//===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/lldb-python.h" #include "NativeProcessLinux.h" // C Includes #include #include #include #include #include #include #if defined(__ANDROID_NDK__) && defined (__arm__) #include #include #else #include #include #endif #ifndef __ANDROID__ #include #endif #include #include #include #include #include #include #if defined (__arm64__) || defined (__aarch64__) // NT_PRSTATUS and NT_FPREGSET definition #include #endif // C++ Includes #include #include // Other libraries and framework includes #include "lldb/Core/Debugger.h" #include "lldb/Core/Error.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/State.h" #include "lldb/Host/Host.h" #include "lldb/Host/HostInfo.h" #include "lldb/Host/ThreadLauncher.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/NativeRegisterContext.h" #include "lldb/Target/ProcessLaunchInfo.h" #include "lldb/Utility/PseudoTerminal.h" #include "Host/common/NativeBreakpoint.h" #include "Utility/StringExtractor.h" #include "Plugins/Process/Utility/LinuxSignals.h" #include "NativeThreadLinux.h" #include "ProcFileReader.h" #include "ThreadStateCoordinator.h" #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #ifdef __ANDROID__ #define __ptrace_request int #define PT_DETACH PTRACE_DETACH #endif #define DEBUG_PTRACE_MAXBYTES 20 // Support ptrace extensions even when compiled without required kernel support #ifndef PT_GETREGS #ifndef PTRACE_GETREGS #define PTRACE_GETREGS 12 #endif #endif #ifndef PT_SETREGS #ifndef PTRACE_SETREGS #define PTRACE_SETREGS 13 #endif #endif #ifndef PT_GETFPREGS #ifndef PTRACE_GETFPREGS #define PTRACE_GETFPREGS 14 #endif #endif #ifndef PT_SETFPREGS #ifndef PTRACE_SETFPREGS #define PTRACE_SETFPREGS 15 #endif #endif #ifndef PTRACE_GETREGSET #define PTRACE_GETREGSET 0x4204 #endif #ifndef PTRACE_SETREGSET #define PTRACE_SETREGSET 0x4205 #endif #ifndef PTRACE_GET_THREAD_AREA #define PTRACE_GET_THREAD_AREA 25 #endif #ifndef PTRACE_ARCH_PRCTL #define PTRACE_ARCH_PRCTL 30 #endif #ifndef ARCH_GET_FS #define ARCH_SET_GS 0x1001 #define ARCH_SET_FS 0x1002 #define ARCH_GET_FS 0x1003 #define ARCH_GET_GS 0x1004 #endif #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff // Support hardware breakpoints in case it has not been defined #ifndef TRAP_HWBKPT #define TRAP_HWBKPT 4 #endif // Try to define a macro to encapsulate the tgkill syscall // fall back on kill() if tgkill isn't available #define tgkill(pid, tid, sig) syscall(SYS_tgkill, pid, tid, sig) // We disable the tracing of ptrace calls for integration builds to // avoid the additional indirection and checks. #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION #define PTRACE(req, pid, addr, data, data_size) \ PtraceWrapper((req), (pid), (addr), (data), (data_size), #req, __FILE__, __LINE__) #else #define PTRACE(req, pid, addr, data, data_size) \ PtraceWrapper((req), (pid), (addr), (data), (data_size)) #endif // Private bits we only need internally. namespace { using namespace lldb; using namespace lldb_private; const UnixSignals& GetUnixSignals () { static process_linux::LinuxSignals signals; return signals; } ThreadStateCoordinator::LogFunction GetThreadLoggerFunction () { return [](const char *format, va_list args) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) log->VAPrintf (format, args); }; } void CoordinatorErrorHandler (const std::string &error_message) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) log->Printf ("NativePlatformLinux::%s %s", __FUNCTION__, error_message.c_str ()); assert (false && "ThreadStateCoordinator error reported"); } Error ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) { // Grab process info for the running process. ProcessInstanceInfo process_info; if (!platform.GetProcessInfo (pid, process_info)) return lldb_private::Error("failed to get process info"); // Resolve the executable module. ModuleSP exe_module_sp; ModuleSpec exe_module_spec(process_info.GetExecutableFile(), platform.GetSystemArchitecture ()); FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); Error error = platform.ResolveExecutable( exe_module_spec, exe_module_sp, executable_search_paths.GetSize () ? &executable_search_paths : NULL); if (!error.Success ()) return error; // Check if we've got our architecture from the exe_module. arch = exe_module_sp->GetArchitecture (); if (arch.IsValid ()) return Error(); else return Error("failed to retrieve a valid architecture from the exe module"); } void DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count) { uint8_t *ptr = (uint8_t *)bytes; const uint32_t loop_count = std::min(DEBUG_PTRACE_MAXBYTES, count); for(uint32_t i=0; iPrintf("PTRACE_POKETEXT %s", buf.GetData()); break; } case PTRACE_POKEDATA: { DisplayBytes(buf, &data, 8); verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); break; } case PTRACE_POKEUSER: { DisplayBytes(buf, &data, 8); verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); break; } case PTRACE_SETREGS: { DisplayBytes(buf, data, data_size); verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); break; } case PTRACE_SETFPREGS: { DisplayBytes(buf, data, data_size); verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); break; } case PTRACE_SETSIGINFO: { DisplayBytes(buf, data, sizeof(siginfo_t)); verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); break; } case PTRACE_SETREGSET: { // Extract iov_base from data, which is a pointer to the struct IOVEC DisplayBytes(buf, *(void **)data, data_size); verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); break; } default: { } } } } // Wrapper for ptrace to catch errors and log calls. // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) long PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, const char* reqName, const char* file, int line) { long int result; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); PtraceDisplayBytes(req, data, data_size); errno = 0; if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); else result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); if (log) log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", reqName, pid, addr, data, data_size, result, file, line); PtraceDisplayBytes(req, data, data_size); if (log && errno != 0) { const char* str; switch (errno) { case ESRCH: str = "ESRCH"; break; case EINVAL: str = "EINVAL"; break; case EBUSY: str = "EBUSY"; break; case EPERM: str = "EPERM"; break; default: str = ""; } log->Printf("ptrace() failed; errno=%d (%s)", errno, str); } return result; } #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION // Wrapper for ptrace when logging is not required. // Sets errno to 0 prior to calling ptrace. long PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size) { long result = 0; errno = 0; if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); else result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); return result; } #endif //------------------------------------------------------------------------------ // Static implementations of NativeProcessLinux::ReadMemory and // NativeProcessLinux::WriteMemory. This enables mutual recursion between these // functions without needed to go thru the thread funnel. static lldb::addr_t DoReadMemory ( lldb::pid_t pid, lldb::addr_t vm_addr, void *buf, lldb::addr_t size, Error &error) { // ptrace word size is determined by the host, not the child static const unsigned word_size = sizeof(void*); unsigned char *dst = static_cast(buf); lldb::addr_t bytes_read; lldb::addr_t remainder; long data; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); if (log) ProcessPOSIXLog::IncNestLevel(); if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, pid, word_size, (void*)vm_addr, buf, size); assert(sizeof(data) >= word_size); for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { errno = 0; data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, NULL, 0); if (errno) { error.SetErrorToErrno(); if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_read; } remainder = size - bytes_read; remainder = remainder > word_size ? word_size : remainder; // Copy the data into our buffer for (unsigned i = 0; i < remainder; ++i) dst[i] = ((data >> i*8) & 0xFF); if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) { uintptr_t print_dst = 0; // Format bytes from data by moving into print_dst for log output for (unsigned i = 0; i < remainder; ++i) print_dst |= (((data >> i*8) & 0xFF) << i*8); log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)vm_addr, print_dst, (unsigned long)data); } vm_addr += word_size; dst += word_size; } if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_read; } static lldb::addr_t DoWriteMemory( lldb::pid_t pid, lldb::addr_t vm_addr, const void *buf, lldb::addr_t size, Error &error) { // ptrace word size is determined by the host, not the child static const unsigned word_size = sizeof(void*); const unsigned char *src = static_cast(buf); lldb::addr_t bytes_written = 0; lldb::addr_t remainder; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); if (log) ProcessPOSIXLog::IncNestLevel(); if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, pid, word_size, (void*)vm_addr, buf, size); for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { remainder = size - bytes_written; remainder = remainder > word_size ? word_size : remainder; if (remainder == word_size) { unsigned long data = 0; assert(sizeof(data) >= word_size); for (unsigned i = 0; i < word_size; ++i) data |= (unsigned long)src[i] << i*8; if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)vm_addr, *(unsigned long*)src, data); if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0)) { error.SetErrorToErrno(); if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } } else { unsigned char buff[8]; if (DoReadMemory(pid, vm_addr, buff, word_size, error) != word_size) { if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } memcpy(buff, src, remainder); if (DoWriteMemory(pid, vm_addr, buff, word_size, error) != word_size) { if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff); } vm_addr += word_size; src += word_size; } if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } //------------------------------------------------------------------------------ /// @class Operation /// @brief Represents a NativeProcessLinux operation. /// /// Under Linux, it is not possible to ptrace() from any other thread but the /// one that spawned or attached to the process from the start. Therefore, when /// a NativeProcessLinux is asked to deliver or change the state of an inferior /// process the operation must be "funneled" to a specific thread to perform the /// task. The Operation class provides an abstract base for all services the /// NativeProcessLinux must perform via the single virtual function Execute, thus /// encapsulating the code that needs to run in the privileged context. class Operation { public: Operation () : m_error() { } virtual ~Operation() {} virtual void Execute (NativeProcessLinux *process) = 0; const Error & GetError () const { return m_error; } protected: Error m_error; }; //------------------------------------------------------------------------------ /// @class ReadOperation /// @brief Implements NativeProcessLinux::ReadMemory. class ReadOperation : public Operation { public: ReadOperation ( lldb::addr_t addr, void *buff, lldb::addr_t size, lldb::addr_t &result) : Operation (), m_addr (addr), m_buff (buff), m_size (size), m_result (result) { } void Execute (NativeProcessLinux *process) override; private: lldb::addr_t m_addr; void *m_buff; lldb::addr_t m_size; lldb::addr_t &m_result; }; void ReadOperation::Execute (NativeProcessLinux *process) { m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); } //------------------------------------------------------------------------------ /// @class WriteOperation /// @brief Implements NativeProcessLinux::WriteMemory. class WriteOperation : public Operation { public: WriteOperation ( lldb::addr_t addr, const void *buff, lldb::addr_t size, lldb::addr_t &result) : Operation (), m_addr (addr), m_buff (buff), m_size (size), m_result (result) { } void Execute (NativeProcessLinux *process) override; private: lldb::addr_t m_addr; const void *m_buff; lldb::addr_t m_size; lldb::addr_t &m_result; }; void WriteOperation::Execute(NativeProcessLinux *process) { m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); } //------------------------------------------------------------------------------ /// @class ReadRegOperation /// @brief Implements NativeProcessLinux::ReadRegisterValue. class ReadRegOperation : public Operation { public: ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, RegisterValue &value, bool &result) : m_tid(tid), m_offset(static_cast (offset)), m_reg_name(reg_name), m_value(value), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; uintptr_t m_offset; const char *m_reg_name; RegisterValue &m_value; bool &m_result; }; void ReadRegOperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) if (m_offset > sizeof(struct user_pt_regs)) { uintptr_t offset = m_offset - sizeof(struct user_pt_regs); if (offset > sizeof(struct user_fpsimd_state)) { m_result = false; } else { elf_fpregset_t regs; int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else { lldb_private::ArchSpec arch; if (monitor->GetArchitecture(arch)) { m_result = true; m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); } else m_result = false; } } } else { elf_gregset_t regs; int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else { lldb_private::ArchSpec arch; if (monitor->GetArchitecture(arch)) { m_result = true; m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); } else m_result = false; } } #else Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); // Set errno to zero so that we can detect a failed peek. errno = 0; lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, NULL, 0); if (errno) m_result = false; else { m_value = data; m_result = true; } if (log) log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, m_reg_name, data); #endif } //------------------------------------------------------------------------------ /// @class WriteRegOperation /// @brief Implements NativeProcessLinux::WriteRegisterValue. class WriteRegOperation : public Operation { public: WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, const RegisterValue &value, bool &result) : m_tid(tid), m_offset(offset), m_reg_name(reg_name), m_value(value), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; uintptr_t m_offset; const char *m_reg_name; const RegisterValue &m_value; bool &m_result; }; void WriteRegOperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) if (m_offset > sizeof(struct user_pt_regs)) { uintptr_t offset = m_offset - sizeof(struct user_pt_regs); if (offset > sizeof(struct user_fpsimd_state)) { m_result = false; } else { elf_fpregset_t regs; int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else { ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else m_result = true; } } } else { elf_gregset_t regs; int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else { ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else m_result = true; } } #else void* buf; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); buf = (void*) m_value.GetAsUInt64(); if (log) log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); if (PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0)) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class ReadGPROperation /// @brief Implements NativeProcessLinux::ReadGPR. class ReadGPROperation : public Operation { public: ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; bool &m_result; }; void ReadGPROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) m_result = false; else m_result = true; #else if (PTRACE(PTRACE_GETREGS, m_tid, NULL, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class ReadFPROperation /// @brief Implements NativeProcessLinux::ReadFPR. class ReadFPROperation : public Operation { public: ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; bool &m_result; }; void ReadFPROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) m_result = false; else m_result = true; #else if (PTRACE(PTRACE_GETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class ReadRegisterSetOperation /// @brief Implements NativeProcessLinux::ReadRegisterSet. class ReadRegisterSetOperation : public Operation { public: ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; const unsigned int m_regset; bool &m_result; }; void ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) { if (PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class WriteGPROperation /// @brief Implements NativeProcessLinux::WriteGPR. class WriteGPROperation : public Operation { public: WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; bool &m_result; }; void WriteGPROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) m_result = false; else m_result = true; #else if (PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class WriteFPROperation /// @brief Implements NativeProcessLinux::WriteFPR. class WriteFPROperation : public Operation { public: WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; bool &m_result; }; void WriteFPROperation::Execute(NativeProcessLinux *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) m_result = false; else m_result = true; #else if (PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class WriteRegisterSetOperation /// @brief Implements NativeProcessLinux::WriteRegisterSet. class WriteRegisterSetOperation : public Operation { public: WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; const unsigned int m_regset; bool &m_result; }; void WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) { if (PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class ResumeOperation /// @brief Implements NativeProcessLinux::Resume. class ResumeOperation : public Operation { public: ResumeOperation(lldb::tid_t tid, uint32_t signo, bool &result) : m_tid(tid), m_signo(signo), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; uint32_t m_signo; bool &m_result; }; void ResumeOperation::Execute(NativeProcessLinux *monitor) { intptr_t data = 0; if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) data = m_signo; if (PTRACE(PTRACE_CONT, m_tid, NULL, (void*)data, 0)) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, strerror(errno)); m_result = false; } else m_result = true; } //------------------------------------------------------------------------------ /// @class SingleStepOperation /// @brief Implements NativeProcessLinux::SingleStep. class SingleStepOperation : public Operation { public: SingleStepOperation(lldb::tid_t tid, uint32_t signo, bool &result) : m_tid(tid), m_signo(signo), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; uint32_t m_signo; bool &m_result; }; void SingleStepOperation::Execute(NativeProcessLinux *monitor) { intptr_t data = 0; if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) data = m_signo; if (PTRACE(PTRACE_SINGLESTEP, m_tid, NULL, (void*)data, 0)) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class SiginfoOperation /// @brief Implements NativeProcessLinux::GetSignalInfo. class SiginfoOperation : public Operation { public: SiginfoOperation(lldb::tid_t tid, void *info, bool &result, int &ptrace_err) : m_tid(tid), m_info(info), m_result(result), m_err(ptrace_err) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; void *m_info; bool &m_result; int &m_err; }; void SiginfoOperation::Execute(NativeProcessLinux *monitor) { if (PTRACE(PTRACE_GETSIGINFO, m_tid, NULL, m_info, 0)) { m_result = false; m_err = errno; } else m_result = true; } //------------------------------------------------------------------------------ /// @class EventMessageOperation /// @brief Implements NativeProcessLinux::GetEventMessage. class EventMessageOperation : public Operation { public: EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result) : m_tid(tid), m_message(message), m_result(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; unsigned long *m_message; bool &m_result; }; void EventMessageOperation::Execute(NativeProcessLinux *monitor) { if (PTRACE(PTRACE_GETEVENTMSG, m_tid, NULL, m_message, 0)) m_result = false; else m_result = true; } class DetachOperation : public Operation { public: DetachOperation(lldb::tid_t tid, Error &result) : m_tid(tid), m_error(result) { } void Execute(NativeProcessLinux *monitor); private: lldb::tid_t m_tid; Error &m_error; }; void DetachOperation::Execute(NativeProcessLinux *monitor) { if (ptrace(PT_DETACH, m_tid, NULL, 0) < 0) m_error.SetErrorToErrno(); } } using namespace lldb_private; // Simple helper function to ensure flags are enabled on the given file // descriptor. static bool EnsureFDFlags(int fd, int flags, Error &error) { int status; if ((status = fcntl(fd, F_GETFL)) == -1) { error.SetErrorToErrno(); return false; } if (fcntl(fd, F_SETFL, status | flags) == -1) { error.SetErrorToErrno(); return false; } return true; } NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor) : m_monitor(monitor) { sem_init(&m_semaphore, 0, 0); } NativeProcessLinux::OperationArgs::~OperationArgs() { sem_destroy(&m_semaphore); } NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor, lldb_private::Module *module, char const **argv, char const **envp, const std::string &stdin_path, const std::string &stdout_path, const