitorSignal(&info, pid, exited); } else { if (err.GetError() == EINVAL) { // This is a group stop reception for this tid. if (log) log->Printf ("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid); ThreadDidStop(pid, false); } else { // ptrace(GETSIGINFO) failed (but not due to group-stop). // A return value of ESRCH means the thread/process is no longer on the system, // so it was killed somehow outside of our control. Either way, we can't do anything // with it anymore. // Stop tracking the metadata for the thread since it's entirely off the system now. const bool thread_found = StopTrackingThread (pid); if (log) log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); if (is_main_thread) { // Notify the delegate - our process is not available but appears to have been killed outside // our control. Is eStateExited the right exit state in this case? SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); SetState (StateType::eStateExited, true); } else { // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); } } } } void NativeProcessLinux::WaitForNewThread(::pid_t tid) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid); if (new_thread_sp) { // We are already tracking the thread - we got the event on the new thread (see // MonitorSignal) before this one. We are done. return; } // The thread is not tracked yet, let's wait for it to appear. int status = -1; ::pid_t wait_pid; do { if (log) log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); wait_pid = waitpid(tid, &status, __WALL); } while (wait_pid == -1 && errno == EINTR); // Since we are waiting on a specific tid, this must be the creation event. But let's do // some checks just in case. if (wait_pid != tid) { if (log) log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); // The only way I know of this could happen is if the whole process was // SIGKILLed in the mean time. In any case, we can't do anything about that now. return; } if (WIFEXITED(status)) { if (log) log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); // Also a very improbable event. return; } siginfo_t info; Error error = GetSignalInfo(tid, &info); if (error.Fail()) { if (log) log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); return; } if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) { // We should be getting a thread creation signal here, but we received something // else. There isn't much we can do about it now, so we will just log that. Since the // thread is alive and we are receiving events from it, we shall pretend that it was // created properly. log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); } if (log) log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, __FUNCTION__, GetID (), tid); new_thread_sp = AddThread(tid); std::static_pointer_cast (new_thread_sp)->SetRunning (); Resume (tid, LLDB_INVALID_SIGNAL_NUMBER); ThreadWasCreated(tid); } void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); const bool is_main_thread = (pid == GetID ()); assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); if (!info) return; Mutex::Locker locker (m_threads_mutex); // See if we can find a thread for this signal. NativeThreadProtocolSP thread_sp = GetThreadByID (pid); if (!thread_sp) { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); } switch (info->si_code) { // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { // This is the notification on the parent thread which informs us of new thread // creation. // We don't want to do anything with the parent thread so we just resume it. In case we // want to implement "break on thread creation" functionality, we would need to stop // here. unsigned long event_message = 0; if (GetEventMessage (pid, &event_message).Fail()) { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); } else WaitForNewThread(event_message); Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); break; } case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { NativeThreadProtocolSP main_thread_sp; if (log) log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); // Exec clears any pending notifications. m_pending_notification_up.reset (); // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. if (log) log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); for (auto thread_sp : m_threads) { const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); if (is_main_thread) { main_thread_sp = thread_sp; if (log) log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); } else { // Tell thread coordinator this thread is dead. if (log) log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); } } m_threads.clear (); if (main_thread_sp) { m_threads.push_back (main_thread_sp); SetCurrentThreadID (main_thread_sp->GetID ()); std::static_pointer_cast (main_thread_sp)->SetStoppedByExec (); } else { SetCurrentThreadID (LLDB_INVALID_THREAD_ID); if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); } // Tell coordinator about about the "new" (since exec) stopped main thread. const lldb::tid_t main_thread_tid = GetID (); ThreadWasCreated(main_thread_tid); // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. // Consider a handler that can execute when that happens. // Let our delegate know we have just exec'd. NotifyDidExec (); // If we have a main thread, indicate we are stopped. assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); // Let the process know we're stopped. StopRunningThreads (pid); break; } case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { // The inferior process or one of its threads is about to exit. // We don't want to do anything with the thread so we just resume it. In case we // want to implement "break on thread exit" functionality, we would need to stop // here. unsigned long data = 0; if (GetEventMessage(pid, &data).Fail()) data = -1; if (log) { log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", __FUNCTION__, data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", pid, is_main_thread ? "is main thread" : "not main thread"); } if (is_main_thread) { SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); } Resume(pid, LLDB_INVALID_SIGNAL_NUMBER); break; } case 0: case TRAP_TRACE: // We receive this on single stepping. case TRAP_HWBKPT: // We receive this on watchpoint hit if (thread_sp) { // If a watchpoint was hit, report it uint32_t