//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Small functions that help with Scop and LLVM-IR. // //===----------------------------------------------------------------------===// #include "polly/Support/ScopHelper.h" #include "polly/ScopInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; #define DEBUG_TYPE "polly-scop-helper" // Helper function for Scop // TODO: Add assertion to not allow parameter to be null //===----------------------------------------------------------------------===// // Temporary Hack for extended region tree. // Cast the region to loop if there is a loop have the same header and exit. Loop *polly::castToLoop(const Region &R, LoopInfo &LI) { BasicBlock *entry = R.getEntry(); if (!LI.isLoopHeader(entry)) return 0; Loop *L = LI.getLoopFor(entry); BasicBlock *exit = L->getExitBlock(); // Is the loop with multiple exits? if (!exit) return 0; if (exit != R.getExit()) { // SubRegion/ParentRegion with the same entry. assert((R.getNode(R.getEntry())->isSubRegion() || R.getParent()->getEntry() == entry) && "Expect the loop is the smaller or bigger region"); return 0; } return L; } Value *polly::getPointerOperand(Instruction &Inst) { if (LoadInst *load = dyn_cast(&Inst)) return load->getPointerOperand(); else if (StoreInst *store = dyn_cast(&Inst)) return store->getPointerOperand(); else if (GetElementPtrInst *gep = dyn_cast(&Inst)) return gep->getPointerOperand(); return 0; } Type *polly::getAccessInstType(Instruction *AccInst) { if (StoreInst *Store = dyn_cast(AccInst)) return Store->getValueOperand()->getType(); if (BranchInst *Branch = dyn_cast(AccInst)) return Branch->getCondition()->getType(); return AccInst->getType(); } bool polly::hasInvokeEdge(const PHINode *PN) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) if (InvokeInst *II = dyn_cast(PN->getIncomingValue(i))) if (II->getParent() == PN->getIncomingBlock(i)) return true; return false; } BasicBlock *polly::createSingleExitEdge(Region *R, Pass *P) { BasicBlock *BB = R->getExit(); SmallVector Preds; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) if (R->contains(*PI)) Preds.push_back(*PI); auto *AA = P->getAnalysisIfAvailable(); auto *DTWP = P->getAnalysisIfAvailable(); auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; auto *LIWP = P->getAnalysisIfAvailable(); auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; return SplitBlockPredecessors(BB, Preds, ".region", AA, DT, LI); } static void replaceScopAndRegionEntry(polly::Scop *S, BasicBlock *OldEntry, BasicBlock *NewEntry) { if (polly::ScopStmt *Stmt = S->getStmtForBasicBlock(OldEntry)) Stmt->setBasicBlock(NewEntry); S->getRegion().replaceEntryRecursive(NewEntry); } BasicBlock *polly::simplifyRegion(Scop *S, Pass *P) { Region *R = &S->getRegion(); // The entering block for the region. BasicBlock *EnteringBB = R->getEnteringBlock(); BasicBlock *OldEntry = R->getEntry(); BasicBlock *NewEntry = nullptr; auto *DTWP = P->getAnalysisIfAvailable(); auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; auto *LIWP = P->getAnalysisIfAvailable(); auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; // Create single entry edge if the region has multiple entry edges. if (!EnteringBB) { NewEntry = SplitBlock(OldEntry, OldEntry->begin(), DT, LI); EnteringBB = OldEntry; } // Create an unconditional entry edge. if (EnteringBB->getTerminator()->getNumSuccessors() != 1) { BasicBlock *EntryBB = NewEntry ? NewEntry : OldEntry; BasicBlock *SplitEdgeBB = SplitEdge(EnteringBB, EntryBB, DT, LI); // Once the edge between EnteringBB and EntryBB is split, two cases arise. // The first is simple. The new block is inserted between EnteringBB and // EntryBB. In this case no further action is needed. However it might // happen (if the splitted edge is not critical) that the new block is // inserted __after__ EntryBB causing the following situation: // // EnteringBB // _|_ // | | // | \-> some_other_BB_not_in_R // V // EntryBB // | // V // SplitEdgeBB // // In this case we need to swap the role of EntryBB and SplitEdgeBB. // Check which case SplitEdge produced: if (SplitEdgeBB->getTerminator()->getSuccessor(0) == EntryBB) { // First (simple) case. EnteringBB = SplitEdgeBB; } else { // Second (complicated) case. NewEntry = SplitEdgeBB; EnteringBB = EntryBB; } EnteringBB->setName("polly.entering.block"); } if (NewEntry) replaceScopAndRegionEntry(S, OldEntry, NewEntry); // Create single exit edge if the region has multiple exit edges. if (!R->getExitingBlock()) { BasicBlock *NewExit = createSingleExitEdge(R, P); for (auto &&SubRegion : *R) SubRegion->replaceExitRecursive(NewExit); } return EnteringBB; } void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { // Find first non-alloca instruction. Every basic block has a non-alloc // instruction, as every well formed basic block has a terminator. BasicBlock::iterator I = EntryBlock->begin(); while (isa(I)) ++I; auto *DTWP = P->getAnalysisIfAvailable(); auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; auto *LIWP = P->getAnalysisIfAvailable(); auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; // SplitBlock updates DT, DF and LI. BasicBlock *NewEntry = SplitBlock(EntryBlock, I, DT, LI); if (RegionInfoPass *RIP = P->getAnalysisIfAvailable()) RIP->getRegionInfo().splitBlock(NewEntry, EntryBlock); }