//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the construction of a VPlan-based Hierarchical CFG /// (H-CFG) for an incoming IR. This construction comprises the following /// components and steps: // /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that /// faithfully represents the CFG in the incoming IR. /// NOTE: At this point, there is a direct correspondence between all the /// VPBasicBlocks created for the initial plain CFG and the incoming /// BasicBlocks. However, this might change in the future. /// //===----------------------------------------------------------------------===// #include "VPlanHCFGBuilder.h" #include "LoopVectorizationPlanner.h" #include "VPlanCFG.h" #include "llvm/Analysis/LoopIterator.h" #define DEBUG_TYPE "loop-vectorize" using namespace llvm; namespace { // Class that is used to build the plain CFG for the incoming IR. class PlainCFGBuilder { private: // The outermost loop of the input loop nest considered for vectorization. Loop *TheLoop; // Loop Info analysis. LoopInfo *LI; // Vectorization plan that we are working on. VPlan &Plan; // Builder of the VPlan instruction-level representation. VPBuilder VPIRBuilder; // NOTE: The following maps are intentionally destroyed after the plain CFG // construction because subsequent VPlan-to-VPlan transformation may // invalidate them. // Map incoming BasicBlocks to their newly-created VPBasicBlocks. DenseMap BB2VPBB; // Map incoming Value definitions to their newly-created VPValues. DenseMap IRDef2VPValue; // Hold phi node's that need to be fixed once the plain CFG has been built. SmallVector PhisToFix; // Utility functions. void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); void fixHeaderPhis(); VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); #ifndef NDEBUG bool isExternalDef(Value *Val); #endif VPValue *getOrCreateVPOperand(Value *IRVal); void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); public: PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) : TheLoop(Lp), LI(LI), Plan(P) {} /// Build plain CFG for TheLoop and connects it to Plan's entry. void buildPlainCFG(DenseMap &VPB2IRBB); }; } // anonymous namespace // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB // must have no predecessors. void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { // Collect VPBB predecessors. SmallVector VPBBPreds; for (BasicBlock *Pred : predecessors(BB)) VPBBPreds.push_back(getOrCreateVPBB(Pred)); VPBB->setPredecessors(VPBBPreds); } static bool isHeaderBB(BasicBlock *BB, Loop *L) { return L && BB == L->getHeader(); } // Add operands to VPInstructions representing phi nodes from the input IR. void PlainCFGBuilder::fixHeaderPhis() { for (auto *Phi : PhisToFix) { assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); VPValue *VPVal = IRDef2VPValue[Phi]; assert(isa(VPVal) && "Expected WidenPHIRecipe for phi node."); auto *VPPhi = cast(VPVal); assert(VPPhi->getNumOperands() == 0 && "Expected VPInstruction with no operands."); assert(isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent())) && "Expected Phi in header block."); assert(Phi->getNumOperands() == 2 && "header phi must have exactly 2 operands"); for (BasicBlock *Pred : predecessors(Phi->getParent())) VPPhi->addOperand( getOrCreateVPOperand(Phi->getIncomingValueForBlock(Pred))); } } // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an // existing one if it was already created. VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { if (auto *VPBB = BB2VPBB.lookup(BB)) { // Retrieve existing VPBB. return VPBB; } // Create new VPBB. StringRef Name = BB->getName(); LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n"); VPBasicBlock *VPBB = Plan.createVPBasicBlock(Name); BB2VPBB[BB] = VPBB; return VPBB; } #ifndef NDEBUG // Return true if \p Val is considered an external definition. An external // definition is either: // 1. A Value that is not an Instruction. This will be refined in the future. // 2. An Instruction that is outside of the CFG snippet represented in VPlan, // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) // outermost