//==-- AArch64ISelLowering.h - AArch64 DAG Lowering Interface ----*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interfaces that AArch64 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H #define LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Instruction.h" namespace llvm { class AArch64TargetMachine; namespace AArch64 { /// Possible values of current rounding mode, which is specified in bits /// 23:22 of FPCR. enum Rounding { RN = 0, // Round to Nearest RP = 1, // Round towards Plus infinity RM = 2, // Round towards Minus infinity RZ = 3, // Round towards Zero rmMask = 3 // Bit mask selecting rounding mode }; // Bit position of rounding mode bits in FPCR. const unsigned RoundingBitsPos = 22; // Reserved bits should be preserved when modifying FPCR. const uint64_t ReservedFPControlBits = 0xfffffffff80040f8; // Registers used to pass function arguments. ArrayRef getGPRArgRegs(); ArrayRef getFPRArgRegs(); /// Maximum allowed number of unprobed bytes above SP at an ABI /// boundary. const unsigned StackProbeMaxUnprobedStack = 1024; /// Maximum number of iterations to unroll for a constant size probing loop. const unsigned StackProbeMaxLoopUnroll = 4; } // namespace AArch64 namespace ARM64AS { enum : unsigned { PTR32_SPTR = 270, PTR32_UPTR = 271, PTR64 = 272 }; } class AArch64Subtarget; class AArch64TargetLowering : public TargetLowering { public: explicit AArch64TargetLowering(const TargetMachine &TM, const AArch64Subtarget &STI); const AArch64TargetMachine &getTM() const; /// Control the following reassociation of operands: (op (op x, c1), y) -> (op /// (op x, y), c1) where N0 is (op x, c1) and N1 is y. bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const override; /// Selects the correct CCAssignFn for a given CallingConvention value. CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const; /// Selects the correct CCAssignFn for a given CallingConvention value. CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC) const; /// Determine which of the bits specified in Mask are known to be either zero /// or one and return them in the KnownZero/KnownOne bitsets. void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth = 0) const override; unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const override; MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const override { if ((AS == ARM64AS::PTR32_SPTR) || (AS == ARM64AS::PTR32_UPTR)) { // These are 32-bit pointers created using the `__ptr32` extension or // similar. They are handled by marking them as being in a different // address space, and will be extended to 64-bits when used as the target // of a load or store operation, or cast to a 64-bit pointer type. return MVT::i32; } else { // Returning i64 unconditionally here (i.e. even for ILP32) means that the // *DAG* representation of pointers will always be 64-bits. They will be // truncated and extended when transferred to memory, but the 64-bit DAG // allows us to use AArch64's addressing modes much more easily. return MVT::i64; } } unsigned getVectorIdxWidth(const DataLayout &DL) const override { // The VectorIdx type is i64, with both normal and ilp32. return 64; } bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const override; MVT getScalarShiftAmountTy(const DataLayout &DL, EVT) const override; /// Returns true if the target allows unaligned memory accesses of the /// specified type. bool allowsMisalignedMemoryAccesses( EVT VT, unsigned AddrSpace = 0, Align Alignment = Align(1), MachineMemOperand::Flags Flags = MachineMemOperand::MONone, unsigned *Fast = nullptr) const override; /// LLT variant. bool allowsMisalignedMemoryAccesses(LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast = nullptr) const override; /// Provide custom lowering hooks for some operations. SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; /// This method returns a target specific FastISel object, or null if the /// target does not support "fast" ISel. FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const override; bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override; /// Return true if the given shuffle mask can be codegen'd directly, or if it /// should be stack expanded. bool isShuffleMaskLegal(ArrayRef M, EVT VT) const override; /// Similar to isShuffleMaskLegal. Return true is the given 'select with zero' /// shuffle mask can be codegen'd directly. bool isVectorClearMaskLegal(ArrayRef M, EVT VT) const override; /// Return the ISD::SETCC ValueType. EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override; SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const; MachineBasicBlock *EmitF128CSEL(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitDynamicProbedAlloc(MachineInstr &MI, MachineBasicBlock *MBB) const; MachineBasicBlock *EmitTileLoad(unsigned Opc, unsigned BaseReg, MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitFill(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitZAInstr(unsigned Opc, unsigned BaseReg, MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitZTInstr(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode, bool Op0IsDef) const; MachineBasicBlock *EmitZero(MachineInstr &MI, MachineBasicBlock *BB) const; // Note: The following group of functions are only used as part of the old SME // ABI lowering. They will be removed once -aarch64-new-sme-abi=true is the // default. MachineBasicBlock *EmitInitTPIDR2Object(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitAllocateZABuffer(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitAllocateSMESaveBuffer(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitGetSMESaveSize(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitEntryPStateSM(MachineInstr &MI, MachineBasicBlock *BB) const; /// Replace (0, vreg) discriminator components with the operands of blend /// or with (immediate, NoRegister) when possible. void fixupPtrauthDiscriminator(MachineInstr &MI, MachineBasicBlock *BB, MachineOperand &IntDiscOp, MachineOperand &AddrDiscOp, const TargetRegisterClass *AddrDiscRC) const; MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override; bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override; bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional ByteOffset) const override; bool shouldRemoveRedundantExtend(SDValue Op) const override; bool isTruncateFree(Type *Ty1, Type *Ty2) const override; bool isTruncateFree(EVT VT1, EVT VT2) const override; bool isProfitableToHoist(Instruction *I) const override; bool isZExtFree(Type *Ty1, Type *Ty2) const override; bool isZExtFree(EVT VT1, EVT VT2) const override; bool isZExtFree(SDValue Val, EVT VT2) const override; bool optimizeExtendOrTruncateConversion( Instruction *I, Loop *L, const TargetTransformInfo &TTI) const override; bool hasPairedLoad(EVT LoadedType, Align &RequiredAlignment) const override; unsigned getMaxSupportedInterleaveFactor() const override { return 4; } bool lowerInterleavedLoad(Instruction *Load, Value *Mask, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor, const APInt &GapMask) const override; bool lowerInterleavedStore(Instruction *Store, Value *Mask, ShuffleVectorInst *SVI, unsigned Factor) const override; bool lowerDeinterleaveIntrinsicToLoad(Instruction *Load, Value *Mask, IntrinsicInst *DI) const override; bool lowerInterleaveIntrinsicToStore( Instruction *Store, Value *Mask, ArrayRef InterleaveValues) const override; bool isLegalAddImmediate(int64_t) const override; bool isLegalAddScalableImmediate(int64_t) const override; bool isLegalICmpImmediate(int64_t) const override; bool isMulAddWithConstProfitable(SDValue AddNode, SDValue ConstNode) const override; bool shouldConsiderGEPOffsetSplit() const override; EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &FuncAttributes) const override; LLT getOptimalMemOpLLT(const MemOp &Op, const AttributeList &FuncAttributes) const override; /// Return true if the addressing mode represented by AM is legal for this /// target, for a load/store of the specified type. bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I = nullptr) const override; int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset) const override; /// Return true if an FMA operation is faster than a pair of fmul and fadd /// instructions. fmuladd intrinsics will be expanded to FMAs when this method /// returns true, otherwise fmuladd is expanded to fmul + fadd. bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override; bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override; bool generateFMAsInMachineCombiner(EVT VT, CodeGenOptLevel OptLevel) const override; /// Return true if the target has native support for /// the specified value type and it is 'desirable' to use the type for the /// given node type. bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override; const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; ArrayRef getRoundingControlRegisters() const override; /// Returns false if N is a bit extraction pattern of (X >> C) & Mask. bool isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const override; bool isDesirableToPullExtFromShl(const MachineInstr &MI) const override { return false; } /// Returns false if N is a bit extraction pattern of (X >> C) & Mask. bool isDesirableToCommuteXorWithShift(const SDNode *N) const override; /// Return true if it is profitable to fold a pair of shifts into a mask. bool shouldFoldConstantShiftPairToMask(const SDNode *N, CombineLevel Level) const override; bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT, unsigned SelectOpcode, SDValue X, SDValue Y) const override; /// Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override; /// Return true if EXTRACT_SUBVECTOR is cheap for this result type /// with this index. bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override; bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const override { // Using overflow ops for overflow checks only should beneficial on // AArch64. return TargetLowering::shouldFormOverflowOp(Opcode, VT, true); } Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const override; Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const override; void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const override; bool isOpSuitableForLDPSTP(const Instruction *I) const; bool isOpSuitableForLSE128(const Instruction *I) const; bool isOpSuitableForRCPC3(const Instruction *I) const; bool shouldInsertFencesForAtomic(const Instruction *I) const override; bool shouldInsertTrailingFenceForAtomicStore(const Instruction *I) const override; TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override; TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const override; TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override; TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override; bool useLoadStackGuardNode(const Module &M) const override; TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override; /// If the target has a standard location for the stack protector cookie, /// returns the address of that location. Otherwise, returns nullptr. Value *getIRStackGuard(IRBuilderBase &IRB) const override; void insertSSPDeclarations(Module &M) const override; Function *getSSPStackGuardCheck(const Module &M) const override; /// If the target has a standard location for the unsafe stack pointer, /// returns the address of that location. Otherwise, returns nullptr. Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const override; /// If a physical register, this returns the register that receives the /// exception address on entry to an EH pad. Register getExceptionPointerRegister(const Constant *PersonalityFn) const override; /// If a physical register, this returns the register that receives the /// exception typeid on entry to a landing pad. Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override; bool isIntDivCheap(EVT VT, AttributeList Attr) const override; bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT, const MachineFunction &MF) const override; bool isCheapToSpeculateCttz(Type *) const override { return true; } bool isCheapToSpeculateCtlz(Type *) const override { return true; } bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override; bool hasAndNotCompare(SDValue V) const override { // We can use bics for any scalar. return V.getValueType().isScalarInteger(); } bool hasAndNot(SDValue Y) const override { EVT VT = Y.getValueType(); if (!VT.isVector()) return hasAndNotCompare(Y); if (VT.isScalableVector()) return true; return VT.getFixedSizeInBits() >= 64; // vector 'bic' } bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const override; ShiftLegalizationStrategy preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const override; bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const override { // For vectors, we don't have a preference.. if (XVT.isVector()) return false; auto VTIsOk = [](EVT VT) -> bool { return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64; }; // We are ok with KeptBitsVT being byte/word/dword, what SXT supports. // XVT will be larger than KeptBitsVT. MVT KeptBitsVT = MVT::getIntegerVT(KeptBits); return VTIsOk(XVT) && VTIsOk(KeptBitsVT); } bool preferIncOfAddToSubOfNot(EVT VT) const override; bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override; bool shouldExpandCmpUsingSelects(EVT VT) const override; bool isComplexDeinterleavingSupported() const override; bool isComplexDeinterleavingOperationSupported( ComplexDeinterleavingOperation Operation, Type *Ty) const override; Value *createComplexDeinterleavingIR( IRBuilderBase &B, ComplexDeinterleavingOperation OperationType, ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB, Value *Accumulator = nullptr) const override; bool supportSplitCSR(MachineFunction *MF) const override { return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && MF->getFunction().hasFnAttribute(Attribute::NoUnwind); } void initializeSplitCSR(MachineBasicBlock *Entry) const override; void insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl &Exits) const override; bool supportSwiftError() const override { return true; } bool supportPtrAuthBundles() const override { return true; } bool supportKCFIBundles() const override { return true; } MachineInstr *EmitKCFICheck(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator &MBBI, const TargetInstrInfo *TII) const override; /// Enable aggressive FMA fusion on targets that want it. bool enableAggressiveFMAFusion(EVT VT) const override; bool aggressivelyPreferBuildVectorSources(EVT VecVT) const override { return true; } /// Returns the size of the platform's va_list object. unsigned getVaListSizeInBits(const DataLayout &DL) const override; /// Returns true if \p VecTy is a legal interleaved access type. This /// function checks the vector element type and the overall width of the /// vector. bool isLegalInterleavedAccessType(VectorType *VecTy, const DataLayout &DL, bool &UseScalable) const; /// Returns the number of interleaved accesses that will be generated when /// lowering accesses of the given type. unsigned getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL, bool UseScalable) const; MachineMemOperand::Flags getTargetMMOFlags( const Instruction &I) const override; bool functionArgumentNeedsConsecutiveRegisters( Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const override; /// Used for exception handling on Win64. bool needsFixedCatchObjects() const override; bool fallBackToDAGISel(const Instruction &Inst) const override; /// SVE code generation for fixed length vectors does not custom lower /// BUILD_VECTOR. This makes BUILD_VECTOR legalisation a source of stores to /// merge. However, merging them creates a BUILD_VECTOR that is just as /// illegal as the original, thus leading to an infinite legalisation loop. /// NOTE: Once BUILD_VECTOR is legal or can be custom lowered for all legal /// vector types this override can be removed. bool mergeStoresAfterLegalization(EVT VT) const override; // If the platform/function should have a redzone, return the size in bytes. unsigned getRedZoneSize(const Function &F) const { if (F.hasFnAttribute(Attribute::NoRedZone)) return 0; return 128; } bool isAllActivePredicate(SelectionDAG &DAG, SDValue N) const; EVT getPromotedVTForPredicate(EVT VT) const; EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown = false) const override; bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const override; bool shouldExpandPartialReductionIntrinsic(const IntrinsicInst *I) const override; bool shouldExpandCttzElements(EVT VT) const override; bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const override; /// If a change in streaming mode is required on entry to/return from a /// function call it emits and returns the corresponding SMSTART or SMSTOP /// node. \p Condition should be one of the enum values from /// AArch64SME::ToggleCondition. SDValue changeStreamingMode(SelectionDAG &DAG, SDLoc DL, bool Enable, SDValue Chain, SDValue InGlue, unsigned Condition) const; bool isVScaleKnownToBeAPowerOfTwo() const override { return true; } // Normally SVE is only used for byte size vectors that do not fit within a // NEON