//===- SparseBufferRewriting.cpp - Sparse buffer rewriting rules ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements rewriting rules that are specific to sparse tensor // primitives with memref operands. // //===----------------------------------------------------------------------===// #include "CodegenUtils.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" #include "mlir/Support/LLVM.h" using namespace mlir; using namespace mlir::sparse_tensor; //===---------------------------------------------------------------------===// // Helper methods for the actual rewriting rules. //===---------------------------------------------------------------------===// static constexpr uint64_t loIdx = 0; static constexpr uint64_t hiIdx = 1; static constexpr uint64_t xStartIdx = 2; static constexpr const char kMaySwapFuncNamePrefix[] = "_sparse_may_swap_"; static constexpr const char kLessThanFuncNamePrefix[] = "_sparse_less_than_"; static constexpr const char kPartitionFuncNamePrefix[] = "_sparse_partition_"; static constexpr const char kBinarySearchFuncNamePrefix[] = "_sparse_binary_search_"; static constexpr const char kSortNonstableFuncNamePrefix[] = "_sparse_sort_nonstable_"; static constexpr const char kSortStableFuncNamePrefix[] = "_sparse_sort_stable_"; using FuncGeneratorType = function_ref; /// Constructs a function name with this format to facilitate quick sort: /// __..._ static void getMangledSortHelperFuncName(llvm::raw_svector_ostream &nameOstream, StringRef namePrefix, size_t dim, ValueRange operands) { nameOstream << namePrefix << dim << "_" << operands[xStartIdx].getType().cast().getElementType(); for (Value v : operands.drop_front(xStartIdx + dim)) nameOstream << "_" << v.getType().cast().getElementType(); } /// Looks up a function that is appropriate for the given operands being /// sorted, and creates such a function if it doesn't exist yet. static FlatSymbolRefAttr getMangledSortHelperFunc(OpBuilder &builder, func::FuncOp insertPoint, TypeRange resultTypes, StringRef namePrefix, size_t dim, ValueRange operands, FuncGeneratorType createFunc) { SmallString<32> nameBuffer; llvm::raw_svector_ostream nameOstream(nameBuffer); getMangledSortHelperFuncName(nameOstream, namePrefix, dim, operands); ModuleOp module = insertPoint->getParentOfType(); MLIRContext *context = module.getContext(); auto result = SymbolRefAttr::get(context, nameOstream.str()); auto func = module.lookupSymbol(result.getAttr()); if (!func) { // Create the function. OpBuilder::InsertionGuard insertionGuard(builder); builder.setInsertionPoint(insertPoint); Location loc = insertPoint.getLoc(); func = builder.create( loc, nameOstream.str(), FunctionType::get(context, operands.getTypes(), resultTypes)); func.setPrivate(); createFunc(builder, module, func, dim); } return result; } /// Creates a function for swapping the values in index i and j for all the /// buffers. // // The generate IR corresponds to this C like algorithm: // if (i != j) { // swap(x0[i], x0[j]); // swap(x1[i], x1[j]); // ... // swap(xn[i], xn[j]); // swap(y0[i], y0[j]); // ... // swap(yn[i], yn[j]); // } static void createMaySwapFunc(OpBuilder &builder, ModuleOp unused, func::FuncOp func, size_t dim) { OpBuilder::InsertionGuard insertionGuard(builder); Block *entryBlock = func.addEntryBlock(); builder.setInsertionPointToStart(entryBlock); Location loc = func.getLoc(); ValueRange args = entryBlock->getArguments(); Value i = args[0]; Value j = args[1]; Value cond = builder.create(loc, arith::CmpIPredicate::ne, i, j); scf::IfOp ifOp = builder.create(loc, cond, /*else=*/false); // If i!