wp_index; Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr); if (error.Fail() && log) log->Printf("NativeProcessLinux::%s() " "received error while checking for watchpoint hits, " "pid = %" PRIu64 " error = %s", __FUNCTION__, pid, error.AsCString()); if (wp_index != LLDB_INVALID_INDEX32) { MonitorWatchpoint(pid, thread_sp, wp_index); break; } } // Otherwise, report step over MonitorTrace(pid, thread_sp); break; case SI_KERNEL: case TRAP_BRKPT: MonitorBreakpoint(pid, thread_sp); break; case SIGTRAP: case (SIGTRAP | 0x80): if (log) log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); // Ignore these signals until we know more about them. Resume(pid, LLDB_INVALID_SIGNAL_NUMBER); break; default: assert(false && "Unexpected SIGTRAP code!"); if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d", __FUNCTION__, GetID (), pid, info->si_code); break; } } void NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); if (log) log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid); if (thread_sp) std::static_pointer_cast(thread_sp)->SetStoppedByTrace(); // This thread is currently stopped. ThreadDidStop(pid, false); // Here we don't have to request the rest of the threads to stop or request a deferred stop. // This would have already happened at the time the Resume() with step operation was signaled. // At this point, we just need to say we stopped, and the deferred notifcation will fire off // once all running threads have checked in as stopped. SetCurrentThreadID(pid); // Tell the process we have a stop (from software breakpoint). StopRunningThreads(pid); } void NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) { Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); if (log) log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); // This thread is currently stopped. ThreadDidStop(pid, false); // Mark the thread as stopped at breakpoint. if (thread_sp) { std::static_pointer_cast(thread_sp)->SetStoppedByBreakpoint(); Error error = FixupBreakpointPCAsNeeded(thread_sp); if (error.Fail()) if (log) log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString()); if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end()) std::static_pointer_cast(thread_sp)->SetStoppedByTrace(); } else if (log) log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 ": " "warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid); // We need to tell all other running threads before we notify the delegate about this stop. StopRunningThreads(pid); } void NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index) { Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); if (log) log->Printf("NativeProcessLinux::%s() received watchpoint event, " "pid = %" PRIu64 ", wp_index = %" PRIu32, __FUNCTION__, pid, wp_index); // This thread is currently stopped. ThreadDidStop(pid, false); // Mark the thread as stopped at watchpoint. // The address is at (lldb::addr_t)info->si_addr if we need it. lldbassert(thread_sp && "thread_sp cannot be NULL"); std::static_pointer_cast(thread_sp)->SetStoppedByWatchpoint(wp_index); // We need to tell all other running threads before we notify the delegate about this stop. StopRunningThreads(pid); } void NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) { assert (info && "null info"); if (!info) return; const int signo = info->si_signo; const bool is_from_llgs = info->si_pid == getpid (); Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); // POSIX says that process behaviour is undefined after it ignores a SIGFPE, // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a // kill(2) or raise(3). Similarly for tgkill(2) on Linux. // // IOW, user generated signals never generate what we consider to be a // "crash". // // Similarly, ACK signals generated by this monitor. Mutex::Locker locker (m_threads_mutex); // See if we can find a thread for this signal. NativeThreadProtocolSP thread_sp = GetThreadByID (pid); if (!thread_sp) { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); } // Handle the signal. if (info->si_code == SI_TKILL || info->si_code == SI_USER) { if (log) log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo), signo, (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), info->si_pid, is_from_llgs ? "from llgs" : "not from llgs", pid); } // Check for new thread notification. if ((info->si_pid == 0) && (info->si_code == SI_USER)) { // A new thread creation is being signaled. This is one of two parts that come in // a non-deterministic order. This code handles the case where the new thread event comes // before the event on the parent thread. For the opposite case see code in // MonitorSIGTRAP. if (log) log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", __FUNCTION__, GetID (), pid); thread_sp = AddThread(pid); assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread"); // We can now resume the newly created thread. std::static_pointer_cast (thread_sp)->SetRunning (); Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); ThreadWasCreated(pid); // Done handling. return; } // Check for thread stop notification. if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) { // This is a tgkill()-based stop. if (thread_sp) { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", __FUNCTION__, GetID (), pid); // Check that we're not already marked with a stop reason. // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that // the kernel signaled us with the thread stopping which we handled and marked as stopped, // and that, without an intervening resume, we received another stop. It is more likely // that we are missing the marking of a run state somewhere if we find that the thread was // marked as stopped. std::shared_ptr linux_thread_sp = std::static_pointer_cast (thread_sp); assert (linux_thread_sp && "linux_thread_sp is null!"); const StateType thread_state = linux_thread_sp->GetState (); if (!StateIsStoppedState (thread_state, false)) { // An inferior thread has stopped because of a SIGSTOP we have sent it. // Generally, these are not important stops and we don't want to report them as // they are just used to stop other threads when one thread (the one with the // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the // case of an asynchronous Interrupt(), this *is* the real stop reason, so we // leave the signal intact if this is the thread that was chosen as the // triggering