vector. This changes when OverrideNEON is true, allowing SVE to be // used for 64bit and 128bit vectors as well. bool useSVEForFixedLengthVectorVT(EVT VT, bool OverrideNEON = false) const; // Follow NEON ABI rules even when using SVE for fixed length vectors. MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override; unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override; unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const override; /// True if stack clash protection is enabled for this functions. bool hasInlineStackProbe(const MachineFunction &MF) const override; /// In AArch64, true if FEAT_CPA is present. Allows pointer arithmetic /// semantics to be preserved for instruction selection. bool shouldPreservePtrArith(const Function &F, EVT PtrVT) const override; private: /// Keep a pointer to the AArch64Subtarget around so that we can /// make the right decision when generating code for different targets. const AArch64Subtarget *Subtarget; bool isExtFreeImpl(const Instruction *Ext) const override; void addTypeForNEON(MVT VT); void addTypeForFixedLengthSVE(MVT VT); void addDRType(MVT VT); void addQRType(MVT VT); bool shouldExpandBuildVectorWithShuffles(EVT, unsigned) const override; SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const override; void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const override; SDValue LowerCall(CallLoweringInfo & /*CLI*/, SmallVectorImpl &InVals) const override; SDValue LowerCallResult(SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &RVLocs, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals, bool isThisReturn, SDValue ThisVal, bool RequiresSMChange) const; SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerStore128(SDValue Op, SelectionDAG &DAG) const; SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMGATHER(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMSCATTER(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_COMPRESS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const; bool isEligibleForTailCallOptimization(const CallLoweringInfo &CLI) const; /// Finds the incoming stack arguments which overlap the given fixed stack /// object and incorporates their load into the current chain. This prevents /// an upcoming store from clobbering the stack argument before it's used. SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const; bool DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const; void saveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain) const; bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context, const Type *RetTy) const override; SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override; SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; SDValue getTargetNode(ExternalSymbolSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; template SDValue getGOT(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const; template SDValue getAddrLarge(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const; template SDValue getAddr(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const; template SDValue getAddrTiny(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const; SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDarwinGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerELFGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerELFTLSLocalExec(const GlobalValue *GV, SDValue ThreadBase, const SDLoc &DL, SelectionDAG &DAG) const; SDValue LowerELFTLSDescCallSeq(SDValue SymAddr, const SDLoc &DL, SelectionDAG &DAG) const; SDValue LowerWindowsGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerPtrAuthGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, SDValue RHS, SDValue TVal, SDValue FVal, iterator_range Users, SDNodeFlags Flags, const SDLoc &dl, SelectionDAG &DAG) const; SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBRIND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerAAPCS_VASTART(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDarwin_VASTART(SDValue Op, SelectionDAG &DAG) const; SDValue LowerWin64_VASTART(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const; SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGET_FPMODE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSET_FPMODE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerRESET_FPMODE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDUPQLane(SDValue Op, SelectionDAG &DAG) const; SDValue LowerToPredicatedOp(SDValue Op, SelectionDAG &DAG, unsigned NewOp) const; SDValue LowerToScalableOp(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_SPLICE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_DEINTERLEAVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_INTERLEAVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_HISTOGRAM(SDValue Op, SelectionDAG &DAG) const; SDValue LowerPARTIAL_REDUCE_MLA(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGET_ACTIVE_LANE_MASK(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDIV(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorSRA_SRL_SHL(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCTPOP_PARITY(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBitreverse(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMinMax(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorXRINT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVSCALE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerATOMIC_LOAD_AND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerWindowsDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerInlineDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerAVG(SDValue Op, SelectionDAG &DAG, unsigned NewOp) const; SDValue LowerFixedLengthVectorIntDivideToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthVectorIntExtendToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthVectorLoadToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthVectorMLoadToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp, SelectionDAG &DAG) const; SDValue LowerPredReductionToSVE(SDValue ScalarOp, SelectionDAG &DAG) const; SDValue LowerReductionToSVE(unsigned Opcode, SDValue ScalarOp, SelectionDAG &DAG) const; SDValue LowerFixedLengthVectorSelectToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthVectorSetccToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthVectorStoreToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthVectorMStoreToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthVectorTruncateToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthExtractVectorElt(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthInsertVectorElt(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthBitcastToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthConcatVectorsToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthFPExtendToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthFPRoundToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthIntToFPToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthFPToIntToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthVECTOR_SHUFFLEToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFixedLengthBuildVectorToSVE(SDValue Op, SelectionDAG &DAG) const; SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const override; SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const override; SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const override; SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps) const override; SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const override; SDValue getSqrtResultForDenormInput(SDValue Operand, SelectionDAG &DAG) const override; unsigned combineRepeatedFPDivisors() const override; ConstraintType getConstraintType(StringRef Constraint) const override; Register getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const override; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override; std::pair getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override; const char *LowerXConstraint(EVT ConstraintVT) const override; void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector &Ops, SelectionDAG &DAG) const override; InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const override { if (ConstraintCode == "Q") return InlineAsm::ConstraintCode::Q; // FIXME: clang has code for 'Ump', 'Utf', 'Usa', and 'Ush' but these are // followed by llvm_unreachable so we'll leave them unimplemented in // the backend for now. return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } /// Handle Lowering flag assembly outputs. SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, const SDLoc &DL, const AsmOperandInfo &Constraint, SelectionDAG &DAG) const override; bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const override; bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const override; bool isVectorLoadExtDesirable(SDValue ExtVal) const override; bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override; bool mayBeEmittedAsTailCall(const CallInst *CI) const override; bool getIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, SelectionDAG &DAG) const; bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override; bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override; bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset, bool IsPre, MachineRegisterInfo &MRI) const override; void ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const override; void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const; void ReplaceExtractSubVectorResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const; void ReplaceGetActiveLaneMaskResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const; bool shouldNormalizeToSelectSequence(LLVMContext &, EVT) const override; void finalizeLowering(MachineFunction &MF) const override; bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const override; bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &OriginalDemandedBits, const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override; bool isTargetCanonicalConstantNode(SDValue Op) const override; // With the exception of data-predicate transitions, no instructions are // required to cast between legal scalable vector types. However: // 1. Packed and unpacked types have different bit lengths, meaning BITCAST // is not universally useable. // 2. Most unpacked integer types are not legal and thus integer extends // cannot be used to convert between unpacked and packed types. // These can make "bitcasting" a multiphase process. REINTERPRET_CAST is used // to transition between unpacked and packed types of the same element type, // with BITCAST used otherwise. // This function does not handle predicate bitcasts. SDValue getSVESafeBitCast(EVT VT, SDValue Op, SelectionDAG &DAG) const; // Returns the runtime value for PSTATE.SM by generating a call to // __arm_sme_state. SDValue getRuntimePStateSM(SelectionDAG &DAG, SDValue Chain, SDLoc DL, EVT VT) const; bool preferScalarizeSplat(SDNode *N) const override; unsigned getMinimumJumpTableEntries() const override; bool softPromoteHalfType() const override { return true; } bool shouldScalarizeBinop(SDValue VecOp) const override { return VecOp.getOpcode() == ISD::SETCC; } bool hasMultipleConditionRegisters(EVT VT) const override { return VT.isScalableVector(); } }; namespace AArch64 { FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo); } // end namespace AArch64 } // end namespace llvm #endif