=j swap values in the buffers. builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); for (auto arg : args.drop_front(xStartIdx)) { Value vi = builder.create(loc, arg, i); Value vj = builder.create(loc, arg, j); builder.create(loc, vj, arg, i); builder.create(loc, vi, arg, j); } builder.setInsertionPointAfter(ifOp); builder.create(loc); } /// Generates an if-statement to compare x[i] and x[j]. static scf::IfOp createLessThanCompare(OpBuilder &builder, Location loc, Value i, Value j, Value x, bool isLastDim) { Value f = constantI1(builder, loc, false); Value t = constantI1(builder, loc, true); Value vi = builder.create(loc, x, i); Value vj = builder.create(loc, x, j); Value cond = builder.create(loc, arith::CmpIPredicate::ult, vi, vj); scf::IfOp ifOp = builder.create(loc, f.getType(), cond, /*else=*/true); // If (x[i] < x[j]). builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); builder.create(loc, t); builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); if (isLastDim == 1) { // Finish checking all dimensions. builder.create(loc, f); } else { cond = builder.create(loc, arith::CmpIPredicate::ult, vj, vi); scf::IfOp ifOp2 = builder.create(loc, f.getType(), cond, /*else=*/true); // Otherwise if (x[j] < x[i]). builder.setInsertionPointToStart(&ifOp2.getThenRegion().front()); builder.create(loc, f); // Otherwise check the remaining dimensions. builder.setInsertionPointAfter(ifOp2); builder.create(loc, ifOp2.getResult(0)); // Set up the insertion point for the nested if-stmt that checks the // remaining dimensions. builder.setInsertionPointToStart(&ifOp2.getElseRegion().front()); } return ifOp; } /// Creates a function to compare the xs values in index i and j for all the /// dimensions. The function returns true iff xs[i] < xs[j]. // // The generate IR corresponds to this C like algorithm: // if (x0[i] < x0[j]) // return true; // else if (x0[j] < x0[i]) // return false; // else // if (x1[i] < x1[j]) // return true; // else if (x1[j] < x1[i])) // and so on ... static void createLessThanFunc(OpBuilder &builder, ModuleOp unused, func::FuncOp func, size_t dim) { OpBuilder::InsertionGuard insertionGuard(builder); Block *entryBlock = func.addEntryBlock(); builder.setInsertionPointToStart(entryBlock); Location loc = func.getLoc(); ValueRange args = entryBlock->getArguments(); scf::IfOp topIfOp; for (const auto &item : llvm::enumerate(args.slice(xStartIdx, dim))) { scf::IfOp ifOp = createLessThanCompare(builder, loc, args[0], args[1], item.value(), (item.index() == dim - 1)); if (item.index() == 0) { topIfOp = ifOp; } else { OpBuilder::InsertionGuard insertionGuard(builder); builder.setInsertionPointAfter(ifOp); builder.create(loc, ifOp.getResult(0)); } } builder.setInsertionPointAfter(topIfOp); builder.create(loc, topIfOp.getResult(0)); } /// Creates a function to use a binary search to find the insertion point for /// inserting xs[hi] to the sorted values xs[lo..hi). // // The generate IR corresponds to this C like algorithm: // p = hi // while (lo < hi) // mid = (lo + hi) >> 1 // if (xs[p] < xs[mid]) // hi = mid // else // lo = mid - 1 // return lo; // static void createBinarySearchFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, size_t dim) { OpBuilder::InsertionGuard insertionGuard(builder); Block *entryBlock = func.addEntryBlock(); builder.setInsertionPointToStart(entryBlock); Location loc = func.getLoc(); ValueRange args = entryBlock->getArguments(); Value p = args[hiIdx]; SmallVector types(2, p.getType()); scf::WhileOp whileOp = builder.create( loc, types, SmallVector{args[loIdx], args[hiIdx]}); // The before-region of the WhileOp. Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc}); builder.setInsertionPointToEnd(before); Value cond1 = builder.create(loc, arith::CmpIPredicate::ult, before->getArgument(0), before->getArgument(1)); builder.create(loc, cond1, before->getArguments()); // The after-region of the WhileOp. Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc}); builder.setInsertionPointToEnd(after); Value lo = after->getArgument(0); Value hi = after->getArgument(1); // Compute mid = (lo + hi) >> 1. Value c1 = constantIndex(builder, loc, 1); Value mid = builder.create( loc, builder.create(loc, lo, hi), c1); Value midp1 = builder.create(loc, mid, c1); // Compare xs[p] < xs[mid]. SmallVector compareOperands{p, mid}; compareOperands.append(args.begin() + xStartIdx, args.begin() + xStartIdx + dim); Type i1Type = IntegerType::get(module.getContext(), 1, IntegerType::Signless); FlatSymbolRefAttr lessThanFunc = getMangledSortHelperFunc(builder, func, {i1Type}, kLessThanFuncNamePrefix, dim, compareOperands, createLessThanFunc); Value cond2 = builder .create(loc, lessThanFunc, TypeRange{i1Type}, compareOperands) .getResult(0); // Update lo and hi for the WhileOp as follows: // if (xs[p] < xs[mid])) // hi = mid; // else // lo = mid + 1; Value newLo = builder.create(loc, cond2, lo, midp1); Value newHi = builder.create(loc, cond2, mid, hi); builder.create(loc, ValueRange{newLo, newHi}); builder.setInsertionPointAfter(whileOp); builder.create(loc, whileOp.getResult(0)); } /// Creates a function to perform quick sort partition on the values in the /// range of index [lo, hi), assuming lo < hi. // // The generated IR corresponds to this C like algorithm: // int partition(lo, hi, data) { // pivot = data[hi - 1]; // i = (lo – 1) // RHS of the pivot found so far. // for (j = lo; j < hi - 1; j++){ // if (data[j] < pivot){ // i++; // swap data[i] and data[j] // } // } // i++ // swap data[i] and data[hi-1]) // return i // } static void createPartitionFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, size_t dim) { OpBuilder::InsertionGuard insertionGuard(builder); Block *entryBlock = func.addEntryBlock(); builder.setInsertionPointToStart(entryBlock); MLIRContext *context = module.getContext(); Location loc = func.getLoc(); ValueRange args = entryBlock->getArguments(); Value lo = args[loIdx]; Value c1 = constantIndex(builder, loc, 1); Value i = builder.create(loc, lo, c1); Value him1 = builder.create(loc, args[hiIdx], c1); scf::ForOp forOp = builder.create(loc, lo, him1, c1, ValueRange{i}); // Start the for-stmt body. builder.setInsertionPointToStart(forOp.getBody()); Value j = forOp.getInductionVar(); SmallVector compareOperands{j, him1}; ValueRange xs = args.slice(xStartIdx, dim); compareOperands.append(xs.begin(), xs.end()); Type i1Type = IntegerType::get(context, 1, IntegerType::Signless); FlatSymbolRefAttr lessThanFunc = getMangledSortHelperFunc(builder, func, {i1Type}, kLessThanFuncNamePrefix, dim, compareOperands, createLessThanFunc); Value cond = builder .create(loc, lessThanFunc, TypeRange{i1Type}, compareOperands) .getResult(0); scf::IfOp ifOp = builder.create(loc, i.getType(), cond, /*else=*/true); // The if-stmt true branch: i++; swap(data[i], data[j]); yield i. builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); Value i1 = builder.create(loc, forOp.getRegionIterArgs().front(), c1); SmallVector swapOperands{i1, j}; swapOperands.append(args.begin() + xStartIdx, args.end()); FlatSymbolRefAttr swapFunc = getMangledSortHelperFunc( builder, func, TypeRange(), kMaySwapFuncNamePrefix, dim, swapOperands, createMaySwapFunc); builder.create(loc, swapFunc, TypeRange(), swapOperands); builder.create(loc, i1); // The if-stmt false branch: yield i. builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); builder.create(loc, forOp.getRegionIterArgs().front()); // After the if-stmt, yield the updated i value to end the for-stmt body. builder.setInsertionPointAfter(ifOp); builder.create(loc, ifOp.getResult(0)); // After the for-stmt: i++; swap(data[i], data[him1]); return i. builder.setInsertionPointAfter(forOp); i1 = builder.create(loc, forOp.getResult(0), c1); swapOperands[0] = i1; swapOperands[1] = him1; builder.create(loc, swapFunc, TypeRange(), swapOperands); builder.create(loc, i1); } /// Creates a function to perform quick sort on the value in the range of /// index [lo, hi). // // The generate IR corresponds to this C like algorithm: // void quickSort(lo, hi, data) { // if (lo < hi) { // p = partition(low, high, data); // quickSort(lo, p, data); // quickSort(p + 1, hi, data); // } // } static void createSortNonstableFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, size_t dim) { OpBuilder::InsertionGuard insertionGuard(builder); Block *entryBlock = func.addEntryBlock(); builder.setInsertionPointToStart(entryBlock); MLIRContext *context = module.getContext(); Location loc = func.getLoc(); ValueRange args = entryBlock->getArguments(); Value lo = args[loIdx]; Value hi = args[hiIdx]; Value cond = builder.create(loc, arith::CmpIPredicate::ult, lo, hi); scf::IfOp