//===-- VPlanConstruction.cpp - Transforms for initial VPlan construction -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements transforms for initial VPlan construction. /// //===----------------------------------------------------------------------===// #include "LoopVectorizationPlanner.h" #include "VPlan.h" #include "VPlanCFG.h" #include "VPlanDominatorTree.h" #include "VPlanTransforms.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/ScalarEvolution.h" #define DEBUG_TYPE "vplan" using namespace llvm; namespace { // Class that is used to build the plain CFG for the incoming IR. class PlainCFGBuilder { // The outermost loop of the input loop nest considered for vectorization. Loop *TheLoop; // Loop Info analysis. LoopInfo *LI; // Vectorization plan that we are working on. std::unique_ptr Plan; // Builder of the VPlan instruction-level representation. VPBuilder VPIRBuilder; // NOTE: The following maps are intentionally destroyed after the plain CFG // construction because subsequent VPlan-to-VPlan transformation may // invalidate them. // Map incoming BasicBlocks to their newly-created VPBasicBlocks. DenseMap BB2VPBB; // Map incoming Value definitions to their newly-created VPValues. DenseMap IRDef2VPValue; // Hold phi node's that need to be fixed once the plain CFG has been built. SmallVector PhisToFix; // Utility functions. void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); void fixHeaderPhis(); VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); #ifndef NDEBUG bool isExternalDef(Value *Val); #endif VPValue *getOrCreateVPOperand(Value *IRVal); void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); public: PlainCFGBuilder(Loop *Lp, LoopInfo *LI) : TheLoop(Lp), LI(LI), Plan(std::make_unique(Lp)) {} /// Build plain CFG for TheLoop and connects it to Plan's entry. std::unique_ptr buildPlainCFG(DenseMap &VPB2IRBB); }; } // anonymous namespace // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB // must have no predecessors. void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { // Collect VPBB predecessors. SmallVector VPBBPreds; for (BasicBlock *Pred : predecessors(BB)) VPBBPreds.push_back(getOrCreateVPBB(Pred)); VPBB->setPredecessors(VPBBPreds); } static bool isHeaderBB(BasicBlock *BB, Loop *L) { return L && BB == L->getHeader(); } // Add operands to VPInstructions representing phi nodes from the input IR. void PlainCFGBuilder::fixHeaderPhis() { for (auto *Phi : PhisToFix) { assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); VPValue *VPVal = IRDef2VPValue[Phi]; assert(isa(VPVal) && "Expected WidenPHIRecipe for phi node."); auto *VPPhi = cast(VPVal); assert(VPPhi->getNumOperands() == 0 && "Expected VPInstruction with no operands."); assert(isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent())) && "Expected Phi in header block."); assert(Phi->getNumOperands() == 2 && "header phi must have exactly 2 operands"); for (BasicBlock *Pred : predecessors(Phi->getParent())) VPPhi->addOperand( getOrCreateVPOperand(Phi->getIncomingValueForBlock(Pred))); } } // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an // existing one if it was already created. VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { if (auto *VPBB = BB2VPBB.lookup(BB)) { // Retrieve existing VPBB. return VPBB; } // Create new VPBB. StringRef Name = BB->getName(); LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n"); VPBasicBlock *VPBB = Plan->createVPBasicBlock(Name); BB2VPBB[BB] = VPBB; return VPBB; } #ifndef NDEBUG // Return true if \p Val is considered an external definition. An external // definition is either: // 1. A Value that is not an Instruction. This will be refined in the future. // 2. An Instruction that is outside of the CFG snippet represented in VPlan, // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) // outermost loop exits. bool PlainCFGBuilder::isExternalDef(Value *Val) { // All the Values that are not Instructions are considered external // definitions for now. Instruction *Inst = dyn_cast(Val); if (!Inst) return true; BasicBlock *InstParent = Inst->getParent(); assert(InstParent && "Expected instruction parent."); // Check whether Instruction definition is in loop PH. BasicBlock *PH = TheLoop->getLoopPreheader(); assert(PH && "Expected loop pre-header."); if (InstParent == PH) // Instruction definition is in outermost loop PH. return false; // Check whether Instruction definition is in a loop exit. SmallVector ExitBlocks; TheLoop->getExitBlocks(ExitBlocks); if (is_contained(ExitBlocks, InstParent)) { // Instruction definition is in outermost loop exit. return false; } // Check whether Instruction definition is in loop body. return !TheLoop->contains(Inst); } #endif // Create a new VPValue or retrieve an existing one for the Instruction's // operand \p IRVal. This function must only be used to create/retrieve VPValues // for *Instruction's operands* and not to create regular VPInstruction's. For // the latter, please, look at 'createVPInstructionsForVPBB'. VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { auto VPValIt = IRDef2VPValue.find(IRVal); if (VPValIt != IRDef2VPValue.end()) // Operand has an associated VPInstruction or VPValue that was previously // created. return VPValIt->second; // Operand doesn't have a previously created VPInstruction/VPValue. This // means that operand is: // A) a definition external to VPlan, // B) any other Value without specific representation in VPlan. // For now, we use VPValue to represent A and B and classify both as external // definitions. We may introduce specific VPValue subclasses for them in the // future. assert(isExternalDef(IRVal) && "Expected external definition as operand."); // A and B: Create VPValue and add it to the pool of external definitions and // to the Value->VPValue map. VPValue *NewVPVal = Plan->getOrAddLiveIn(IRVal); IRDef2VPValue[IRVal] = NewVPVal; return NewVPVal; } // Create new VPInstructions in a VPBasicBlock, given its BasicBlock // counterpart. This function must be invoked in RPO so that the operands of a // VPInstruction in \p BB have been visited before (except for Phi nodes). void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB) { VPIRBuilder.setInsertPoint(VPBB); // TODO: Model and preserve debug intrinsics in VPlan. for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) { Instruction *Inst = &InstRef; // There shouldn't be any VPValue for Inst at this point. Otherwise, we // visited Inst when we shouldn't, breaking the RPO traversal order. assert(!IRDef2VPValue.count(Inst) && "Instruction shouldn't have been visited."); if (auto *Br = dyn_cast(Inst)) { if (TheLoop->getLoopLatch() == BB || any_of(successors(BB), [this](BasicBlock *Succ) { return !TheLoop->contains(Succ); })) continue; // Conditional branch instruction are represented using BranchOnCond // recipes. if (Br->isConditional()) { VPValue *Cond = getOrCreateVPOperand(Br->getCondition()); VPIRBuilder.createNaryOp(VPInstruction::BranchOnCond, {Cond}, Inst); } // Skip the rest of the Instruction processing for Branch instructions. continue; } if (auto *SI = dyn_cast(Inst)) { SmallVector Ops = {getOrCreateVPOperand(SI->getCondition())}; for (auto Case : SI->cases()) Ops.push_back(getOrCreateVPOperand(Case.getCaseValue())); VPIRBuilder.createNaryOp(Instruction::Switch, Ops, Inst); continue; } VPSingleDefRecipe *NewR; if (auto *Phi = dyn_cast(Inst)) { // Phi node's operands may have not been visited at this point. We create // an empty VPInstruction that we will fix once the whole plain CFG has // been built. NewR = new VPWidenPHIRecipe(Phi, nullptr, Phi->getDebugLoc(), "vec.phi"); VPBB->appendRecipe(NewR); if (isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent()))) { // Header phis need to be fixed after the VPBB for the latch has been // created. PhisToFix.push_back(Phi); } else { // Add operands for VPPhi in the order matching its predecessors in // VPlan. DenseMap VPPredToIncomingValue; for (unsigned I = 0; I != Phi->getNumOperands(); ++I) { VPPredToIncomingValue[BB2VPBB[Phi->getIncomingBlock(I)]] = getOrCreateVPOperand(Phi->getIncomingValue(I)); } for (VPBlockBase *Pred : VPBB->getPredecessors()) NewR->addOperand( VPPredToIncomingValue.lookup(Pred->getExitingBasicBlock())); } } else { // Translate LLVM-IR operands into VPValue operands and set them in the // new VPInstruction. SmallVector VPOperands; for (Value *Op : Inst->operands()) VPOperands.push_back(getOrCreateVPOperand(Op)); // Build VPInstruction for any arbitrary Instruction without specific // representation in VPlan. NewR = cast( VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); } IRDef2VPValue[Inst] = NewR; } } // Main interface to build the plain CFG. std::unique_ptr PlainCFGBuilder::buildPlainCFG( DenseMap &VPB2IRBB) { VPIRBasicBlock *Entry = cast(Plan->getEntry()); BB2VPBB[Entry->getIRBasicBlock()] = Entry; // 1. Scan the body of the loop in a topological order to visit each basic // block after having visited its