loop exits. bool PlainCFGBuilder::isExternalDef(Value *Val) { // All the Values that are not Instructions are considered external // definitions for now. Instruction *Inst = dyn_cast(Val); if (!Inst) return true; BasicBlock *InstParent = Inst->getParent(); assert(InstParent && "Expected instruction parent."); // Check whether Instruction definition is in loop PH. BasicBlock *PH = TheLoop->getLoopPreheader(); assert(PH && "Expected loop pre-header."); if (InstParent == PH) // Instruction definition is in outermost loop PH. return false; // Check whether Instruction definition is in a loop exit. SmallVector ExitBlocks; TheLoop->getExitBlocks(ExitBlocks); if (is_contained(ExitBlocks, InstParent)) { // Instruction definition is in outermost loop exit. return false; } // Check whether Instruction definition is in loop body. return !TheLoop->contains(Inst); } #endif // Create a new VPValue or retrieve an existing one for the Instruction's // operand \p IRVal. This function must only be used to create/retrieve VPValues // for *Instruction's operands* and not to create regular VPInstruction's. For // the latter, please, look at 'createVPInstructionsForVPBB'. VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { auto VPValIt = IRDef2VPValue.find(IRVal); if (VPValIt != IRDef2VPValue.end()) // Operand has an associated VPInstruction or VPValue that was previously // created. return VPValIt->second; // Operand doesn't have a previously created VPInstruction/VPValue. This // means that operand is: // A) a definition external to VPlan, // B) any other Value without specific representation in VPlan. // For now, we use VPValue to represent A and B and classify both as external // definitions. We may introduce specific VPValue subclasses for them in the // future. assert(isExternalDef(IRVal) && "Expected external definition as operand."); // A and B: Create VPValue and add it to the pool of external definitions and // to the Value->VPValue map. VPValue *NewVPVal = Plan.getOrAddLiveIn(IRVal); IRDef2VPValue[IRVal] = NewVPVal; return NewVPVal; } // Create new VPInstructions in a VPBasicBlock, given its BasicBlock // counterpart. This function must be invoked in RPO so that the operands of a // VPInstruction in \p BB have been visited before (except for Phi nodes). void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB) { VPIRBuilder.setInsertPoint(VPBB); // TODO: Model and preserve debug intrinsics in VPlan. for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) { Instruction *Inst = &InstRef; // There shouldn't be any VPValue for Inst at this point. Otherwise, we // visited Inst when we shouldn't, breaking the RPO traversal order. assert(!IRDef2VPValue.count(Inst) && "Instruction shouldn't have been visited."); if (auto *Br = dyn_cast(Inst)) { if (TheLoop->getLoopLatch() == BB || any_of(successors(BB), [this](BasicBlock *Succ) { return !TheLoop->contains(Succ); })) continue; // Conditional branch instruction are represented using BranchOnCond // recipes. if (Br->isConditional()) { VPValue *Cond = getOrCreateVPOperand(Br->getCondition()); VPIRBuilder.createNaryOp(VPInstruction::BranchOnCond, {Cond}, Inst); } // Skip the rest of the Instruction processing for Branch instructions. continue; } if (auto *SI = dyn_cast(Inst)) { SmallVector Ops = {getOrCreateVPOperand(SI->getCondition())}; for (auto Case : SI->cases()) Ops.push_back(getOrCreateVPOperand(Case.getCaseValue())); VPIRBuilder.createNaryOp(Instruction::Switch, Ops, Inst); continue; } VPSingleDefRecipe *NewR; if (auto *Phi = dyn_cast(Inst)) { // Phi node's operands may have not been visited at this point. We create // an empty VPInstruction that we will fix once the whole plain CFG has // been built. NewR = new VPWidenPHIRecipe(Phi, nullptr, Phi->getDebugLoc(), "vec.phi"); VPBB->appendRecipe(NewR); if (isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent()))) { // Header phis need to be fixed after the VPBB for the latch has been // created. PhisToFix.push_back(Phi); } else { // Add operands for