std::string &stderr_path, const char *working_dir, const lldb_private::ProcessLaunchInfo &launch_info) : OperationArgs(monitor), m_module(module), m_argv(argv), m_envp(envp), m_stdin_path(stdin_path), m_stdout_path(stdout_path), m_stderr_path(stderr_path), m_working_dir(working_dir), m_launch_info(launch_info) { } NativeProcessLinux::LaunchArgs::~LaunchArgs() { } NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor, lldb::pid_t pid) : OperationArgs(monitor), m_pid(pid) { } NativeProcessLinux::AttachArgs::~AttachArgs() { } // ----------------------------------------------------------------------------- // Public Static Methods // ----------------------------------------------------------------------------- lldb_private::Error NativeProcessLinux::LaunchProcess ( lldb_private::Module *exe_module, lldb_private::ProcessLaunchInfo &launch_info, lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, NativeProcessProtocolSP &native_process_sp) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); Error error; // Verify the working directory is valid if one was specified. const char* working_dir = launch_info.GetWorkingDirectory (); if (working_dir) { FileSpec working_dir_fs (working_dir, true); if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) { error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); return error; } } const lldb_private::FileAction *file_action; // Default of NULL will mean to use existing open file descriptors. std::string stdin_path; std::string stdout_path; std::string stderr_path; file_action = launch_info.GetFileActionForFD (STDIN_FILENO); if (file_action) stdin_path = file_action->GetPath (); file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); if (file_action) stdout_path = file_action->GetPath (); file_action = launch_info.GetFileActionForFD (STDERR_FILENO); if (file_action) stderr_path = file_action->GetPath (); if (log) { if (!stdin_path.empty ()) log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); else log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); if (!stdout_path.empty ()) log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); else log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); if (!stderr_path.empty ()) log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); else log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); } // Create the NativeProcessLinux in launch mode. native_process_sp.reset (new NativeProcessLinux ()); if (log) { int i = 0; for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) { log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); ++i; } } if (!native_process_sp->RegisterNativeDelegate (native_delegate)) { native_process_sp.reset (); error.SetErrorStringWithFormat ("failed to register the native delegate"); return error; } reinterpret_cast (native_process_sp.get ())->LaunchInferior ( exe_module, launch_info.GetArguments ().GetConstArgumentVector (), launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), stdin_path, stdout_path, stderr_path, working_dir, launch_info, error); if (error.Fail ()) { native_process_sp.reset (); if (log) log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); return error; } launch_info.SetProcessID (native_process_sp->GetID ()); return error; } lldb_private::Error NativeProcessLinux::AttachToProcess ( lldb::pid_t pid, lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, NativeProcessProtocolSP &native_process_sp) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); // Grab the current platform architecture. This should be Linux, // since this code is only intended to run on a Linux host. PlatformSP platform_sp (Platform::GetHostPlatform ()); if (!platform_sp) return Error("failed to get a valid default platform"); // Retrieve the architecture for the running process. ArchSpec process_arch; Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); if (!error.Success ()) return error; std::shared_ptr native_process_linux_sp (new NativeProcessLinux ()); if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) { error.SetErrorStringWithFormat ("failed to register the native delegate"); return error; } native_process_linux_sp->AttachToInferior (pid, error); if (!error.Success ()) return error; native_process_sp = native_process_linux_sp; return error; } // ----------------------------------------------------------------------------- // Public Instance Methods // ----------------------------------------------------------------------------- NativeProcessLinux::NativeProcessLinux () : NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), m_arch (), m_operation_thread (), m_monitor_thread (), m_operation (nullptr), m_operation_mutex (), m_operation_pending (), m_operation_done (), m_supports_mem_region (eLazyBoolCalculate), m_mem_region_cache (), m_mem_region_cache_mutex (), m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), m_coordinator_thread () { } //------------------------------------------------------------------------------ /// The basic design of the NativeProcessLinux is built around two threads. /// /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking /// for changes in the debugee state. When a change is detected a /// ProcessMessage is sent to the associated ProcessLinux instance. This thread /// "drives" state changes in the debugger. /// /// The second thread (@see OperationThread) is responsible for two things 1) /// launching or attaching to the inferior process, and then 2) servicing /// operations such as register reads/writes, stepping, etc. See the comments /// on the Operation class for more info as to why this is needed. void NativeProcessLinux::LaunchInferior ( Module *module, const char *argv[], const char *envp[], const std::string &stdin_path, const std::string &stdout_path, const std::string &stderr_path, const char *working_dir, const lldb_private::ProcessLaunchInfo &launch_info, lldb_private::Error &error) { if (module) m_arch = module->GetArchitecture (); SetState (eStateLaunching); std::unique_ptr args( new LaunchArgs( this, module, argv, envp, stdin_path, stdout_path, stderr_path, working_dir, launch_info)); sem_init (&m_operation_pending, 0, 0); sem_init (&m_operation_done, 0, 0); StartLaunchOpThread (args.get(), error); if (!error.Success ()) return; error = StartCoordinatorThread (); if (!error.Success ()) return; WAIT_AGAIN: // Wait for the operation thread to initialize. if (sem_wait(&args->m_semaphore)) { if (errno == EINTR) goto WAIT_AGAIN; else { error.SetErrorToErrno(); return; } } // Check that the launch was a success. if (!args->m_error.Success()) { StopOpThread(); StopCoordinatorThread (); error = args->m_error; return; } // Finally, start monitoring the child process for change in state. m_monitor_thread = Host::StartMonitoringChildProcess( NativeProcessLinux::MonitorCallback, this, GetID(), true); if (!m_monitor_thread.IsJoinable()) { error.SetErrorToGenericError(); error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); return; } } void NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); // We can use the Host for everything except the ResolveExecutable portion. PlatformSP platform_sp = Platform::GetHostPlatform (); if (!platform_sp) { if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); error.SetErrorString ("no default platform available"); return; } // Gather info about the process. ProcessInstanceInfo process_info; if (!platform_sp->GetProcessInfo (pid, process_info)) { if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); error.SetErrorString ("failed to get process info"); return; } // Resolve the executable module ModuleSP exe_module_sp; FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); ModuleSpec exe_module_spec(process_info.GetExecutableFile(), HostInfo::GetArchitecture()); error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, executable_search_paths.GetSize() ? &executable_search_paths : NULL); if (!error.Success()) return; // Set the architecture to the exe architecture. m_arch = exe_module_sp->GetArchitecture(); if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); m_pid = pid; SetState(eStateAttaching); sem_init (&m_operation_pending, 0, 0); sem_init (&m_operation_done, 0, 0); std::unique_ptr args (new AttachArgs (this, pid)); StartAttachOpThread(args.get (), error); if (!error.Success ()) return; error = StartCoordinatorThread (); if (!error.Success ()) return; WAIT_AGAIN: // Wait for the operation thread to initialize. if (sem_wait (&args->m_semaphore)) { if (errno == EINTR) goto WAIT_AGAIN; else { error.SetErrorToErrno (); return; } } // Check that the attach was a success. if (!args->m_error.Success ()) { StopOpThread (); StopCoordinatorThread (); error = args->m_error; return; } // Finally, start monitoring the child process for change in state. m_monitor_thread = Host::StartMonitoringChildProcess ( NativeProcessLinux::MonitorCallback, this, GetID (), true); if (!m_monitor_thread.IsJoinable()) { error.SetErrorToGenericError (); error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); return; } } NativeProcessLinux::~NativeProcessLinux() { StopMonitor(); } //------------------------------------------------------------------------------ // Thread setup and tear down. void NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error) { static const char *g_thread_name = "lldb.process.nativelinux.operation"; if (m_operation_thread.IsJoinable()) return; m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error); } void * NativeProcessLinux::LaunchOpThread(void *arg) { LaunchArgs *args = static_cast(arg); if (!Launch(args)) { sem_post(&args->m_semaphore); return NULL; } ServeOperation(args); return NULL; } bool NativeProcessLinux::Launch(LaunchArgs *args) { assert (args && "null args"); if (!args) return false; NativeProcessLinux *monitor = args->m_monitor; assert (monitor && "monitor is NULL"); if (!monitor) return false; const char **argv = args->m_argv; const char **envp = args->m_envp; const char *working_dir = args->m_working_dir; lldb_utility::PseudoTerminal terminal; const size_t err_len = 1024; char err_str[err_len]; lldb::pid_t pid; NativeThreadProtocolSP thread_sp; lldb::ThreadSP inferior; // Propagate the environment if one is not supplied. if (envp == NULL || envp[0] == NULL) envp = const_cast(environ); if ((pid = terminal.Fork(err_str, err_len)) == static_cast (-1)) { args->m_error.SetErrorToGenericError(); args->m_error.SetErrorString("Process fork failed."); return false; } // Recognized child exit status codes. enum { ePtraceFailed = 1, eDupStdinFailed, eDupStdoutFailed, eDupStderrFailed, eChdirFailed, eExecFailed, eSetGidFailed }; // Child process. if (pid == 0) { // FIXME consider opening a pipe between