ifOp = builder.create(loc, cond, /*else=*/false); // The if-stmt true branch. builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); FlatSymbolRefAttr partitionFunc = getMangledSortHelperFunc( builder, func, {IndexType::get(context)}, kPartitionFuncNamePrefix, dim, args, createPartitionFunc); auto p = builder.create( loc, partitionFunc, TypeRange{IndexType::get(context)}, ValueRange(args)); SmallVector lowOperands{lo, p.getResult(0)}; lowOperands.append(args.begin() + xStartIdx, args.end()); builder.create(loc, func, lowOperands); SmallVector highOperands{ builder.create(loc, p.getResult(0), constantIndex(builder, loc, 1)), hi}; highOperands.append(args.begin() + xStartIdx, args.end()); builder.create(loc, func, highOperands); // After the if-stmt. builder.setInsertionPointAfter(ifOp); builder.create(loc); } /// Creates a function to perform insertion sort on the values in the range of /// index [lo, hi). // // The generate IR corresponds to this C like algorithm: // void insertionSort(lo, hi, data) { // for (i = lo+1; i < hi; i++) { // d = data[i]; // p = binarySearch(lo, i-1, data) // for (j = 0; j > i - p; j++) // data[i-j] = data[i-j-1] // data[p] = d // } // } static void createSortStableFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, size_t dim) { OpBuilder::InsertionGuard insertionGuard(builder); Block *entryBlock = func.addEntryBlock(); builder.setInsertionPointToStart(entryBlock); MLIRContext *context = module.getContext(); Location loc = func.getLoc(); ValueRange args = entryBlock->getArguments(); Value c1 = constantIndex(builder, loc, 1); Value lo = args[loIdx]; Value hi = args[hiIdx]; Value lop1 = builder.create(loc, lo, c1); // Start the outer for-stmt with induction variable i. scf::ForOp forOpI = builder.create(loc, lop1, hi, c1); builder.setInsertionPointToStart(forOpI.getBody()); Value i = forOpI.getInductionVar(); // Binary search to find the insertion point p. SmallVector operands{lo, i}; operands.append(args.begin() + xStartIdx, args.begin() + xStartIdx + dim); FlatSymbolRefAttr searchFunc = getMangledSortHelperFunc( builder, func, {IndexType::get(context)}, kBinarySearchFuncNamePrefix, dim, operands, createBinarySearchFunc); Value p = builder .create(loc, searchFunc, TypeRange{c1.getType()}, operands) .getResult(0); // Move the value at data[i] to a temporary location. ValueRange data = args.drop_front(xStartIdx); SmallVector d; for (Value v : data) d.push_back(builder.create(loc, v, i)); // Start the inner for-stmt with induction variable j, for moving data[p..i) // to data[p+1..i+1). Value imp = builder.create(loc, i, p); Value c0 = constantIndex(builder, loc, 0); scf::ForOp forOpJ = builder.create(loc, c0, imp, c1); builder.setInsertionPointToStart(forOpJ.getBody()); Value j = forOpJ.getInductionVar(); Value imj = builder.create(loc, i, j); Value imjm1 = builder.create(loc, imj, c1); for (Value v : data) { Value t = builder.create(loc, v, imjm1); builder.create(loc, t, v, imj); } // Store the value at data[i] to data[p]. builder.setInsertionPointAfter(forOpJ); for (auto it : llvm::zip(d, data)) builder.create(loc, std::get<0>(it), std::get<1>(it), p); builder.setInsertionPointAfter(forOpI); builder.create(loc); } //===---------------------------------------------------------------------===// // The actual sparse buffer rewriting rules. //===---------------------------------------------------------------------===// namespace { /// Sparse rewriting rule for the push_back operator. struct PushBackRewriter : OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(PushBackOp op, PatternRewriter &rewriter) const override { // Rewrite push_back(buffer, value, n) to: // new_size = size(buffer) + n // if (new_size > capacity(buffer)) // while new_size > new_capacity // new_capacity = new_capacity*2 // new_buffer = realloc(buffer, new_capacity) // buffer = new_buffer // subBuffer = subviewof(buffer) // linalg.fill subBuffer value // // size(buffer) += n // // The capacity check is skipped when the attribute inbounds is presented. Location loc = op->getLoc(); Value c0 = constantIndex(rewriter, loc, 0); Value buffer = op.getInBuffer(); Value capacity = rewriter.create(loc, buffer, c0); Value idx = constantIndex(rewriter, loc, op.getIdx().getZExtValue()); Value bufferSizes = op.getBufferSizes(); Value size = rewriter.create(loc, bufferSizes, idx); Value value = op.getValue(); Value n = op.getN() ? op.getN() : constantIndex(rewriter, loc, 1); Value newSize = rewriter.create(loc, size, n); auto nValue = dyn_cast_or_null(n.getDefiningOp()); bool nIsOne = (nValue && nValue.value() == 1); if (!op.getInbounds()) { Value cond = rewriter.create( loc, arith::CmpIPredicate::ugt, newSize, capacity); Value c2 = constantIndex(rewriter, loc, 2); auto bufferType = MemRefType::get({ShapedType::kDynamicSize}, value.getType()); scf::IfOp ifOp = rewriter.create(loc, bufferType, cond, /*else=*/true); // True branch. rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front()); if (nIsOne) { capacity = rewriter.create(loc, capacity, c2); } else { // Use a do-while loop to calculate the new capacity as follows: // do { new_capacity *= 2 } while (size > new_capacity) scf::WhileOp whileOp = rewriter.create(loc, capacity.getType(), capacity); // The before-region of the WhileOp. Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, {capacity.getType()}, {loc}); rewriter.setInsertionPointToEnd(before); capacity = rewriter.create(loc, before->getArgument(0), c2); cond = rewriter.create(loc, arith::CmpIPredicate::ugt, newSize, capacity); rewriter.create(loc, cond, ValueRange{capacity}); // The after-region of the WhileOp. Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, {capacity.getType()}, {loc}); rewriter.setInsertionPointToEnd(after); rewriter.create(loc, after->getArguments()); rewriter.setInsertionPointAfter(whileOp); capacity = whileOp.getResult(0); } Value newBuffer = rewriter.create(loc, bufferType, buffer, capacity); rewriter.create(loc, newBuffer); // False branch. rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front()); rewriter.create(loc, buffer); // Prepare for adding the value to the end of the buffer. rewriter.setInsertionPointAfter(ifOp); buffer = ifOp.getResult(0); } // Add the value to the end of the buffer. if (nIsOne) { rewriter.create(loc, value, buffer, size); } else { Value subBuffer = rewriter.create( loc, buffer, /*offset=*/ValueRange{size}, /*size=*/ValueRange{n}, /*step=*/ValueRange{constantIndex(rewriter, loc, 1)}); rewriter.create(loc, value, subBuffer); } // Update the buffer size. rewriter.create(loc, newSize, bufferSizes, idx); rewriter.replaceOp(op, buffer); return success(); } }; /// Sparse rewriting rule for the sort operator. struct SortRewriter : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(SortOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); SmallVector operands{constantIndex(rewriter, loc, 0), op.getN()}; // Convert `values` to have dynamic shape and append them to `operands`. auto addValues = [&](ValueRange values) { for (Value v : values) { auto mtp = v.getType().cast(); if (!mtp.isDynamicDim(0)) { auto newMtp = MemRefType::get({ShapedType::kDynamicSize}, mtp.getElementType()); v = rewriter.create(loc, newMtp, v); } operands.push_back(v); } }; ValueRange xs = op.getXs(); addValues(xs); addValues(op.getYs()); auto insertPoint = op->getParentOfType(); SmallString<32> funcName(op.getStable() ? kSortStableFuncNamePrefix : kSortNonstableFuncNamePrefix); FuncGeneratorType funcGenerator = op.getStable() ? createSortStableFunc : createSortNonstableFunc; FlatSymbolRefAttr func = getMangledSortHelperFunc(rewriter, insertPoint, TypeRange(), funcName, xs.size(), operands, funcGenerator); rewriter.replaceOpWithNewOp(op, func, TypeRange(), operands); return success(); } }; } // namespace //===---------------------------------------------------------------------===// // Methods that add patterns described in this file to a pattern list. //===---------------------------------------------------------------------===// void mlir::populateSparseBufferRewriting(RewritePatternSet &patterns) { patterns.add(patterns.getContext()); }