VPPhi in the order matching its predecessors in // VPlan. DenseMap VPPredToIncomingValue; for (unsigned I = 0; I != Phi->getNumOperands(); ++I) { VPPredToIncomingValue[BB2VPBB[Phi->getIncomingBlock(I)]] = getOrCreateVPOperand(Phi->getIncomingValue(I)); } for (VPBlockBase *Pred : VPBB->getPredecessors()) NewR->addOperand( VPPredToIncomingValue.lookup(Pred->getExitingBasicBlock())); } } else { // Translate LLVM-IR operands into VPValue operands and set them in the // new VPInstruction. SmallVector VPOperands; for (Value *Op : Inst->operands()) VPOperands.push_back(getOrCreateVPOperand(Op)); // Build VPInstruction for any arbitrary Instruction without specific // representation in VPlan. NewR = cast( VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); } IRDef2VPValue[Inst] = NewR; } } // Main interface to build the plain CFG. void PlainCFGBuilder::buildPlainCFG( DenseMap &VPB2IRBB) { VPIRBasicBlock *Entry = cast(Plan.getEntry()); BB2VPBB[Entry->getIRBasicBlock()] = Entry; // 1. Scan the body of the loop in a topological order to visit each basic // block after having visited its predecessor basic blocks. Create a VPBB for // each BB and link it to its successor and predecessor VPBBs. Note that // predecessors must be set in the same order as they are in the incomming IR. // Otherwise, there might be problems with existing phi nodes and algorithm // based on predecessors traversal. // Loop PH needs to be explicitly visited since it's not taken into account by // LoopBlocksDFS. BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader(); assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) && "Unexpected loop preheader"); for (auto &I : *ThePreheaderBB) { if (I.getType()->isVoidTy()) continue; IRDef2VPValue[&I] = Plan.getOrAddLiveIn(&I); } LoopBlocksRPO RPO(TheLoop); RPO.perform(LI); for (BasicBlock *BB : RPO) { // Create or retrieve the VPBasicBlock for this BB. VPBasicBlock *VPBB = getOrCreateVPBB(BB); Loop *LoopForBB = LI->getLoopFor(BB); // Set VPBB predecessors in the same order as they are in the incoming BB. setVPBBPredsFromBB(VPBB, BB); // Create VPInstructions for BB. createVPInstructionsForVPBB(VPBB, BB); // Set VPBB successors. We create empty VPBBs for successors if they don't // exist already. Recipes will be created when the successor is visited // during the RPO traversal. if (auto *SI = dyn_cast(BB->getTerminator())) { SmallVector Succs = { getOrCreateVPBB(SI->getDefaultDest())}; for (auto Case : SI->cases()) Succs.push_back(getOrCreateVPBB(Case.getCaseSuccessor())); VPBB->setSuccessors(Succs); continue; } auto *BI = cast(BB->getTerminator()); unsigned NumSuccs = succ_size(BB); if (NumSuccs == 1) { VPBB->setOneSuccessor(getOrCreateVPBB(BB->getSingleSuccessor())); continue; } assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() && "block must have conditional branch with 2 successors"); BasicBlock *IRSucc0 = BI->getSuccessor(0); BasicBlock *IRSucc1 = BI->getSuccessor(1); VPBasicBlock *Successor0 = getOrCreateVPBB(IRSucc0); VPBasicBlock *Successor1 = getOrCreateVPBB(IRSucc1); // Don't connect any blocks outside the current loop except the latches for // inner loops. // TODO: Also connect exit blocks during initial VPlan construction. if (LoopForBB == TheLoop || BB != LoopForBB->getLoopLatch()) { if (!LoopForBB->contains(IRSucc0)) { VPBB->setOneSuccessor(Successor1); continue; } if (!LoopForBB->contains(IRSucc1)) { VPBB->setOneSuccessor(Successor0); continue; } } VPBB->setTwoSuccessors(Successor0, Successor1); } // 2. The whole CFG has been built at this point so all the input Values must // have a VPlan counterpart. Fix VPlan header phi by adding their // corresponding VPlan operands. fixHeaderPhis(); Plan.getEntry()->setOneSuccessor(getOrCreateVPBB(TheLoop->getHeader())); Plan.getEntry()->setPlan(&Plan); for (const auto &[IRBB, VPB] : BB2VPBB) VPB2IRBB[VPB] = IRBB; LLVM_DEBUG(Plan.setName("Plain CFG\n"); dbgs() << Plan); } void VPlanHCFGBuilder::buildPlainCFG() { PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); PCFGBuilder.buildPlainCFG(VPB2IRBB); }