thread. if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid) linux_thread_sp->SetStoppedBySignal(SIGSTOP); else linux_thread_sp->SetStoppedBySignal(0); SetCurrentThreadID (thread_sp->GetID ()); ThreadDidStop (thread_sp->GetID (), true); } else { if (log) { // Retrieve the signal name if the thread was stopped by a signal. int stop_signo = 0; const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo); const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : ""; if (!signal_name) signal_name = ""; log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", __FUNCTION__, GetID (), linux_thread_sp->GetID (), StateAsCString (thread_state), stop_signo, signal_name); } ThreadDidStop (thread_sp->GetID (), false); } } // Done handling. return; } if (log) log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); // This thread is stopped. ThreadDidStop (pid, false); switch (signo) { case SIGSTOP: { std::static_pointer_cast (thread_sp)->SetStoppedBySignal (signo); if (log) { if (is_from_llgs) log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); else log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); } // Resume this thread to get the group-stop mechanism to fire off the true group stops. // This thread will get stopped again as part of the group-stop completion. ResumeThread(pid, [=](lldb::tid_t tid_to_resume, bool supress_signal) { std::static_pointer_cast (thread_sp)->SetRunning (); // Pass this signal number on to the inferior to handle. return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); }, true); } break; case SIGSEGV: case SIGILL: case SIGFPE: case SIGBUS: if (thread_sp) std::static_pointer_cast (thread_sp)->SetCrashedWithException (*info); break; default: // This is just a pre-signal-delivery notification of the incoming signal. if (thread_sp) std::static_pointer_cast (thread_sp)->SetStoppedBySignal (signo); break; } // Send a stop to the debugger after we get all other threads to stop. StopRunningThreads (pid); } namespace { struct EmulatorBaton { NativeProcessLinux* m_process; NativeRegisterContext* m_reg_context; // eRegisterKindDWARF -> RegsiterValue std::unordered_map m_register_values; EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : m_process(process), m_reg_context(reg_context) {} }; } // anonymous namespace static size_t ReadMemoryCallback (EmulateInstruction *instruction, void *baton, const EmulateInstruction::Context &context, lldb::addr_t addr, void *dst, size_t length) { EmulatorBaton* emulator_baton = static_cast(baton); size_t bytes_read; emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); return bytes_read; } static bool ReadRegisterCallback (EmulateInstruction *instruction, void *baton, const RegisterInfo *reg_info, RegisterValue ®_value) { EmulatorBaton* emulator_baton = static_cast(baton); auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); if (it != emulator_baton->m_register_values.end()) { reg_value = it->second; return true; } // The emulator only fill in the dwarf regsiter numbers (and in some case // the generic register numbers). Get the full register info from the // register context based on the dwarf register numbers. const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); if (error.Success()) return true; return false; } static bool WriteRegisterCallback (EmulateInstruction *instruction, void *baton, const EmulateInstruction::Context &context, const RegisterInfo *reg_info, const RegisterValue ®_value) { EmulatorBaton* emulator_baton = static_cast(baton); emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; return true; } static size_t WriteMemoryCallback (EmulateInstruction *instruction, void *baton, const EmulateInstruction::Context &context, lldb::addr_t addr, const void *dst, size_t length) { return length; } static lldb::addr_t ReadFlags (NativeRegisterContext* regsiter_context) { const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); } Error NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp) { Error error; NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext(); std::unique_ptr emulator_ap( EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); if (emulator_ap == nullptr) return Error("Instruction emulator not found!"); EmulatorBaton baton(this, register_context_sp.get()); emulator_ap->SetBaton(&baton); emulator_ap->SetReadMemCallback(&ReadMemoryCallback); emulator_ap->SetReadRegCallback(&ReadRegisterCallback); emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); if (!emulator_ap->ReadInstruction()) return Error("Read instruction failed!"); bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); lldb::addr_t next_pc; lldb::addr_t next_flags; if (emulation_result) { assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); next_pc = pc_it->second.GetAsUInt64(); if (flags_it != baton.m_register_values.end()) next_flags = flags_it->second.GetAsUInt64(); else next_flags = ReadFlags (register_context_sp.get()); } else if (pc_it == baton.m_register_values.end()) { // Emulate instruction failed and it haven't changed PC. Advance PC // with the size of the current opcode because the emulation of all // PC modifying instruction should be successful. The failure most // likely caused by a not supported instruction which don't modify PC. next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); next_flags = ReadFlags (register_context_sp.get()); } else { // The instruction emulation failed after it modified the PC. It is an // unknown error where we can't continue because the next instruction is // modifying the PC but we don't know how. return Error ("Instruction emulation failed unexpectedly."); } if (m_arch.GetMachine() == llvm::Triple::arm) { if (next_flags & 0x20) { // Thumb mode error = SetSoftwareBreakpoint(next_pc, 2); } else { // Arm mode error = SetSoftwareBreakpoint(next_pc, 4); } } else if (m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el) error = SetSoftwareBreakpoint(next_pc, 4); else { // No size hint is given for the next breakpoint error = SetSoftwareBreakpoint(next_pc, 0); } if (error.Fail()) return error; m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc}); return Error(); } bool NativeProcessLinux::SupportHardwareSingleStepping() const { if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el) return false; return true; } Error NativeProcessLinux::Resume (const ResumeActionList &resume_actions) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); if (log) log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); bool software_single_step = !SupportHardwareSingleStepping(); Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); Mutex::Locker locker (m_threads_mutex); if (software_single_step) { for (auto thread_sp : m_threads) { assert (thread_sp && "thread list should not contain NULL threads"); const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); if (action == nullptr) continue; if (action->state == eStateStepping) { Error error = SetupSoftwareSingleStepping(thread_sp); if (error.Fail()) return error; } } } for (auto thread_sp : m_threads) { assert (thread_sp && "thread list should not contain NULL threads"); const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); if (action == nullptr) { if (log) log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), thread_sp->GetID ()); continue; } if (log) { log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); } switch (action->state) { case eStateRunning: { // Run the thread, possibly feeding it the signal. const int signo = action->signal; ResumeThread(thread_sp->GetID (), [=](lldb::tid_t tid_to_resume, bool supress_signal) { std::static_pointer_cast (thread_sp)->SetRunning (); // Pass this signal number on to the inferior to handle. const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); if (resume_result.Success()) SetState(eStateRunning, true); return resume_result; }, false); break; } case eStateStepping: { // Request the step. const int signo = action->signal; ResumeThread(thread_sp->GetID (), [=](lldb::tid_t tid_to_step, bool supress_signal) { std::static_pointer_cast (thread_sp)->SetStepping (); Error step_result; if (software_single_step) step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); else step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); assert (step_result.Success() && "SingleStep() failed"); if (step_result.Success()) SetState(eStateStepping, true); return step_result; }, false); break; } case eStateSuspended: case eStateStopped: lldbassert(0 && "Unexpected state"); default: return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); } } return Error(); } Error NativeProcessLinux::Halt () { Error error; if (kill (GetID (), SIGSTOP) != 0) error.SetErrorToErrno (); return error; } Error NativeProcessLinux::Detach () { Error error; // Tell ptrace to detach from the process. if (GetID () != LLDB_INVALID_PROCESS_ID) error = Detach (GetID ()); // Stop monitoring the inferior. m_monitor_up->Terminate(); // No error. return error; } Error NativeProcessLinux::Signal (int signo) { Error error; Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); if (kill(GetID(), signo)) error.SetErrorToErrno(); return error; } Error NativeProcessLinux::Interrupt () { // Pick a running thread (or if none, a not-dead stopped thread) as // the chosen thread that will be the stop-reason thread. Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); NativeThreadProtocolSP running_thread_sp; NativeThreadProtocolSP stopped_thread_sp; if (log) log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); Mutex::Locker locker (m_threads_mutex); for (auto thread_sp : m_threads) { // The thread shouldn't be null but lets just cover that here. if (!thread_sp) continue; // If we have a running or stepping thread, we'll call that the // target of the interrupt. const auto thread_state = thread_sp->GetState (); if (thread_state == eStateRunning || thread_state == eStateStepping) { running_thread_sp = thread_sp; break; } else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) { // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. stopped_thread_sp = thread_sp; } } if (!running_thread_sp && !stopped_thread_sp) { Error error("found no running/stepping or live stopped threads as target for interrupt"); if (log) log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); return error; } NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", __FUNCTION__, GetID (), running_thread_sp ? "running" : "stopped", deferred_signal_thread_sp->GetID ()); StopRunningThreads(deferred_signal_thread_sp->GetID()); return Error(); } Error NativeProcessLinux::Kill () { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); Error error; switch (m_state) { case StateType::eStateInvalid: case StateType::eStateExited: case StateType::eStateCrashed: case StateType::eStateDetached: case StateType::eStateUnloaded: // Nothing to do - the process is already dead. if (log) log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); return error; case StateType::eStateConnected: case StateType::eStateAttaching: case StateType::eStateLaunching: case StateType::eStateStopped: case StateType::eStateRunning: case StateType::eStateStepping: case StateType::eStateSuspended: // We can try to kill a process in these states. break; } if (kill (GetID (), SIGKILL) != 0) { error.SetErrorToErrno (); return error; } return error; } static Error ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) { memory_region_info.Clear(); StringExtractor line_extractor (maps_line.c_str ()); // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). // Parse out the starting address lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); // Parse out hyphen separating start and end address from range. if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); // Parse out the ending address lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); // Parse out the space after the address. if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) return Error ("malformed /proc/{pid}/maps entry, missing space after range"); // Save the range. memory_region_info.GetRange ().SetRangeBase (start_address); memory_region_info.GetRange ().SetRangeEnd (end_address); // Parse out each permission entry. if (line_extractor.GetBytesLeft () < 4) return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); // Handle read permission. const char read_perm_char = line_extractor.GetChar (); if (read_perm_char == 'r') memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); else { assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); } // Handle write permission. const char write_perm_char = line_extractor.GetChar (); if (write_perm_char == 'w') memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); else { assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); } // Handle execute permission. const char exec_perm_char = line_extractor.GetChar (); if (exec_perm_char == 'x') memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); else { assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); } return Error (); } Error NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) { // FIXME review that the final memory region returned extends to the end of the virtual address space, // with no perms if it is not mapped. // Use an approach that reads memory regions from /proc/{pid}/maps. // Assume proc maps entries are in ascending order. // FIXME assert if we find differently. Mutex::Locker locker (m_mem_region_cache_mutex); Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); Error error; if (m_supports_mem_region == LazyBool::eLazyBoolNo) { // We're done. error.SetErrorString ("unsupported"); return error; } // If our cache is empty, pull the latest. There should always be at least one memory region // if memory region handling is supported. if (m_mem_region_cache.empty ()) { error = ProcFileReader::ProcessLineByLine (GetID (), "maps", [&] (const std::string &line) -> bool { MemoryRegionInfo info; const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); if (parse_error.Success ()) { m_mem_region_cache.push_back (info); return true; } else { if (log) log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); return false; } }); // If we had an error, we'll mark unsupported. if (error.Fail ()) { m_supports_mem_region = LazyBool::eLazyBoolNo; return error; } else if (m_mem_region_cache.empty ()) { // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps // is supported. Assume we don't support map entries via procfs. if (log) log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); m_supports_mem_region = LazyBool::eLazyBoolNo; error.SetErrorString ("not supported"); return error; } if (log) log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast (m_mem_region_cache.size ()), GetID ()); // We support memory retrieval, remember that. m_supports_mem_region = LazyBool::eLazyBoolYes; } else { if (log) log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast (m_mem_region_cache.size ())); } lldb::addr_t prev_base_address = 0; // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. // There can be a ton of regions on pthreads apps with lots of threads. for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) { MemoryRegionInfo &proc_entry_info = *it; // Sanity check assumption that /proc/{pid}/maps entries are ascending. assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); // If the target address comes before this entry, indicate distance to next region. if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) { range_info.GetRange ().SetRangeBase (load_addr); range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); return error; } else if (proc_entry_info.GetRange ().Contains (load_addr)) { // The target address is within the memory region we're processing here. range_info = proc_entry_info; return error; } // The target memory address comes somewhere after the region we just parsed. } // If we made it here, we didn't find an entry that contained the given address. error.SetErrorString ("address comes after final region"); if (log) log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); return error; } void NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); { Mutex::Locker locker (m_mem_region_cache_mutex); if (log) log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast (m_mem_region_cache.size ())); m_mem_region_cache.clear (); } } Error NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) { // FIXME implementing this requires the equivalent of // InferiorCallPOSIX::InferiorCallMmap, which depends on // functional ThreadPlans working with Native*Protocol. #if 1 return Error ("not implemented yet"); #else addr = LLDB_INVALID_ADDRESS; unsigned prot = 0; if (permissions & lldb::ePermissionsReadable) prot |= eMmapProtRead; if (permissions & lldb::ePermissionsWritable) prot |= eMmapProtWrite; if (permissions & lldb::ePermissionsExecutable) prot |= eMmapProtExec; // TODO implement this directly in NativeProcessLinux // (and lift to NativeProcessPOSIX if/when that class is // refactored out). if (InferiorCallMmap(this, addr, 0, size, prot, eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { m_addr_to_mmap_size[addr] = size; return Error (); } else { addr = LLDB_INVALID_ADDRESS; return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); } #endif } Error NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) { // FIXME see comments in AllocateMemory - required lower-level // bits not in place yet (ThreadPlans) return Error ("not implemented"); } lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress () { #if 1 // punt on this for now return LLDB_INVALID_ADDRESS; #else // Return the image info address for the exe module #if 1 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); ModuleSP module_sp; Error error = GetExeModuleSP (module_sp); if (error.Fail ()) { if (log) log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); return LLDB_INVALID_ADDRESS; } if (module_sp == nullptr) { if (log) log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); return LLDB_INVALID_ADDRESS; } ObjectFileSP object_file_sp = module_sp->GetObjectFile (); if (object_file_sp == nullptr) { if (log) log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); return LLDB_INVALID_ADDRESS; } return obj_file_sp->GetImageInfoAddress(); #else Target *target = &GetTarget(); ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); Address addr = obj_file->GetImageInfoAddress(target); if (addr.IsValid()) return addr.GetLoadAddress(target); return LLDB_INVALID_ADDRESS; #endif #endif // punt on this for now } size_t NativeProcessLinux::UpdateThreads () { // The NativeProcessLinux monitoring threads are always up to date // with respect to thread state and they keep the thread list // populated properly. All this method needs to do is return the // thread count. Mutex::Locker locker (m_threads_mutex); return m_threads.size (); } bool NativeProcessLinux::GetArchitecture (ArchSpec &arch) const { arch = m_arch; return true; } Error NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) { // FIXME put this behind