parent/child and have this forked child // send log info to parent re: launch status, in place of the log lines removed here. // Start tracing this child that is about to exec. if (PTRACE(PTRACE_TRACEME, 0, NULL, NULL, 0) < 0) exit(ePtraceFailed); // Do not inherit setgid powers. if (setgid(getgid()) != 0) exit(eSetGidFailed); // Attempt to have our own process group. if (setpgid(0, 0) != 0) { // FIXME log that this failed. This is common. // Don't allow this to prevent an inferior exec. } // Dup file descriptors if needed. if (!args->m_stdin_path.empty ()) if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) exit(eDupStdinFailed); if (!args->m_stdout_path.empty ()) if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT)) exit(eDupStdoutFailed); if (!args->m_stderr_path.empty ()) if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT)) exit(eDupStderrFailed); // Change working directory if (working_dir != NULL && working_dir[0]) if (0 != ::chdir(working_dir)) exit(eChdirFailed); // Disable ASLR if requested. if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) { const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); if (old_personality == -1) { // Can't retrieve Linux personality. Cannot disable ASLR. } else { const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); if (new_personality == -1) { // Disabling ASLR failed. } else { // Disabling ASLR succeeded. } } } // Execute. We should never return... execve(argv[0], const_cast(argv), const_cast(envp)); // ...unless exec fails. In which case we definitely need to end the child here. exit(eExecFailed); } // // This is the parent code here. // Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); // Wait for the child process to trap on its call to execve. ::pid_t wpid; int status; if ((wpid = waitpid(pid, &status, 0)) < 0) { args->m_error.SetErrorToErrno(); if (log) log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ()); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. monitor->SetState (StateType::eStateInvalid); return false; } else if (WIFEXITED(status)) { // open, dup or execve likely failed for some reason. args->m_error.SetErrorToGenericError(); switch (WEXITSTATUS(status)) { case ePtraceFailed: args->m_error.SetErrorString("Child ptrace failed."); break; case eDupStdinFailed: args->m_error.SetErrorString("Child open stdin failed."); break; case eDupStdoutFailed: args->m_error.SetErrorString("Child open stdout failed."); break; case eDupStderrFailed: args->m_error.SetErrorString("Child open stderr failed."); break; case eChdirFailed: args->m_error.SetErrorString("Child failed to set working directory."); break; case eExecFailed: args->m_error.SetErrorString("Child exec failed."); break; case eSetGidFailed: args->m_error.SetErrorString("Child setgid failed."); break; default: args->m_error.SetErrorString("Child returned unknown exit status."); break; } if (log) { log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", __FUNCTION__, WEXITSTATUS(status)); } // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. monitor->SetState (StateType::eStateInvalid); return false; } assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && "Could not sync with inferior process."); if (log) log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); if (!SetDefaultPtraceOpts(pid)) { args->m_error.SetErrorToErrno(); if (log) log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", __FUNCTION__, args->m_error.AsCString ()); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. monitor->SetState (StateType::eStateInvalid); return false; } // Release the master terminal descriptor and pass it off to the // NativeProcessLinux instance. Similarly stash the inferior pid. monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); monitor->m_pid = pid; // Set the terminal fd to be in non blocking mode (it simplifies the // implementation of ProcessLinux::GetSTDOUT to have a non-blocking // descriptor to read from). if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) { if (log) log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", __FUNCTION__, args->m_error.AsCString ()); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. monitor->SetState (StateType::eStateInvalid); return false; } if (log) log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); thread_sp = monitor->AddThread (pid); assert (thread_sp && "AddThread() returned a nullptr thread"); monitor->NotifyThreadCreateStopped (pid); reinterpret_cast (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); // Let our process instance know the thread has stopped. monitor->SetCurrentThreadID (thread_sp->GetID ()); monitor->SetState (StateType::eStateStopped); if (log) { if (args->m_error.Success ()) { log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); } else { log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", __FUNCTION__, args->m_error.AsCString ()); } } return args->m_error.Success(); } void NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error) { static const char *g_thread_name = "lldb.process.linux.operation"; if (m_operation_thread.IsJoinable()) return; m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error); } void * NativeProcessLinux::AttachOpThread(void *arg) { AttachArgs *args = static_cast(arg); if (!Attach(args)) { sem_post(&args->m_semaphore); return nullptr; } ServeOperation(args); return nullptr; } bool NativeProcessLinux::Attach(AttachArgs *args) { lldb::pid_t pid = args->m_pid; NativeProcessLinux *monitor = args->m_monitor; lldb::ThreadSP inferior; Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); // Use a map to keep track of the threads which we have attached/need to attach. Host::TidMap tids_to_attach; if (pid <= 1) { args->m_error.SetErrorToGenericError(); args->m_error.SetErrorString("Attaching to process 1 is not allowed."); goto FINISH; } while (Host::FindProcessThreads(pid, tids_to_attach)) { for (Host::TidMap::iterator it = tids_to_attach.begin(); it != tids_to_attach.end();) { if (it->second == false) { lldb::tid_t tid = it->first; // Attach to the requested process. // An attach will cause the thread to stop with a SIGSTOP. if (PTRACE(PTRACE_ATTACH, tid, NULL, NULL, 0) < 0) { // No such thread. The thread may have exited. // More error handling may be needed. if (errno == ESRCH) { it = tids_to_attach.erase(it); continue; } else { args->m_error.SetErrorToErrno(); goto FINISH; } } int status; // Need to use __WALL otherwise we receive an error with errno=ECHLD // At this point we should have a thread stopped if waitpid succeeds. if ((status = waitpid(tid, NULL, __WALL)) < 0) { // No such thread. The thread may have exited. // More error handling may be needed. if (errno == ESRCH) { it = tids_to_attach.erase(it); continue; } else { args->m_error.SetErrorToErrno(); goto FINISH; } } if (!SetDefaultPtraceOpts(tid)) { args->m_error.SetErrorToErrno(); goto FINISH; } if (log) log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); it->second = true; // Create the thread, mark it as stopped. NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast (tid))); assert (thread_sp && "AddThread() returned a nullptr"); // This will notify this is a new thread and tell the system it is stopped. monitor->NotifyThreadCreateStopped (tid); reinterpret_cast (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); monitor->SetCurrentThreadID (thread_sp->GetID ()); } // move the loop forward ++it; } } if (tids_to_attach.size() > 0) { monitor->m_pid = pid; // Let our process instance know the thread has stopped. monitor->SetState (StateType::eStateStopped); } else { args->m_error.SetErrorToGenericError(); args->m_error.SetErrorString("No such process."); } FINISH: return args->m_error.Success(); } bool NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { long ptrace_opts = 0; // Have the child raise an event on exit. This is used to keep the child in // limbo until it is destroyed. ptrace_opts |= PTRACE_O_TRACEEXIT; // Have the tracer trace threads which spawn in the inferior process. // TODO: if we want to support tracing the inferiors' child, add the // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) ptrace_opts |= PTRACE_O_TRACECLONE; // Have the tracer notify us before execve returns // (needed to disable legacy SIGTRAP generation) ptrace_opts |= PTRACE_O_TRACEEXEC; return PTRACE(PTRACE_SETOPTIONS, pid, NULL, (void*)ptrace_opts, 0) >= 0; } static ExitType convert_pid_status_to_exit_type (int status) { if (WIFEXITED (status)) return ExitType::eExitTypeExit; else if (WIFSIGNALED (status)) return ExitType::eExitTypeSignal; else if (WIFSTOPPED (status)) return ExitType::eExitTypeStop; else { // We don't know what this is. return ExitType::eExitTypeInvalid; } } static int convert_pid_status_to_return_code (int status) { if (WIFEXITED (status)) return WEXITSTATUS (status); else if (WIFSIGNALED (status)) return WTERMSIG (status); else if (WIFSTOPPED (status)) return WSTOPSIG (status); else { // We don't know what this is. return ExitType::eExitTypeInvalid; } } // Main process monitoring waitpid-loop handler. bool NativeProcessLinux::MonitorCallback(void *callback_baton, lldb::pid_t pid, bool exited, int signal, int status) { Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); NativeProcessLinux *const process = static_cast(callback_baton); assert (process && "process is null"); if (!process) { if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid); return true; } // Certain activities differ based on whether the pid is the tid of the main thread. const bool is_main_thread = (pid == process->GetID ()); // Assume we keep monitoring by default. bool stop_monitoring = false; // Handle when the thread exits. if (exited) { if (log) log->Printf ("NativeProcessLinux::%s() got exit signal, tid = %" PRIu64 " (%s main thread)", __FUNCTION__, pid, is_main_thread ? "is" : "is not"); // This is a thread that exited. Ensure we're not tracking it anymore. const bool thread_found = process->StopTrackingThread (pid); // Make sure the thread state coordinator knows about this. process->NotifyThreadDeath (pid); if (is_main_thread) { // We only set the exit status and notify the delegate if we haven't already set the process // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) // for the main thread. const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed); if (!already_notified) { if (log) log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ())); // The main thread exited. We're done monitoring. Report to delegate. process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); // Notify delegate that our process has exited. process->SetState (StateType::eStateExited, true); } else { if (log) log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); } return true; } else { // Do we want to report to the delegate in this case? I think not. If this was an orderly // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, // and we would have done an all-stop then. if (log) log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); // Not the main thread, we keep going. return false; } } // Get details on the signal raised. siginfo_t info; int ptrace_err = 0; if (process->GetSignalInfo (pid, &info, ptrace_err)) { // We have retrieved the signal info. Dispatch appropriately. if (info.si_signo == SIGTRAP) process->MonitorSIGTRAP(&info, pid); else process->MonitorSignal(&info, pid, exited); stop_monitoring = false; } else { if (ptrace_err == EINVAL) { // This is a group stop reception for this tid. if (log) log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid); process->NotifyThreadStop (pid); } else { // ptrace(GETSIGINFO) failed (but not due to group-stop). // A return value of ESRCH means the thread/process is no longer on the system, // so it was killed somehow outside of our control. Either way, we can't do anything // with it anymore. // We stop monitoring if it was the main thread. stop_monitoring = is_main_thread; // Stop tracking the metadata for the thread since it's entirely off the system now. const bool thread_found = process->StopTrackingThread (pid); // Make sure the thread state coordinator knows about this. process->NotifyThreadDeath (pid); if (log) log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", __FUNCTION__, strerror(ptrace_err), pid, signal, status, ptrace_err == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); if (is_main_thread) { // Notify the delegate - our process is not available but appears to have been killed outside // our control. Is eStateExited the right exit state in this case? process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); process->SetState (StateType::eStateExited, true); } else { // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid); } } } return stop_monitoring; } void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); const bool is_main_thread = (pid == GetID ()); assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); if (!info) return; // See if we can find a thread for this signal. NativeThreadProtocolSP thread_sp = GetThreadByID (pid); if (!thread_sp) { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); } switch (info->si_code) { // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { lldb::tid_t tid = LLDB_INVALID_THREAD_ID; // The main thread is stopped here. if (thread_sp) reinterpret_cast (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); NotifyThreadStop (pid); unsigned long event_message = 0; if (GetEventMessage (pid, &event_message)) { tid = static_cast (event_message); if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); // If we don't track the thread yet: create it, mark as stopped. // If we do track it, this is the wait we needed. Now resume the new thread. // In all cases, resume the current (i.e. main process) thread. bool created_now = false; NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now); assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation. if (!created_now) { // We can now resume the newly created thread since it is fully created. NotifyThreadCreateStopped (tid); m_coordinator_up->RequestThreadResume (tid, [=](lldb::tid_t tid_to_resume) { reinterpret_cast (new_thread_sp.get ())->SetRunning (); Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); }, CoordinatorErrorHandler); } else { // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before // this thread is ready to go. reinterpret_cast (new_thread_sp.get ())->SetLaunching (); } } else { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); } // In all cases, we can resume the main thread here. m_coordinator_up->RequestThreadResume (pid, [=](lldb::tid_t tid_to_resume) { reinterpret_cast (thread_sp.get ())->SetRunning (); Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); }, CoordinatorErrorHandler); break; } case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { NativeThreadProtocolSP main_thread_sp; if (log) log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); // The thread state coordinator needs to reset due to the exec. m_coordinator_up->ResetForExec (); // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. { Mutex::Locker locker (m_threads_mutex); if (log) log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); for (auto thread_sp : m_threads) { const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); if (is_main_thread) { main_thread_sp = thread_sp; if (log) log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); } else { // Tell thread coordinator this thread is dead. if (log) log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); } } m_threads.clear (); if (main_thread_sp) { m_threads.push_back (main_thread_sp); SetCurrentThreadID (main_thread_sp->GetID ()); reinterpret_cast(main_thread_sp.get())->SetStoppedByExec (); } else { SetCurrentThreadID (LLDB_INVALID_THREAD_ID); if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); } } // Tell coordinator about about the "new" (since exec) stopped main thread. const lldb::tid_t main_thread_tid = GetID (); NotifyThreadCreateStopped (main_thread_tid); // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. // Consider a handler that can execute when that happens. // Let our delegate know we have just exec'd. NotifyDidExec (); // If we have a main thread, indicate we are stopped. assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); // Let the process know we're stopped. SetState (StateType::eStateStopped); break; } case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { // The inferior process or one of its threads is about to exit. // This thread is currently stopped. It's not actually dead yet, just about to be. NotifyThreadStop (pid); unsigned long data = 0; if (!GetEventMessage(pid, &data)) data = -1; if (log) { log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", __FUNCTION__, data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", pid, is_main_thread ? "is main thread" : "not main thread"); } if (is_main_thread) { SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); } const int signo = static_cast (data); m_coordinator_up->RequestThreadResume (pid, [=](lldb::tid_t tid_to_resume) { reinterpret_cast (thread_sp.get ())->SetRunning (); Resume (tid_to_resume, signo); }, CoordinatorErrorHandler); break; } case 0: case TRAP_TRACE: // We receive this on single stepping. if (log) log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid); // This thread is currently stopped. NotifyThreadStop (pid); // Here we don't have to request the rest of the threads to stop or request a deferred stop. // This would have already happened at the time the Resume() with step operation was signaled. // At this point, we just need to say we stopped, and the deferred notifcation will fire off // once all running threads have checked in as stopped. break; case SI_KERNEL: case TRAP_BRKPT: if (log) log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); // This thread is currently stopped. NotifyThreadStop (pid); // Mark the thread as stopped at breakpoint. if (thread_sp) { reinterpret_cast (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); Error error = FixupBreakpointPCAsNeeded (thread_sp); if (error.Fail ()) { if (log) log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ()); } } else { if (log) log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid); } // We need to tell all other running threads before we notify the delegate about this stop. CallAfterRunningThreadsStop (pid, [=](lldb::tid_t deferred_notification_tid) { SetCurrentThreadID (deferred_notification_tid); // Tell the process we have a stop (from software breakpoint). SetState (StateType::eStateStopped, true); }); break; case TRAP_HWBKPT: if (log) log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid); // This thread is currently stopped. NotifyThreadStop (pid); // Mark the thread as stopped at watchpoint. // The address is at (lldb::addr_t)info->si_addr if we need it. if (thread_sp) reinterpret_cast (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); else { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid); } // We need to tell all other running threads before we notify the delegate about this stop. CallAfterRunningThreadsStop (pid, [=](lldb::tid_t deferred_notification_tid) { SetCurrentThreadID (deferred_notification_tid); // Tell the process we have a stop (from hardware breakpoint). SetState (StateType::eStateStopped, true); }); break; case SIGTRAP: case (SIGTRAP | 0x80): if (log) log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); // This thread is currently stopped. NotifyThreadStop (pid); if (thread_sp) reinterpret_cast (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); // Ignore these signals until we know more about them. m_coordinator_up->RequestThreadResume (pid, [=](lldb::tid_t tid_to_resume) { reinterpret_cast (thread_sp.get ())->SetRunning (); Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); }, CoordinatorErrorHandler); break; default: assert(false && "Unexpected SIGTRAP code!"); if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); break; } } void NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) { assert (info && "null info"); if (!info) return; const int signo = info->si_signo; const bool is_from_llgs = info->si_pid == getpid (); Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); // POSIX says that process behaviour is undefined after it ignores a SIGFPE, // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a // kill(2) or raise(3). Similarly for tgkill(2) on Linux. // // IOW, user generated signals never generate what we consider to be a // "crash". // // Similarly, ACK signals generated by this monitor. // See if we can find a thread for this signal. NativeThreadProtocolSP thread_sp = GetThreadByID (pid); if (!thread_sp) { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); } // Handle the signal. if (info->si_code == SI_TKILL || info->si_code == SI_USER) { if (log) log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo), signo, (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), info->si_pid, is_from_llgs ? "from llgs" : "not from llgs", pid); } // Check for new thread notification. if ((info->si_pid == 0) && (info->si_code == SI_USER)) { // A new thread creation is being signaled. This is one of two parts that come in // a non-deterministic order. pid is the thread id. if (log) log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", __FUNCTION__, GetID (), pid); // Did we already create the thread? bool created_now = false; thread_sp = GetOrCreateThread (pid, created_now); assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create. if (!created_now) { // We can now resume the newly created thread since it is fully created. NotifyThreadCreateStopped (pid); m_coordinator_up->RequestThreadResume (pid, [=](lldb::tid_t tid_to_resume) { reinterpret_cast (thread_sp.get ())->SetRunning (); Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); }, CoordinatorErrorHandler); } else { // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before // this thread is ready to go. reinterpret_cast (thread_sp.get ())->SetLaunching (); } // Done handling. return; } // Check for thread stop notification. if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) { // This is a tgkill()-based stop. if (thread_sp) { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", __FUNCTION__, GetID (), pid); // An inferior thread just stopped, but was not the primary cause of the process stop. // Instead, something else (like a breakpoint or step) caused the stop. Mark the // stop signal as 0 to let lldb know this isn't the important stop. reinterpret_cast (thread_sp.get ())->SetStoppedBySignal (0); SetCurrentThreadID (thread_sp->GetID ()); // Tell the thread state coordinator about the stop. NotifyThreadStop (thread_sp->GetID ()); } // Done handling. return; } if (log) log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); switch (signo) { case SIGSEGV: case SIGABRT: case SIGILL: case SIGFPE: case SIGBUS: { // This thread is stopped. NotifyThreadStop (pid); // lldb::addr_t fault_addr = reinterpret_cast(info->si_addr); // This is just a pre-signal-delivery notification of the incoming signal. if (thread_sp) reinterpret_cast (thread_sp.get ())->SetStoppedBySignal (signo); // We can get more details on the exact nature of the crash here. // ProcessMessage::CrashReason reason = GetCrashReasonForSIGSEGV(info); if (!exited) { // Send a stop to the debugger after we get all other threads to stop. CallAfterRunningThreadsStop (pid, [=] (lldb::tid_t signaling_tid) { SetCurrentThreadID (signaling_tid); SetState (StateType::eStateStopped, true); }); } else { // FIXME the process might die right after this - might not ever get stops on any other threads. // Send a stop to the debugger after we get all other threads to stop. CallAfterRunningThreadsStop (pid, [=] (lldb::tid_t signaling_tid) { SetCurrentThreadID (signaling_tid); SetState (StateType::eStateCrashed, true); }); } } break; case SIGSTOP: { // This thread is stopped. NotifyThreadStop (pid); if (log) { if (is_from_llgs) log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); else log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); } // Resume this thread to get the group-stop mechanism to fire off the true group stops. // This thread will get stopped again as part of the group-stop completion. m_coordinator_up->RequestThreadResume (pid, [=](lldb::tid_t tid_to_resume) { reinterpret_cast (thread_sp.get ())->SetRunning (); // Pass this signal number on to the inferior to handle. Resume (tid_to_resume, signo); }, CoordinatorErrorHandler); // And now we want to signal that we received a SIGSTOP on this thread // as soon as all running threads stop (i.e. the group stop sequence completes). CallAfterRunningThreadsStop (pid, [=] (lldb::tid_t signaling_tid) { SetCurrentThreadID (signaling_tid); SetState (StateType::eStateStopped, true); }); break; } default: { // This thread is stopped. NotifyThreadStop (pid); if (log) log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " resuming thread with signal %s (%d)", __FUNCTION__, GetID (), pid, GetUnixSignals().GetSignalAsCString (signo), signo); // Pass the signal on to the inferior. m_coordinator_up->RequestThreadResume (pid, [=](lldb::tid_t tid_to_resume) { reinterpret_cast (thread_sp.get ())->SetRunning (); // Pass this signal number on to the inferior to handle. Resume (tid_to_resume, signo); }, CoordinatorErrorHandler); } break; } } Error NativeProcessLinux::Resume (const ResumeActionList &resume_actions) { Error error; Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); if (log) log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; int deferred_signo = 0; NativeThreadProtocolSP deferred_signal_thread_sp; int resume_count = 0; // std::vector new_stop_threads; // Scope for threads mutex. { Mutex::Locker locker (m_threads_mutex); for (auto thread_sp : m_threads) { assert (thread_sp && "thread list should not contain NULL threads"); const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); assert (action && "NULL ResumeAction returned for thread during Resume ()"); if (log) { log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); } switch (action->state) { case eStateRunning: { // Run the thread, possibly feeding it the signal. const int signo = action->signal; m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), [=](lldb::tid_t tid_to_resume) { reinterpret_cast (thread_sp.get ())->SetRunning (); // Pass this signal number on to the inferior to handle. Resume (tid_to_resume, (signo > 0) ? signo : LLDB_INVALID_SIGNAL_NUMBER); }, CoordinatorErrorHandler); ++resume_count; break; } case eStateStepping: { // Request the step. const int signo = action->signal; m_coordinator_up->RequestThreadResume (thread_sp->GetID (), [=](lldb::tid_t tid_to_step) { reinterpret_cast (thread_sp.get ())->SetStepping (); auto step_result = SingleStep (tid_to_step,(signo > 0) ? signo : LLDB_INVALID_SIGNAL_NUMBER); assert (step_result && "SingleStep() failed"); }, CoordinatorErrorHandler); // The deferred signal tid is the stepping tid. // This assumes there is only one stepping tid, or the last stepping tid is a fine choice. deferred_signal_tid = thread_sp->GetID (); deferred_signal_thread_sp = thread_sp; // Don't send a stop request to this thread. The thread resume request // above will actually run the step thread, and it will finish the step // by sending a SIGTRAP with the appropriate bits set. So, the deferred // signal call that happens at the end of the loop below needs to let // the pending signal handling to *not* send a stop for this thread here // since the start/stop step functionality will end up with a stop state. // Otherwise, this stepping thread will get sent an erroneous tgkill for // with a SIGSTOP signal. deferred_signal_skip_tid = thread_sp->GetID (); // And the stop signal we should apply for it is a SIGTRAP. deferred_signo = SIGTRAP; break; } case eStateSuspended: case eStateStopped: // if we haven't chosen a deferred signal tid yet, use this one. if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) { deferred_signal_tid = thread_sp->GetID (); deferred_signal_thread_sp = thread_sp; deferred_signo = SIGSTOP; } break; default: return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); } } } // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal // after all other running threads have stopped. if (deferred_signal_tid != LLDB_INVALID_THREAD_ID) { CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, deferred_signal_skip_tid, [=](lldb::tid_t deferred_notification_tid) { // Set the signal thread to the current thread. SetCurrentThreadID (deferred_notification_tid); // Set the thread state as stopped by the deferred signo. reinterpret_cast (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo); // Tell the process delegate that the process is in a stopped state. SetState (StateType::eStateStopped, true); }); } return error; } Error NativeProcessLinux::Halt () { Error error; if (kill (GetID (), SIGSTOP) != 0) error.SetErrorToErrno (); return error; } Error NativeProcessLinux::Detach () { Error error; // Tell ptrace to detach from the process. if (GetID () != LLDB_INVALID_PROCESS_ID) error = Detach (GetID ()); // Stop monitoring the inferior. StopMonitor (); // No error. return error; } Error NativeProcessLinux::Signal (int signo) { Error error; Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); if (kill(GetID(), signo)) error.SetErrorToErrno(); return error; } Error NativeProcessLinux::Kill () { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); Error error; switch (m_state) { case StateType::eStateInvalid: case StateType::eStateExited: case StateType::eStateCrashed: case StateType::eStateDetached: case StateType::eStateUnloaded: // Nothing to do - the process is already dead. if (log) log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); return error; case StateType::eStateConnected: case StateType::eStateAttaching: case StateType::eStateLaunching: case StateType::eStateStopped: case StateType::eStateRunning: case StateType::eStateStepping: case StateType::eStateSuspended: // We can try to kill a process in these states. break; } if (kill (GetID (), SIGKILL) != 0) { error.SetErrorToErrno (); return error; } return error; } static Error ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) { memory_region_info.Clear(); StringExtractor line_extractor (maps_line.c_str ()); // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). // Parse out the starting address lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); // Parse out hyphen separating start and end address from range. if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); // Parse out the ending address lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); // Parse out the space after the address. if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) return Error ("malformed /proc/{pid}/maps entry, missing space after range"); // Save the range. memory_region_info.GetRange ().SetRangeBase (start_address); memory_region_info.GetRange ().SetRangeEnd (end_address); // Parse out each permission entry. if (line_extractor.GetBytesLeft () < 4) return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); // Handle read permission. const char read_perm_char = line_extractor.GetChar (); if (read_perm_char == 'r') memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); else { assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); } // Handle write permission. const char write_perm_char = line_extractor.GetChar (); if (write_perm_char == 'w') memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); else { assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); } // Handle execute permission. const char exec_perm_char = line_extractor.GetChar (); if (exec_perm_char == 'x') memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); else { assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); } return Error (); } Error NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) { // FIXME review that the final memory region