predecessor basic blocks. Create a VPBB for // each BB and link it to its successor and predecessor VPBBs. Note that // predecessors must be set in the same order as they are in the incomming IR. // Otherwise, there might be problems with existing phi nodes and algorithm // based on predecessors traversal. // Loop PH needs to be explicitly visited since it's not taken into account by // LoopBlocksDFS. BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader(); assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) && "Unexpected loop preheader"); for (auto &I : *ThePreheaderBB) { if (I.getType()->isVoidTy()) continue; IRDef2VPValue[&I] = Plan->getOrAddLiveIn(&I); } LoopBlocksRPO RPO(TheLoop); RPO.perform(LI); for (BasicBlock *BB : RPO) { // Create or retrieve the VPBasicBlock for this BB. VPBasicBlock *VPBB = getOrCreateVPBB(BB); Loop *LoopForBB = LI->getLoopFor(BB); // Set VPBB predecessors in the same order as they are in the incoming BB. setVPBBPredsFromBB(VPBB, BB); // Create VPInstructions for BB. createVPInstructionsForVPBB(VPBB, BB); // Set VPBB successors. We create empty VPBBs for successors if they don't // exist already. Recipes will be created when the successor is visited // during the RPO traversal. if (auto *SI = dyn_cast(BB->getTerminator())) { SmallVector Succs = { getOrCreateVPBB(SI->getDefaultDest())}; for (auto Case : SI->cases()) Succs.push_back(getOrCreateVPBB(Case.getCaseSuccessor())); VPBB->setSuccessors(Succs); continue; } auto *BI = cast(BB->getTerminator()); unsigned NumSuccs = succ_size(BB); if (NumSuccs == 1) { VPBB->setOneSuccessor(getOrCreateVPBB(BB->getSingleSuccessor())); continue; } assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() && "block must have conditional branch with 2 successors"); BasicBlock *IRSucc0 = BI->getSuccessor(0); BasicBlock *IRSucc1 = BI->getSuccessor(1); VPBasicBlock *Successor0 = getOrCreateVPBB(IRSucc0); VPBasicBlock *Successor1 = getOrCreateVPBB(IRSucc1); // Don't connect any blocks outside the current loop except the latches for // inner loops. // TODO: Also connect exit blocks during initial VPlan construction. if (LoopForBB == TheLoop || BB != LoopForBB->getLoopLatch()) { if (!LoopForBB->contains(IRSucc0)) { VPBB->setOneSuccessor(Successor1); continue; } if (!LoopForBB->contains(IRSucc1)) { VPBB->setOneSuccessor(Successor0); continue; } } VPBB->setTwoSuccessors(Successor0, Successor1); } // 2. The whole CFG has been built at this point so all the input Values must // have a VPlan counterpart. Fix VPlan header phi by adding their // corresponding VPlan operands. fixHeaderPhis(); Plan->getEntry()->setOneSuccessor(getOrCreateVPBB(TheLoop->getHeader())); Plan->getEntry()->setPlan(&*Plan); // Fix VPlan loop-closed-ssa exit phi's by adding incoming operands to the // VPIRInstructions wrapping them. // // Note that the operand order corresponds to IR predecessor order, and may // need adjusting when VPlan predecessors are added, if an exit block has // multiple predecessor. for (auto *EB : Plan->getExitBlocks()) { for (VPRecipeBase &R : EB->phis()) { auto *PhiR = cast(&R); PHINode &Phi = PhiR->getIRPhi(); assert(PhiR->getNumOperands() == 0 && "no phi operands should be added yet"); for (BasicBlock *Pred : predecessors(EB->getIRBasicBlock())) PhiR->addOperand( getOrCreateVPOperand(Phi.getIncomingValueForBlock(Pred))); } } for (const auto &[IRBB, VPB] : BB2VPBB) VPB2IRBB[VPB] = IRBB; LLVM_DEBUG(Plan->setName("Plain CFG\n"); dbgs() << *Plan); return std::move(Plan); } std::unique_ptr VPlanTransforms::buildPlainCFG( Loop *TheLoop, LoopInfo &LI, DenseMap &VPB2IRBB) { PlainCFGBuilder Builder(TheLoop, &LI); return Builder.buildPlainCFG(VPB2IRBB); } /// Checks if \p HeaderVPB is a loop header block in the plain CFG; that is, it /// has exactly 2 predecessors (preheader and latch), where the block /// dominates the latch and the preheader dominates the block. If it is a /// header block return true, making sure the preheader appears first and /// the latch second. Otherwise return false. static bool canonicalHeader(VPBlockBase *HeaderVPB, const VPDominatorTree &VPDT) { ArrayRef Preds = HeaderVPB->getPredecessors(); if (Preds.size() != 2) return false; auto *PreheaderVPBB = Preds[0]; auto *LatchVPBB = Preds[1]; if (VPDT.dominates(PreheaderVPBB, HeaderVPB) && VPDT.dominates(HeaderVPB, LatchVPBB)) return true; std::swap(PreheaderVPBB, LatchVPBB); if (VPDT.dominates(PreheaderVPBB, HeaderVPB) && VPDT.dominates(HeaderVPB, LatchVPBB)) { // Canonicalize