a breakpoint protocol class that can be // set per architecture. Need ARM, MIPS support here. static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; static const uint8_t g_i386_opcode [] = { 0xCC }; static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; switch (m_arch.GetMachine ()) { case llvm::Triple::aarch64: actual_opcode_size = static_cast (sizeof(g_aarch64_opcode)); return Error (); case llvm::Triple::arm: actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits return Error (); case llvm::Triple::x86: case llvm::Triple::x86_64: actual_opcode_size = static_cast (sizeof(g_i386_opcode)); return Error (); case llvm::Triple::mips64: case llvm::Triple::mips64el: actual_opcode_size = static_cast (sizeof(g_mips64_opcode)); return Error (); default: assert(false && "CPU type not supported!"); return Error ("CPU type not supported"); } } Error NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) { if (hardware) return Error ("NativeProcessLinux does not support hardware breakpoints"); else return SetSoftwareBreakpoint (addr, size); } Error NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) { // FIXME put this behind a breakpoint protocol class that can be set per // architecture. Need MIPS support here. static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the // linux kernel does otherwise. static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; static const uint8_t g_i386_opcode [] = { 0xCC }; static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; switch (m_arch.GetMachine ()) { case llvm::Triple::aarch64: trap_opcode_bytes = g_aarch64_opcode; actual_opcode_size = sizeof(g_aarch64_opcode); return Error (); case llvm::Triple::arm: switch (trap_opcode_size_hint) { case 2: trap_opcode_bytes = g_thumb_breakpoint_opcode; actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); return Error (); case 4: trap_opcode_bytes = g_arm_breakpoint_opcode; actual_opcode_size = sizeof(g_arm_breakpoint_opcode); return Error (); default: assert(false && "Unrecognised trap opcode size hint!"); return Error ("Unrecognised trap opcode size hint!"); } case llvm::Triple::x86: case llvm::Triple::x86_64: trap_opcode_bytes = g_i386_opcode; actual_opcode_size = sizeof(g_i386_opcode); return Error (); case llvm::Triple::mips64: trap_opcode_bytes = g_mips64_opcode; actual_opcode_size = sizeof(g_mips64_opcode); return Error (); case llvm::Triple::mips64el: trap_opcode_bytes = g_mips64el_opcode; actual_opcode_size = sizeof(g_mips64el_opcode); return Error (); default: assert(false && "CPU type not supported!"); return Error ("CPU type not supported"); } } #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGSEGV); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGSEGV"); break; case SI_KERNEL: // Linux will occasionally send spurious SI_KERNEL codes. // (this is poorly documented in sigaction) // One way to get this is via unaligned SIMD loads. reason = ProcessMessage::eInvalidAddress; // for lack of anything better break; case SEGV_MAPERR: reason = ProcessMessage::eInvalidAddress; break; case SEGV_ACCERR: reason = ProcessMessage::ePrivilegedAddress; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGILL); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGILL"); break; case ILL_ILLOPC: reason = ProcessMessage::eIllegalOpcode; break; case ILL_ILLOPN: reason = ProcessMessage::eIllegalOperand; break; case ILL_ILLADR: reason = ProcessMessage::eIllegalAddressingMode; break; case ILL_ILLTRP: reason = ProcessMessage::eIllegalTrap; break; case ILL_PRVOPC: reason = ProcessMessage::ePrivilegedOpcode; break; case ILL_PRVREG: reason = ProcessMessage::ePrivilegedRegister; break; case ILL_COPROC: reason = ProcessMessage::eCoprocessorError; break; case ILL_BADSTK: reason = ProcessMessage::eInternalStackError; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGFPE); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGFPE"); break; case FPE_INTDIV: reason = ProcessMessage::eIntegerDivideByZero; break; case FPE_INTOVF: reason = ProcessMessage::eIntegerOverflow; break; case FPE_FLTDIV: reason = ProcessMessage::eFloatDivideByZero; break; case FPE_FLTOVF: reason = ProcessMessage::eFloatOverflow; break; case FPE_FLTUND: reason = ProcessMessage::eFloatUnderflow; break; case FPE_FLTRES: reason = ProcessMessage::eFloatInexactResult; break; case FPE_FLTINV: reason = ProcessMessage::eFloatInvalidOperation; break; case FPE_FLTSUB: reason = ProcessMessage::eFloatSubscriptRange; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGBUS); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGBUS"); break; case BUS_ADRALN: reason = ProcessMessage::eIllegalAlignment; break; case BUS_ADRERR: reason = ProcessMessage::eIllegalAddress; break; case BUS_OBJERR: reason = ProcessMessage::eHardwareError; break; } return reason; } #endif Error NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware) { // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor // for it. Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware); } Error NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr) { // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor // for it. Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); return NativeProcessProtocol::RemoveWatchpoint(addr); } Error NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) { ReadOperation op(addr, buf, size, bytes_read); m_monitor_up->DoOperation(&op); return op.GetError (); } Error NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) { Error error = ReadMemory(addr, buf, size, bytes_read); if (error.Fail()) return error; return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); } Error NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) { WriteOperation op(addr, buf, size, bytes_written); m_monitor_up->DoOperation(&op); return op.GetError (); } Error NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, uint32_t size, RegisterValue &value) { ReadRegOperation op(tid, offset, reg_name, value); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, const char* reg_name, const RegisterValue &value) { WriteRegOperation op(tid, offset, reg_name, value); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) { ReadGPROperation op(tid, buf, buf_size); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) { ReadFPROperation op(tid, buf, buf_size); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) { ReadRegisterSetOperation