returned extends to the end of the virtual address space, // with no perms if it is not mapped. // Use an approach that reads memory regions from /proc/{pid}/maps. // Assume proc maps entries are in ascending order. // FIXME assert if we find differently. Mutex::Locker locker (m_mem_region_cache_mutex); Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); Error error; if (m_supports_mem_region == LazyBool::eLazyBoolNo) { // We're done. error.SetErrorString ("unsupported"); return error; } // If our cache is empty, pull the latest. There should always be at least one memory region // if memory region handling is supported. if (m_mem_region_cache.empty ()) { error = ProcFileReader::ProcessLineByLine (GetID (), "maps", [&] (const std::string &line) -> bool { MemoryRegionInfo info; const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); if (parse_error.Success ()) { m_mem_region_cache.push_back (info); return true; } else { if (log) log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); return false; } }); // If we had an error, we'll mark unsupported. if (error.Fail ()) { m_supports_mem_region = LazyBool::eLazyBoolNo; return error; } else if (m_mem_region_cache.empty ()) { // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps // is supported. Assume we don't support map entries via procfs. if (log) log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); m_supports_mem_region = LazyBool::eLazyBoolNo; error.SetErrorString ("not supported"); return error; } if (log) log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast (m_mem_region_cache.size ()), GetID ()); // We support memory retrieval, remember that. m_supports_mem_region = LazyBool::eLazyBoolYes; } else { if (log) log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast (m_mem_region_cache.size ())); } lldb::addr_t prev_base_address = 0; // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. // There can be a ton of regions on pthreads apps with lots of threads. for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) { MemoryRegionInfo &proc_entry_info = *it; // Sanity check assumption that /proc/{pid}/maps entries are ascending. assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); // If the target address comes before this entry, indicate distance to next region. if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) { range_info.GetRange ().SetRangeBase (load_addr); range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); return error; } else if (proc_entry_info.GetRange ().Contains (load_addr)) { // The target address is within the memory region we're processing here. range_info = proc_entry_info; return error; } // The target memory address comes somewhere after the region we just parsed. } // If we made it here, we didn't find an entry that contained the given address. error.SetErrorString ("address comes after final region"); if (log) log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); return error; } void NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); { Mutex::Locker locker (m_mem_region_cache_mutex); if (log) log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast (m_mem_region_cache.size ())); m_mem_region_cache.clear (); } } Error NativeProcessLinux::AllocateMemory ( lldb::addr_t size, uint32_t permissions, lldb::addr_t &addr) { // FIXME implementing this requires the equivalent of // InferiorCallPOSIX::InferiorCallMmap, which depends on // functional ThreadPlans working with Native*Protocol. #if 1 return Error ("not implemented yet"); #else addr = LLDB_INVALID_ADDRESS; unsigned prot = 0; if (permissions & lldb::ePermissionsReadable) prot |= eMmapProtRead; if (permissions & lldb::ePermissionsWritable) prot |= eMmapProtWrite; if (permissions & lldb::ePermissionsExecutable) prot |= eMmapProtExec; // TODO implement this directly in NativeProcessLinux // (and lift to NativeProcessPOSIX if/when that class is // refactored out). if (InferiorCallMmap(this, addr, 0, size, prot, eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { m_addr_to_mmap_size[addr] = size; return Error (); } else { addr = LLDB_INVALID_ADDRESS; return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); } #endif } Error NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) { // FIXME see comments in AllocateMemory - required lower-level // bits not in place yet (ThreadPlans) return Error ("not implemented"); } lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress () { #if 1 // punt on this for now return LLDB_INVALID_ADDRESS; #else // Return the image info address for the exe module #if 1 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); ModuleSP module_sp; Error error = GetExeModuleSP (module_sp); if (error.Fail ()) { if (log) log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); return LLDB_INVALID_ADDRESS; } if (module_sp == nullptr) { if (log) log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); return LLDB_INVALID_ADDRESS; } ObjectFileSP object_file_sp = module_sp->GetObjectFile (); if (object_file_sp == nullptr) { if (log) log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); return LLDB_INVALID_ADDRESS; } return obj_file_sp->GetImageInfoAddress(); #else Target *target = &GetTarget(); ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); Address addr = obj_file->GetImageInfoAddress(target); if (addr.IsValid()) return addr.GetLoadAddress(target); return LLDB_INVALID_ADDRESS; #endif #endif // punt on this for now } size_t NativeProcessLinux::UpdateThreads () { // The NativeProcessLinux monitoring threads are always up to date // with respect to thread state and they keep the thread list // populated properly. All this method needs to do is return the // thread count. Mutex::Locker locker (m_threads_mutex); return m_threads.size (); } bool NativeProcessLinux::GetArchitecture (ArchSpec &arch) const { arch = m_arch; return true; } Error NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) { // FIXME put this behind a breakpoint protocol class that can be // set per architecture. Need ARM, MIPS support here. static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; static const uint8_t g_i386_opcode [] = { 0xCC }; switch (m_arch.GetMachine ()) { case llvm::Triple::aarch64: actual_opcode_size = static_cast (sizeof(g_aarch64_opcode)); return Error (); case llvm::Triple::x86: case llvm::Triple::x86_64: actual_opcode_size = static_cast (sizeof(g_i386_opcode)); return Error (); default: assert(false && "CPU type not supported!"); return Error ("CPU type not supported"); } } Error NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) { if (hardware) return Error ("NativeProcessLinux does not support hardware breakpoints"); else return SetSoftwareBreakpoint (addr, size); } Error NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) { // FIXME put this behind a breakpoint protocol class that can be // set per architecture. Need ARM, MIPS support here. static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; static const uint8_t g_i386_opcode [] = { 0xCC }; switch (m_arch.GetMachine ()) { case llvm::Triple::aarch64: trap_opcode_bytes = g_aarch64_opcode; actual_opcode_size = sizeof(g_aarch64_opcode); return Error (); case llvm::Triple::x86: case llvm::Triple::x86_64: trap_opcode_bytes = g_i386_opcode; actual_opcode_size = sizeof(g_i386_opcode); return Error (); default: assert(false && "CPU type not supported!"); return Error ("CPU type not supported"); } } #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGSEGV); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGSEGV"); break; case SI_KERNEL: // Linux will occasionally send spurious SI_KERNEL codes. // (this is poorly documented in sigaction) // One way to get this is via unaligned SIMD loads. reason = ProcessMessage::eInvalidAddress; // for lack of anything better break; case SEGV_MAPERR: reason = ProcessMessage::eInvalidAddress; break; case SEGV_ACCERR: reason = ProcessMessage::ePrivilegedAddress; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGILL); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGILL"); break; case ILL_ILLOPC: reason = ProcessMessage::eIllegalOpcode; break; case ILL_ILLOPN: reason = ProcessMessage::eIllegalOperand; break; case ILL_ILLADR: reason = ProcessMessage::eIllegalAddressingMode; break; case ILL_ILLTRP: reason = ProcessMessage::eIllegalTrap; break; case ILL_PRVOPC: reason = ProcessMessage::ePrivilegedOpcode; break; case ILL_PRVREG: reason = ProcessMessage::ePrivilegedRegister; break; case ILL_COPROC: reason = ProcessMessage::eCoprocessorError; break; case ILL_BADSTK: reason = ProcessMessage::eInternalStackError; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGFPE); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGFPE"); break; case FPE_INTDIV: reason = ProcessMessage::eIntegerDivideByZero; break; case FPE_INTOVF: reason = ProcessMessage::eIntegerOverflow; break; case FPE_FLTDIV: reason = ProcessMessage::eFloatDivideByZero; break; case FPE_FLTOVF: reason = ProcessMessage::eFloatOverflow; break; case FPE_FLTUND: reason = ProcessMessage::eFloatUnderflow; break; case FPE_FLTRES: reason = ProcessMessage::eFloatInexactResult; break; case FPE_FLTINV: reason = ProcessMessage::eFloatInvalidOperation; break; case FPE_FLTSUB: reason = ProcessMessage::eFloatSubscriptRange; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGBUS); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGBUS"); break; case BUS_ADRALN: reason = ProcessMessage::eIllegalAlignment; break; case BUS_ADRERR: reason = ProcessMessage::eIllegalAddress; break; case BUS_OBJERR: reason = ProcessMessage::eHardwareError; break; } return reason; } #endif void NativeProcessLinux::ServeOperation(OperationArgs *args) { NativeProcessLinux *monitor = args->m_monitor; // We are finised with the arguments and are ready to go. Sync with the // parent thread and start serving operations on the inferior. sem_post(&args->m_semaphore); for(;;) { // wait for next pending operation if (sem_wait(&monitor->m_operation_pending)) { if (errno == EINTR) continue; assert(false && "Unexpected errno from sem_wait"); } reinterpret_cast(monitor->m_operation)->Execute(monitor); // notify calling thread that operation is complete sem_post(&monitor->m_operation_done); } } void NativeProcessLinux::DoOperation(void *op) { Mutex::Locker lock(m_operation_mutex); m_operation = op; // notify operation thread that an operation is ready to be processed sem_post(&m_operation_pending); // wait for operation to complete while (sem_wait(&m_operation_done)) { if (errno == EINTR) continue; assert(false && "Unexpected errno from sem_wait"); } } Error NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) { ReadOperation