//===--------- X86InterleavedAccess.cpp ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===--------------------------------------------------------------------===// /// /// \file /// This file contains the X86 implementation of the interleaved accesses /// optimization generating X86-specific instructions/intrinsics for /// interleaved access groups. /// //===--------------------------------------------------------------------===// #include "X86TargetMachine.h" #include "llvm/Analysis/VectorUtils.h" using namespace llvm; namespace { /// \brief This class holds necessary information to represent an interleaved /// access group and supports utilities to lower the group into /// X86-specific instructions/intrinsics. /// E.g. A group of interleaving access loads (Factor = 2; accessing every /// other element) /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> class X86InterleavedAccessGroup { /// \brief Reference to the wide-load instruction of an interleaved access /// group. Instruction *const Inst; /// \brief Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. ArrayRef Shuffles; /// \brief Reference to the starting index of each user-shuffle. ArrayRef Indices; /// \brief Reference to the interleaving stride in terms of elements. const unsigned Factor; /// \brief Reference to the underlying target. const X86Subtarget &Subtarget; const DataLayout &DL; IRBuilder<> &Builder; /// \brief Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T, SmallVectorImpl &DecomposedVectors); /// \brief Performs matrix transposition on a 4x4 matrix \p InputVectors and /// returns the transposed-vectors in \p TransposedVectors. /// E.g. /// InputVectors: /// In-V0 = p1, p2, p3, p4 /// In-V1 = q1, q2, q3, q4 /// In-V2 = r1, r2, r3, r4 /// In-V3 = s1, s2, s3, s4 /// OutputVectors: /// Out-V0 = p1, q1, r1, s1 /// Out-V1 = p2, q2, r2, s2 /// Out-V2 = p3, q3, r3, s3 /// Out-V3 = P4, q4, r4, s4 void transpose_4x4(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix); void interleave8bit_32x4(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix); public: /// In order to form an interleaved access group X86InterleavedAccessGroup /// requires a wide-load instruction \p 'I', a group of interleaved-vectors /// \p Shuffs, reference to the first indices of each interleaved-vector /// \p 'Ind' and the interleaving stride factor \p F. In order to generate /// X86-specific instructions/intrinsics it also requires the underlying /// target information \p STarget. explicit X86InterleavedAccessGroup(Instruction *I, ArrayRef Shuffs, ArrayRef Ind, const unsigned F, const X86Subtarget &STarget, IRBuilder<> &B) : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), DL(Inst->getModule()->getDataLayout()), Builder(B) {} /// \brief Returns true if this interleaved access group can be lowered into /// x86-specific instructions/intrinsics, false otherwise. bool isSupported() const; /// \brief Lowers this interleaved access group into X86-specific /// instructions/intrinsics. bool lowerIntoOptimizedSequence(); }; } // end anonymous namespace bool X86InterleavedAccessGroup::isSupported() const { VectorType *ShuffleVecTy = Shuffles[0]->getType(); Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType(); unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy); unsigned SupportedNumElem = 4; if (ShuffleElemSize == 8) SupportedNumElem = 32; unsigned WideInstSize; // Currently, lowering is supported for the following vectors: // 1. 4-element vectors of 64 bits on AVX. // 2. 32-element vectors of 8 bits on AVX. if (isa(Inst)) { if (DL.getTypeSizeInBits(ShuffleVecTy) != SupportedNumElem * ShuffleElemSize) return false; WideInstSize = DL.getTypeSizeInBits(Inst->getType()); } else WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType()); if (DL.getTypeSizeInBits(ShuffleEltTy) == 8 && !isa(Inst)) return false; if (!Subtarget.hasAVX() || Factor != 4 || (ShuffleElemSize != 64 && ShuffleElemSize != 8) || WideInstSize != (Factor * ShuffleElemSize * SupportedNumElem)) return false; return true; } void X86InterleavedAccessGroup::decompose( Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy, SmallVectorImpl &DecomposedVectors) { assert((isa(VecInst) || isa(VecInst)) && "Expected Load or Shuffle"); Type *VecTy = VecInst->getType(); (void)VecTy; assert(VecTy->isVectorTy() && DL.getTypeSizeInBits(VecTy) >= DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && "Invalid Inst-size!!!"); if (auto *SVI = dyn_cast(VecInst)) { Value *Op0 = SVI->getOperand(0); Value *Op1 = SVI->getOperand(1); // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. for (unsigned i = 0; i < NumSubVectors; ++i) DecomposedVectors.push_back( cast(Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(Builder, Indices[i], SubVecTy->getVectorNumElements(), 0)))); return; } // Decompose the load instruction. LoadInst *LI = cast(VecInst); Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace()); Value *VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); // Generate N loads of T type. for (unsigned i = 0; i < NumSubVectors; i++) { // TODO: Support inbounds GEP. Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i)); Instruction *NewLoad = Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment()); DecomposedVectors.push_back(NewLoad); } } // Create shuffle mask for concatenation of two half vectors. // Low = false: mask generated for the shuffle // shuffle(VEC1,VEC2,{NumElement/2, NumElement/2+1, NumElement/2+2..., // NumElement-1, NumElement+NumElement/2, // NumElement+NumElement/2+1..., 2*NumElement-1}) // = concat(high_half(VEC1),high_half(VEC2)) // Low = true: mask generated for the shuffle // shuffle(VEC1,VEC2,{0,1,2,...,NumElement/2-1,NumElement, // NumElement+1...,NumElement+NumElement/2-1}) // = concat(low_half(VEC1),low_half(VEC2)) static void createConcatShuffleMask(int NumElements, SmallVectorImpl &Mask, bool Low) { int NumHalfElements = NumElements / 2; int Offset = Low ? 0 : NumHalfElements; for (int i = 0; i < NumHalfElements; ++i) Mask.push_back(i + Offset); for (int i = 0; i < NumHalfElements; ++i) Mask.push_back(i + Offset + NumElements); } void X86InterleavedAccessGroup::interleave8bit_32x4( ArrayRef Matrix, SmallVectorImpl &TransposedMatrix) { // Example: Assuming we start from the following vectors: // Matrix[0]= c0 c1 c2 c3 c4 ... c31 // Matrix[1]= m0 m1 m2 m3 m4 ... m31 // Matrix[2]= y0 y1 y2 y3 y4 ... y31 // Matrix[3]= k0 k1 k2 k3 k4 ... k31 TransposedMatrix.resize(4); SmallVector MaskHighTemp; SmallVector MaskLowTemp; SmallVector MaskHighTemp1; SmallVector MaskLowTemp1; SmallVector MaskHighTemp2; SmallVector MaskLowTemp2; SmallVector ConcatLow; SmallVector ConcatHigh; // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 // shuffle pattern. createUnpackShuffleMask(MVT::v32i8, MaskHighTemp, false, false); createUnpackShuffleMask(MVT::v32i8, MaskLowTemp, true, false); ArrayRef MaskHigh = makeArrayRef(MaskHighTemp); ArrayRef MaskLow = makeArrayRef(MaskLowTemp); // ConcatHigh and ConcatLow built in the vperm2i128 and vinserti128 X86 // shuffle pattern. createConcatShuffleMask(32, ConcatLow, true); createConcatShuffleMask(32, ConcatHigh, false); ArrayRef MaskConcatLow = makeArrayRef(ConcatLow); ArrayRef MaskConcatHigh = makeArrayRef(ConcatHigh); // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 // shuffle pattern. createUnpackShuffleMask(MVT::v16i16, MaskLowTemp1, true, false); createUnpackShuffleMask(MVT::v16i16, MaskHighTemp1, false, false); scaleShuffleMask(2, makeArrayRef(MaskHighTemp1), MaskHighTemp2); scaleShuffleMask(2, makeArrayRef(MaskLowTemp1), MaskLowTemp2); ArrayRef MaskHighWord = makeArrayRef(MaskHighTemp2); ArrayRef MaskLowWord = makeArrayRef(MaskLowTemp2); // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23 // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23 // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31 Value *IntrVec1Low = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); Value *IntrVec1High = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh); Value *IntrVec2Low = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); Value *IntrVec2High = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh); // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23 // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31 // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27 Value *High = Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord); Value *High1 = Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskHighWord); Value *Low = Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord); Value *Low1 = Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskLowWord); // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15 // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23 // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31 TransposedMatrix[0] = Builder.CreateShuffleVector(Low, High, MaskConcatLow); TransposedMatrix[1] = Builder.CreateShuffleVector(Low1, High1, MaskConcatLow); TransposedMatrix[2] = Builder.CreateShuffleVector(Low, High, MaskConcatHigh); TransposedMatrix[3] = Builder.CreateShuffleVector(Low1, High1, MaskConcatHigh); } void X86InterleavedAccessGroup::transpose_4x4( ArrayRef Matrix, SmallVectorImpl &TransposedMatrix) { assert(Matrix.size() == 4 && "Invalid matrix size"); TransposedMatrix.resize(4); // dst = src1[0,1],src2[0,1] uint32_t IntMask1[] = {0, 1, 4, 5}; ArrayRef Mask = makeArrayRef(IntMask1, 4); Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[2,3],src2[2,3] uint32_t IntMask2[] = {2, 3, 6, 7}; Mask = makeArrayRef(IntMask2, 4); Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[0],src2[0],src1[2],src2[2] uint32_t IntMask3[] = {0, 4, 2, 6}; Mask = makeArrayRef(IntMask3, 4); TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); // dst = src1[1],src2[1],src1[3],src2[3] uint32_t IntMask4[] = {1, 5, 3, 7}; Mask = makeArrayRef(IntMask4, 4); TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); } // Lowers this interleaved access group into X86-specific // instructions/intrinsics. bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { SmallVector DecomposedVectors; SmallVector TransposedVectors; VectorType *ShuffleTy = Shuffles[0]->getType(); if (isa(Inst)) { // Try to generate target-sized register(/instruction). decompose(Inst, Factor, ShuffleTy, DecomposedVectors); // Perform matrix-transposition in order to compute interleaved // results by generating some sort of (optimized) target-specific // instructions. transpose_4x4(DecomposedVectors, TransposedVectors); // Now replace the unoptimized-interleaved-vectors with the // transposed-interleaved vectors. for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]); return true; } Type *ShuffleEltTy = ShuffleTy->getVectorElementType(); unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor; // Lower the interleaved stores: // 1. Decompose the interleaved wide shuffle into individual shuffle // vectors. decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems), DecomposedVectors); // 2. Transpose the interleaved-vectors into vectors of contiguous // elements. switch (NumSubVecElems) { case 4: transpose_4x4(DecomposedVectors, TransposedVectors); break; case 32: interleave8bit_32x4(DecomposedVectors, TransposedVectors); break; default: return false; } // 3. Concatenate the contiguous-vectors back into a wide vector. Value *WideVec = concatenateVectors(Builder, TransposedVectors); // 4. Generate a store instruction for wide-vec. StoreInst *SI = cast(Inst); Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlignment()); return true; } // Lower interleaved load(s) into target specific instructions/ // intrinsics. Lowering sequence varies depending on the vector-types, factor, // number of shuffles and ISA. // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. bool X86TargetLowering::lowerInterleavedLoad( LoadInst *LI, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(!Shuffles.empty() && "Empty shufflevector input"); assert(Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices"); // Create an interleaved access group. IRBuilder<> Builder(LI); X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, Builder); return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); } bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(SVI->getType()->getVectorNumElements() % Factor == 0 && "Invalid interleaved store"); // Holds the indices of SVI that correspond to the starting index of each // interleaved shuffle. SmallVector Indices; auto Mask = SVI->getShuffleMask(); for (unsigned i = 0; i < Factor; i++) Indices.push_back(Mask[i]); ArrayRef Shuffles = makeArrayRef(SVI); // Create an interleaved access group. IRBuilder<> Builder(SI); X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, Builder); return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); }