op(tid, buf, buf_size, regset); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::ReadHardwareDebugInfo (lldb::tid_t tid, unsigned int &watch_count , unsigned int &break_count) { ReadDBGROperation op(tid, watch_count, break_count); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::WriteHardwareDebugRegs (lldb::tid_t tid, lldb::addr_t *addr_buf, uint32_t *cntrl_buf, int type, int count) { WriteDBGROperation op(tid, addr_buf, cntrl_buf, type, count); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) { WriteGPROperation op(tid, buf, buf_size); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) { WriteFPROperation op(tid, buf, buf_size); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) { WriteRegisterSetOperation op(tid, buf, buf_size, regset); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, GetUnixSignals().GetSignalAsCString (signo)); ResumeOperation op (tid, signo); m_monitor_up->DoOperation (&op); if (log) log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); return op.GetError(); } Error NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) { SingleStepOperation op(tid, signo); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { SiginfoOperation op(tid, siginfo); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) { EventMessageOperation op(tid, message); m_monitor_up->DoOperation(&op); return op.GetError(); } Error NativeProcessLinux::Detach(lldb::tid_t tid) { if (tid == LLDB_INVALID_THREAD_ID) return Error(); DetachOperation op(tid); m_monitor_up->DoOperation(&op); return op.GetError(); } bool NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) { int target_fd = open(path, flags, 0666); if (target_fd == -1) return false; if (dup2(target_fd, fd) == -1) return false; return (close(target_fd) == -1) ? false : true; } void NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error) { m_monitor_up.reset(new Monitor(initial_operation, this)); error = m_monitor_up->Initialize(); if (error.Fail()) { m_monitor_up.reset(); } } bool NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) { for (auto thread_sp : m_threads) { assert (thread_sp && "thread list should not contain NULL threads"); if (thread_sp->GetID () == thread_id) { // We have this thread. return true; } } // We don't have this thread. return false; } NativeThreadProtocolSP NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) { // CONSIDER organize threads by map - we can do better than linear. for (auto thread_sp : m_threads) { if (thread_sp->GetID () == thread_id) return thread_sp; } // We don't have this thread. return NativeThreadProtocolSP (); } bool NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id); bool found = false; Mutex::Locker locker (m_threads_mutex); for (auto it = m_threads.begin (); it != m_threads.end (); ++it) { if (*it && ((*it)->GetID () == thread_id)) { m_threads.erase (it); found = true; break; } } // If we have a pending notification, remove this from the set. if (m_pending_notification_up) { m_pending_notification_up->wait_for_stop_tids.erase(thread_id); SignalIfAllThreadsStopped(); } return found; } NativeThreadProtocolSP NativeProcessLinux::AddThread (lldb::tid_t thread_id) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); Mutex::Locker locker (m_threads_mutex); if (log) { log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, __FUNCTION__, GetID (), thread_id); } assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); // If this is the first thread, save it as the current thread if (m_threads.empty ()) SetCurrentThreadID (thread_id); NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); m_threads.push_back (thread_sp); return thread_sp; } Error NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); Error error; // Get a linux thread pointer. if (!thread_sp) { error.SetErrorString ("null thread_sp"); if (log) log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); return error; } std::shared_ptr linux_thread_sp = std::static_pointer_cast (thread_sp); // Find out the size of a breakpoint (might depend on where we are in the code). NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext (); if (!context_sp) { error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); if (log) log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); return error; } uint32_t breakpoint_size = 0; error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size); if (error.Fail ()) { if (log) log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); return error; } else { if (log) log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); } // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. const lldb::addr_t initial_pc_addr = context_sp->GetPC (); lldb::addr_t breakpoint_addr = initial_pc_addr; if (breakpoint_size > 0) { // Do not allow breakpoint probe to wrap around. if (breakpoint_addr >= breakpoint_size) breakpoint_addr -= breakpoint_size; } // Check if we stopped because of a breakpoint. NativeBreakpointSP breakpoint_sp; error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); if (!error.Success () || !breakpoint_sp) { // We didn't find one at a software probe location. Nothing to do. if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); return Error (); } // If the breakpoint is not a software breakpoint, nothing to do. if (!breakpoint_sp->IsSoftwareBreakpoint ()) { if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); return Error (); } // // We have a software breakpoint and need to adjust the PC. // // Sanity check. if (breakpoint_size == 0) { // Nothing to do! How did we get here? if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); return Error (); } // Change the program counter. if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr); error = context_sp->SetPC (breakpoint_addr); if (error.Fail ()) { if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ()); return error; } return error; } Error NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) { char maps_file_name[32]; snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID()); FileSpec maps_file_spec(maps_file_name, false); if (!maps_file_spec.Exists()) { file_spec.Clear(); return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID()); } FileSpec module_file_spec(module_path, true); std::ifstream maps_file(maps_file_name); std::string