predecessors of header so that preheader is first and latch // second. HeaderVPB->swapPredecessors(); for (VPRecipeBase &R : cast(HeaderVPB)->phis()) R.swapOperands(); return true; } return false; } /// Create a new VPRegionBlock for the loop starting at \p HeaderVPB. static void createLoopRegion(VPlan &Plan, VPBlockBase *HeaderVPB) { auto *PreheaderVPBB = HeaderVPB->getPredecessors()[0]; auto *LatchVPBB = HeaderVPB->getPredecessors()[1]; VPBlockUtils::disconnectBlocks(PreheaderVPBB, HeaderVPB); VPBlockUtils::disconnectBlocks(LatchVPBB, HeaderVPB); VPBlockBase *Succ = LatchVPBB->getSingleSuccessor(); assert(LatchVPBB->getNumSuccessors() <= 1 && "Latch has more than one successor"); if (Succ) VPBlockUtils::disconnectBlocks(LatchVPBB, Succ); auto *R = Plan.createVPRegionBlock(HeaderVPB, LatchVPBB, "", false /*isReplicator*/); // All VPBB's reachable shallowly from HeaderVPB belong to top level loop, // because VPlan is expected to end at top level latch disconnected above. for (VPBlockBase *VPBB : vp_depth_first_shallow(HeaderVPB)) VPBB->setParent(R); VPBlockUtils::insertBlockAfter(R, PreheaderVPBB); if (Succ) VPBlockUtils::connectBlocks(R, Succ); } void VPlanTransforms::createLoopRegions(VPlan &Plan, Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop) { VPDominatorTree VPDT; VPDT.recalculate(Plan); for (VPBlockBase *HeaderVPB : vp_depth_first_shallow(Plan.getEntry())) if (canonicalHeader(HeaderVPB, VPDT)) createLoopRegion(Plan, HeaderVPB); VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); auto *OrigExiting = TopRegion->getExiting(); VPBasicBlock *LatchVPBB = Plan.createVPBasicBlock("vector.latch"); VPBlockUtils::insertBlockAfter(LatchVPBB, OrigExiting); TopRegion->setExiting(LatchVPBB); TopRegion->setName("vector loop"); TopRegion->getEntryBasicBlock()->setName("vector.body"); // Create SCEV and VPValue for the trip count. // We use the symbolic max backedge-taken-count, which works also when // vectorizing loops with uncountable early exits. const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount(); assert(!isa(BackedgeTakenCountSCEV) && "Invalid loop count"); ScalarEvolution &SE = *PSE.getSE(); const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV, InductionTy, TheLoop); Plan.setTripCount( vputils::getOrCreateVPValueForSCEVExpr(Plan, TripCount, SE)); VPBasicBlock *VecPreheader = Plan.createVPBasicBlock("vector.ph"); VPBlockUtils::insertBlockAfter(VecPreheader, Plan.getEntry()); VPBasicBlock *MiddleVPBB = Plan.createVPBasicBlock("middle.block"); VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); VPBasicBlock *ScalarPH = Plan.createVPBasicBlock("scalar.ph"); VPBlockUtils::connectBlocks(ScalarPH, Plan.getScalarHeader()); // If needed, add a check in the middle block to see if we have completed // all of the iterations in the first vector loop. Three cases: // 1) If we require a scalar epilogue, there is no conditional branch as // we unconditionally branch to the scalar preheader. Remove the recipes // from the exit blocks. // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. // Thus if tail is to be folded, we know we don't need to run the // remainder and we can set the condition to true. // 3) Otherwise, construct a runtime check. if (!RequiresScalarEpilogueCheck) { VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); // The exit blocks are unreachable, remove their recipes to make sure no // users remain that may pessimize transforms. for (auto *EB : Plan.getExitBlocks()) { for (VPRecipeBase &R : make_early_inc_range(*EB)) R.eraseFromParent(); } return; } BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock(); auto *VPExitBlock = Plan.getExitBlock(IRExitBlock); // The connection order corresponds to the operands of the conditional branch. VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); // Here we use the same DebugLoc as the scalar loop latch terminator instead // of the corresponding compare because they may have ended up with // different line numbers and we want to avoid awkward line stepping while // debugging. Eg. if the compare has got a line number inside the loop. VPBuilder Builder(MiddleVPBB); VPValue *Cmp = TailFolded ? Plan.getOrAddLiveIn(ConstantInt::getTrue( IntegerType::getInt1Ty(TripCount->getType()->getContext()))) : Builder.createICmp(CmpInst::ICMP_EQ, Plan.getTripCount(), &Plan.getVectorTripCount(), ScalarLatchTerm->getDebugLoc(), "cmp.n"); Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, ScalarLatchTerm->getDebugLoc()); }