op(addr, buf, size, bytes_read); DoOperation(&op); return op.GetError (); } Error NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) { WriteOperation op(addr, buf, size, bytes_written); DoOperation(&op); return op.GetError (); } bool NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, uint32_t size, RegisterValue &value) { bool result; ReadRegOperation op(tid, offset, reg_name, value, result); DoOperation(&op); return result; } bool NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, const char* reg_name, const RegisterValue &value) { bool result; WriteRegOperation op(tid, offset, reg_name, value, result); DoOperation(&op); return result; } bool NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; ReadGPROperation op(tid, buf, buf_size, result); DoOperation(&op); return result; } bool NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; ReadFPROperation op(tid, buf, buf_size, result); DoOperation(&op); return result; } bool NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) { bool result; ReadRegisterSetOperation op(tid, buf, buf_size, regset, result); DoOperation(&op); return result; } bool NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; WriteGPROperation op(tid, buf, buf_size, result); DoOperation(&op); return result; } bool NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; WriteFPROperation op(tid, buf, buf_size, result); DoOperation(&op); return result; } bool NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) { bool result; WriteRegisterSetOperation op(tid, buf, buf_size, regset, result); DoOperation(&op); return result; } bool NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) { bool result; Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, GetUnixSignals().GetSignalAsCString (signo)); ResumeOperation op (tid, signo, result); DoOperation (&op); if (log) log->Printf ("NativeProcessLinux::%s() resuming result = %s", __FUNCTION__, result ? "true" : "false"); return result; } bool NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) { bool result; SingleStepOperation op(tid, signo, result); DoOperation(&op); return result; } bool NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo, int &ptrace_err) { bool result; SiginfoOperation op(tid, siginfo, result, ptrace_err); DoOperation(&op); return result; } bool NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) { bool result; EventMessageOperation op(tid, message, result); DoOperation(&op); return result; } lldb_private::Error NativeProcessLinux::Detach(lldb::tid_t tid) { lldb_private::Error error; if (tid != LLDB_INVALID_THREAD_ID) { DetachOperation op(tid, error); DoOperation(&op); } return error; } bool NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) { int target_fd = open(path, flags, 0666); if (target_fd == -1) return false; return (dup2(target_fd, fd) == -1) ? false : true; } void NativeProcessLinux::StopMonitoringChildProcess() { if (m_monitor_thread.IsJoinable()) { m_monitor_thread.Cancel(); m_monitor_thread.Join(nullptr); } } void NativeProcessLinux::StopMonitor() { StopMonitoringChildProcess(); StopOpThread(); StopCoordinatorThread (); sem_destroy(&m_operation_pending); sem_destroy(&m_operation_done); // TODO: validate whether this still holds, fix up comment. // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of // the descriptor to a ConnectionFileDescriptor object. Consequently // even though still has the file descriptor, we shouldn't close it here. } void NativeProcessLinux::StopOpThread() { if (!m_operation_thread.IsJoinable()) return; m_operation_thread.Cancel(); m_operation_thread.Join(nullptr); } Error NativeProcessLinux::StartCoordinatorThread () { Error error; static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); // Skip if thread is already running if (m_coordinator_thread.IsJoinable()) { error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); if (log) log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); return error; } // Enable verbose logging if lldb thread logging is enabled. m_coordinator_up->LogEnableEventProcessing (log != nullptr); if (log) log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); return error; } void * NativeProcessLinux::CoordinatorThread (void *arg) { Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); NativeProcessLinux *const process = static_cast (arg); assert (process && "null process passed to CoordinatorThread"); if (!process) { if (log) log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); return nullptr; } // Run the thread state coordinator loop until it is done. This call uses // efficient waiting for an event to be ready. while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) { } if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); return nullptr; } void NativeProcessLinux::StopCoordinatorThread() { Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); if (log) log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); // Tell the coordinator we're done. This will cause the coordinator // run loop thread to exit when the processing queue hits this message. m_coordinator_up->StopCoordinator (); } bool NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) { for (auto thread_sp : m_threads) { assert (thread_sp && "thread list should not contain NULL threads"); if (thread_sp->GetID () == thread_id) { // We have this thread. return true; } } // We don't have this thread. return false; } NativeThreadProtocolSP NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) { // CONSIDER organize threads by map - we can do better than linear. for (auto thread_sp : m_threads) { if (thread_sp->GetID () == thread_id) return thread_sp; } // We don't have this thread. return NativeThreadProtocolSP (); } bool NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) { Mutex::Locker locker (m_threads_mutex); for (auto it = m_threads.begin (); it != m_threads.end (); ++it) { if (*it && ((*it)->GetID () == thread_id)) { m_threads.erase (it); return true; } } // Didn't find it. return false; } NativeThreadProtocolSP NativeProcessLinux::AddThread (lldb::tid_t thread_id) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); Mutex::Locker locker (m_threads_mutex); if (log) { log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, __FUNCTION__, GetID (), thread_id); } assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); // If this is the first thread, save it as the current thread if (m_threads.empty ()) SetCurrentThreadID (thread_id); NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); m_threads.push_back (thread_sp); return thread_sp; } NativeThreadProtocolSP NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); Mutex::Locker locker (m_threads_mutex); if (log) { log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64, __FUNCTION__, GetID (), thread_id); } // Retrieve the thread if it is already getting tracked. NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id); if (thread_sp) { if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning", __FUNCTION__, GetID (), thread_id); created = false; return thread_sp; } // Create the thread metadata since it isn't being tracked. if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now", __FUNCTION__, GetID (), thread_id); thread_sp.reset (new NativeThreadLinux (this, thread_id)); m_threads.push_back (thread_sp); created = true; return thread_sp; } Error NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); Error error; // Get a linux thread pointer. if (!thread_sp) { error.SetErrorString ("null thread_sp"); if (log) log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); return error; } NativeThreadLinux *const linux_thread_p = reinterpret_cast (thread_sp.get()); // Find out the size of a breakpoint (might depend on where we are in the code). NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext (); if (!context_sp) { error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); if (log) log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); return error; } uint32_t breakpoint_size = 0; error = GetSoftwareBreakpointSize (context_sp, breakpoint_size); if (error.Fail ()) { if (log) log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); return error; } else { if (log) log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); } // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. const lldb::addr_t initial_pc_addr = context_sp->GetPC (); lldb::addr_t breakpoint_addr = initial_pc_addr; if (breakpoint_size > static_cast (0)) { // Do not allow breakpoint probe to wrap around. if (breakpoint_addr >= static_cast (breakpoint_size)) breakpoint_addr -= static_cast (breakpoint_size); } // Check if we stopped because of a breakpoint. NativeBreakpointSP breakpoint_sp; error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); if (!error.Success () || !breakpoint_sp) { // We didn't find one at a software probe location. Nothing to do. if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); return Error (); } // If the breakpoint is not a software breakpoint, nothing to do. if (!breakpoint_sp->IsSoftwareBreakpoint ()) { if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); return Error (); } // // We have a software breakpoint and need to adjust the PC. // // Sanity check. if (breakpoint_size == 0) { // Nothing to do! How did we get here? if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); return Error (); } // Change the program counter. if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr); error = context_sp->SetPC (breakpoint_addr); if (error.Fail ()) { if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ()); return error; } return error; } void NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) { const bool is_stopped = true; m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); } void NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) { m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); } void NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) { m_coordinator_up->NotifyThreadStop (tid, CoordinatorErrorHandler); } void NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, const std::function &call_after_function) { const lldb::pid_t pid = GetID (); m_coordinator_up->CallAfterRunningThreadsStop (tid, [=](lldb::tid_t request_stop_tid) { tgkill (pid, request_stop_tid, SIGSTOP); }, call_after_function, CoordinatorErrorHandler); } void NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, lldb::tid_t skip_stop_request_tid, const std::function &call_after_function) { const lldb::pid_t pid = GetID (); m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), [=](lldb::tid_t request_stop_tid) { tgkill (pid, request_stop_tid, SIGSTOP); }, call_after_function, CoordinatorErrorHandler); }