maps_data_str((std::istreambuf_iterator(maps_file)), std::istreambuf_iterator()); StringRef maps_data(maps_data_str.c_str()); while (!maps_data.empty()) { StringRef maps_row; std::tie(maps_row, maps_data) = maps_data.split('\n'); SmallVector maps_columns; maps_row.split(maps_columns, StringRef(" "), -1, false); if (maps_columns.size() >= 6) { file_spec.SetFile(maps_columns[5].str().c_str(), false); if (file_spec.GetFilename() == module_file_spec.GetFilename()) return Error(); } } file_spec.Clear(); return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", module_file_spec.GetFilename().AsCString(), GetID()); } Error NativeProcessLinux::ResumeThread( lldb::tid_t tid, NativeThreadLinux::ResumeThreadFunction request_thread_resume_function, bool error_when_already_running) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)", __FUNCTION__, tid, error_when_already_running?"true":"false"); auto thread_sp = std::static_pointer_cast(GetThreadByID(tid)); lldbassert(thread_sp != nullptr); auto& context = thread_sp->GetThreadContext(); // Tell the thread to resume if we don't already think it is running. const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true); lldbassert(!(error_when_already_running && !is_stopped)); if (!is_stopped) { // It's not an error, just a log, if the error_when_already_running flag is not set. // This covers cases where, for instance, we're just trying to resume all threads // from the user side. if (log) log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running", __FUNCTION__, tid); return Error(); } // Before we do the resume below, first check if we have a pending // stop notification that is currently waiting for // this thread to stop. This is potentially a buggy situation since // we're ostensibly waiting for threads to stop before we send out the // pending notification, and here we are resuming one before we send // out the pending stop notification. if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0) { log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid); } // Request a resume. We expect this to be synchronous and the system // to reflect it is running after this completes. const auto error = request_thread_resume_function (tid, false); if (error.Success()) context.request_resume_function = request_thread_resume_function; else if (log) { log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", __FUNCTION__, tid, error.AsCString ()); } return error; } //===----------------------------------------------------------------------===// void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) { log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")", __FUNCTION__, triggering_tid); } DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid))); if (log) { log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__); } } void NativeProcessLinux::SignalIfAllThreadsStopped() { if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ()) { Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); // Clear any temporary breakpoints we used to implement software single stepping. for (const auto &thread_info: m_threads_stepping_with_breakpoint) { Error error = RemoveBreakpoint (thread_info.second); if (error.Fail()) if (log) log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", __FUNCTION__, thread_info.first, error.AsCString()); } m_threads_stepping_with_breakpoint.clear(); // Notify the delegate about the stop SetCurrentThreadID(m_pending_notification_up->triggering_tid); SetState(StateType::eStateStopped, true); m_pending_notification_up.reset(); } } void NativeProcessLinux::RequestStopOnAllRunningThreads() { // Request a stop for all the thread stops that need to be stopped // and are not already known to be stopped. Keep a list of all the // threads from which we still need to hear a stop reply. ThreadIDSet sent_tids; for (const auto &thread_sp: m_threads) { // We only care about running threads if (StateIsStoppedState(thread_sp->GetState(), true)) continue; static_pointer_cast(thread_sp)->RequestStop(); sent_tids.insert (thread_sp->GetID()); } // Set the wait list to the set of tids for which we requested stops. m_pending_notification_up->wait_for_stop_tids.swap (sent_tids); } Error NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)", __FUNCTION__, tid, initiated_by_llgs?"":"not "); // Ensure we know about the thread. auto thread_sp = std::static_pointer_cast(GetThreadByID(tid)); lldbassert(thread_sp != nullptr); // Update the global list of known thread states. This one is definitely stopped. auto& context = thread_sp->GetThreadContext(); const auto stop_was_requested = context.stop_requested; context.stop_requested = false; // If we have a pending notification, remove this from the set. if (m_pending_notification_up) { m_pending_notification_up->wait_for_stop_tids.erase(tid); SignalIfAllThreadsStopped(); } Error error; if (initiated_by_llgs && context.request_resume_function && !stop_was_requested) { // We can end up here if stop was initiated by LLGS but by this time a // thread stop has occurred - maybe initiated by another event. if (log) log->Printf("Resuming thread %" PRIu64 " since stop wasn't requested", tid); error = context.request_resume_function (tid, true); if (error.Fail() && log) { log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", __FUNCTION__, tid, error.AsCString ()); } } return error; } void NativeProcessLinux::DoStopThreads(PendingNotificationUP &¬ification_up) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (m_pending_notification_up && log) { // Yikes - we've already got a pending signal notification in progress. // Log this info. We lose the pending notification here. log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64, __FUNCTION__, m_pending_notification_up->triggering_tid, notification_up->triggering_tid); } m_pending_notification_up = std::move(notification_up); RequestStopOnAllRunningThreads(); SignalIfAllThreadsStopped(); } void NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid); auto thread_sp = std::static_pointer_cast(GetThreadByID(tid)); lldbassert(thread_sp != nullptr); if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState())) { // We will need to wait for this new thread to stop as well before firing the // notification. m_pending_notification_up->wait_for_stop_tids.insert(tid); thread_sp->RequestStop(); } }