//===------ CodeGeneration.cpp - Code generate the Scops using ISL. ----======// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The CodeGeneration pass takes a Scop created by ScopInfo and translates it // back to LLVM-IR using the ISL code generator. // // The Scop describes the high level memory behaviour of a control flow region. // Transformation passes can update the schedule (execution order) of statements // in the Scop. ISL is used to generate an abstract syntax tree that reflects // the updated execution order. This clast is used to create new LLVM-IR that is // computationally equivalent to the original control flow region, but executes // its code in the new execution order defined by the changed schedule. // //===----------------------------------------------------------------------===// #include "polly/CodeGen/IslAst.h" #include "polly/CodeGen/IslNodeBuilder.h" #include "polly/CodeGen/PerfMonitor.h" #include "polly/CodeGen/Utils.h" #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/ScopHelper.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Debug.h" using namespace polly; using namespace llvm; #define DEBUG_TYPE "polly-codegen" static cl::opt Verify("polly-codegen-verify", cl::desc("Verify the function generated by Polly"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt PerfMonitoring("polly-codegen-perf-monitoring", cl::desc("Add run-time performance monitoring"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); namespace { class CodeGeneration : public ScopPass { public: static char ID; CodeGeneration() : ScopPass(ID) {} /// The datalayout used const DataLayout *DL; /// @name The analysis passes we need to generate code. /// ///{ LoopInfo *LI; IslAstInfo *AI; DominatorTree *DT; ScalarEvolution *SE; RegionInfo *RI; ///} void verifyGeneratedFunction(Scop &S, Function &F) { if (!Verify || !verifyFunction(F, &errs())) return; DEBUG({ errs() << "== ISL Codegen created an invalid function ==\n\n== The " "SCoP ==\n"; S.print(errs()); errs() << "\n== The isl AST ==\n"; AI->printScop(errs(), S); errs() << "\n== The invalid function ==\n"; F.print(errs()); }); llvm_unreachable("Polly generated function could not be verified. Add " "-polly-codegen-verify=false to disable this assertion."); } // CodeGeneration adds a lot of BBs without updating the RegionInfo // We make all created BBs belong to the scop's parent region without any // nested structure to keep the RegionInfo verifier happy. void fixRegionInfo(Function *F, Region *ParentRegion) { for (BasicBlock &BB : *F) { if (RI->getRegionFor(&BB)) continue; RI->setRegionFor(&BB, ParentRegion); } } /// Mark a basic block unreachable. /// /// Marks the basic block @p Block unreachable by equipping it with an /// UnreachableInst. void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) { auto *OrigTerminator = Block.getTerminator(); Builder.SetInsertPoint(OrigTerminator); Builder.CreateUnreachable(); OrigTerminator->eraseFromParent(); } /// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from /// @R. /// /// CodeGeneration does not copy lifetime markers into the optimized SCoP, /// which would leave the them only in the original path. This can transform /// code such as /// /// llvm.lifetime.start(%p) /// llvm.lifetime.end(%p) /// /// into /// /// if (RTC) { /// // generated code /// } else { /// // original code /// llvm.lifetime.start(%p) /// } /// llvm.lifetime.end(%p) /// /// The current StackColoring algorithm cannot handle if some, but not all, /// paths from the end marker to the entry block cross the start marker. Same /// for start markers that do not always cross the end markers. We avoid any /// issues by removing all lifetime markers, even from the original code. /// /// A better solution could be to hoist all llvm.lifetime.start to the split /// node and all llvm.lifetime.end to the merge node, which should be /// conservatively correct. void removeLifetimeMarkers(Region *R) { for (auto *BB : R->blocks()) { auto InstIt = BB->begin(); auto InstEnd = BB->end(); while (InstIt != InstEnd) { auto NextIt = InstIt; ++NextIt; if (auto *IT = dyn_cast(&*InstIt)) { switch (IT->getIntrinsicID()) { case llvm::Intrinsic::lifetime_start: case llvm::Intrinsic::lifetime_end: BB->getInstList().erase(InstIt); break; default: break; } } InstIt = NextIt; } } } /// Generate LLVM-IR for the SCoP @p S. bool runOnScop(Scop &S) override { AI = &getAnalysis(); // Check if we created an isl_ast root node, otherwise exit. isl_ast_node *AstRoot = AI->getAst(); if (!AstRoot) return false; LI = &getAnalysis().getLoopInfo(); DT = &getAnalysis().getDomTree(); SE = &getAnalysis().getSE(); DL = &S.getFunction().getParent()->getDataLayout(); RI = &getAnalysis().getRegionInfo(); Region *R = &S.getRegion(); assert(!R->isTopLevelRegion() && "Top level regions are not supported"); ScopAnnotator Annotator; Annotator.buildAliasScopes(S); simplifyRegion(R, DT, LI, RI); assert(R->isSimple()); BasicBlock *EnteringBB = S.getEnteringBlock(); assert(EnteringBB); PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); // Only build the run-time condition and parameters _after_ having // introduced the conditional branch. This is important as the conditional // branch will guard the original scop from new induction variables that // the SCEVExpander may introduce while code generating the parameters and // which may introduce scalar dependences that prevent us from correctly // code generating this scop. BasicBlock *StartBlock = executeScopConditionally(S, Builder.getTrue(), *DT, *RI, *LI); removeLifetimeMarkers(R); auto *SplitBlock = StartBlock->getSinglePredecessor(); IslNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, S, StartBlock); if (PerfMonitoring) { PerfMonitor P(EnteringBB->getParent()->getParent()); P.initialize(); P.insertRegionStart(SplitBlock->getTerminator()); BasicBlock *MergeBlock = SplitBlock->getTerminator() ->getSuccessor(0) ->getUniqueSuccessor() ->getUniqueSuccessor(); P.insertRegionEnd(MergeBlock->getTerminator()); } // First generate code for the hoisted invariant loads and transitively the // parameters they reference. Afterwards, for the remaining parameters that // might reference the hoisted loads. Finally, build the runtime check // that might reference both hoisted loads as well as parameters. // If the hoisting fails we have to bail and execute the original code. Builder.SetInsertPoint(SplitBlock->getTerminator()); if (!NodeBuilder.preloadInvariantLoads()) { // Patch the introduced branch condition to ensure that we always execute // the original SCoP. auto *FalseI1 = Builder.getFalse(); auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); SplitBBTerm->setOperand(0, FalseI1); // Since the other branch is hence ignored we mark it as unreachable and // adjust the dominator tree accordingly. auto *ExitingBlock = StartBlock->getUniqueSuccessor(); assert(ExitingBlock); auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); assert(MergeBlock); markBlockUnreachable(*StartBlock, Builder); markBlockUnreachable(*ExitingBlock, Builder); auto *ExitingBB = S.getExitingBlock(); assert(ExitingBB); DT->changeImmediateDominator(MergeBlock, ExitingBB); DT->eraseNode(ExitingBlock); isl_ast_node_free(AstRoot); } else { NodeBuilder.allocateNewArrays(); NodeBuilder.addParameters(S.getContext()); Value *RTC = NodeBuilder.createRTC(AI->getRunCondition()); Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); Builder.SetInsertPoint(&StartBlock->front()); NodeBuilder.create(AstRoot); NodeBuilder.finalize(); fixRegionInfo(EnteringBB->getParent(), R->getParent()); } Function *F = EnteringBB->getParent(); verifyGeneratedFunction(S, *F); for (auto *SubF : NodeBuilder.getParallelSubfunctions()) verifyGeneratedFunction(S, *SubF); // Mark the function such that we run additional cleanup passes on this // function (e.g. mem2reg to rediscover phi nodes). F->addFnAttr("polly-optimized"); return true; } /// Register all analyses and transformation required. void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); // FIXME: We do not yet add regions for the newly generated code to the // region tree. AU.addPreserved(); AU.addPreserved(); } }; } // namespace char CodeGeneration::ID = 1; Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); } INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", "Polly - Create LLVM-IR from SCoPs", false, false); INITIALIZE_PASS_DEPENDENCY(DependenceInfo); INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); INITIALIZE_PASS_DEPENDENCY(ScopDetection); INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", "Polly - Create LLVM-IR from SCoPs", false, false)