//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "RISCVSelectionDAGInfo.h" #include "RISCVSubtarget.h" #include "llvm/CodeGen/SelectionDAG.h" #define GET_SDNODE_DESC #include "RISCVGenSDNodeInfo.inc" using namespace llvm; RISCVSelectionDAGInfo::RISCVSelectionDAGInfo() : SelectionDAGGenTargetInfo(RISCVGenSDNodeInfo) {} RISCVSelectionDAGInfo::~RISCVSelectionDAGInfo() = default; void RISCVSelectionDAGInfo::verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const { #ifndef NDEBUG switch (N->getOpcode()) { default: return SelectionDAGGenTargetInfo::verifyTargetNode(DAG, N); case RISCVISD::TUPLE_EXTRACT: assert(N->getNumOperands() == 2 && "Expected three operands!"); assert(N->getOperand(1).getOpcode() == ISD::TargetConstant && N->getOperand(1).getValueType() == MVT::i32 && "Expected index to be an i32 target constant!"); break; case RISCVISD::TUPLE_INSERT: assert(N->getNumOperands() == 3 && "Expected three operands!"); assert(N->getOperand(2).getOpcode() == ISD::TargetConstant && N->getOperand(2).getValueType() == MVT::i32 && "Expected index to be an i32 target constant!"); break; case RISCVISD::VQDOT_VL: case RISCVISD::VQDOTU_VL: case RISCVISD::VQDOTSU_VL: { assert(N->getNumValues() == 1 && "Expected one result!"); assert(N->getNumOperands() == 5 && "Expected five operands!"); EVT VT = N->getValueType(0); assert(VT.isScalableVector() && VT.getVectorElementType() == MVT::i32 && "Expected result to be an i32 scalable vector"); assert(N->getOperand(0).getValueType() == VT && N->getOperand(1).getValueType() == VT && N->getOperand(2).getValueType() == VT && "Expected result and first 3 operands to have the same type!"); EVT MaskVT = N->getOperand(3).getValueType(); assert(MaskVT.isScalableVector() && MaskVT.getVectorElementType() == MVT::i1 && MaskVT.getVectorElementCount() == VT.getVectorElementCount() && "Expected mask VT to be an i1 scalable vector with same number of " "elements as the result"); assert((N->getOperand(4).getValueType() == MVT::i32 || N->getOperand(4).getValueType() == MVT::i64) && "Expect VL operand to be i32 or i64"); break; } } #endif } SDValue RISCVSelectionDAGInfo::EmitTargetCodeForMemset( SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo) const { const auto &Subtarget = DAG.getSubtarget(); // We currently do this only for Xqcilsm if (!Subtarget.hasVendorXqcilsm()) return SDValue(); // Do this only if we know the size at compile time. ConstantSDNode *ConstantSize = dyn_cast(Size); if (!ConstantSize) return SDValue(); uint64_t NumberOfBytesToWrite = ConstantSize->getZExtValue(); // Do this only if it is word aligned and we write a multiple of 4 bytes. if (!(Alignment >= 4) || !((NumberOfBytesToWrite & 3) == 0)) return SDValue(); SmallVector OutChains; SDValue SrcValueReplicated = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src); int NumberOfWords = NumberOfBytesToWrite / 4; MachineFunction &MF = DAG.getMachineFunction(); auto Volatile = isVolatile ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; // Helper for constructing the QC_SETWMI instruction auto getSetwmiNode = [&](uint8_t SizeWords, uint8_t OffsetSetwmi) -> SDValue { SDValue Ops[] = {Chain, SrcValueReplicated, Dst, DAG.getTargetConstant(SizeWords, dl, MVT::i32), DAG.getTargetConstant(OffsetSetwmi, dl, MVT::i32)}; MachineMemOperand *BaseMemOperand = MF.getMachineMemOperand( DstPtrInfo.getWithOffset(OffsetSetwmi), MachineMemOperand::MOStore | Volatile, SizeWords * 4, Align(4)); return DAG.getMemIntrinsicNode(RISCVISD::QC_SETWMI, dl, DAG.getVTList(MVT::Other), Ops, MVT::i32, BaseMemOperand); }; // If i8 type and constant non-zero value. if ((Src.getValueType() == MVT::i8) && !isNullConstant(Src)) // Replicate byte to word by multiplication with 0x01010101. SrcValueReplicated = DAG.getNode(ISD::MUL, dl, MVT::i32, SrcValueReplicated, DAG.getConstant(0x01010101ul, dl, MVT::i32)); // We limit a QC_SETWMI to 16 words or less to improve interruptibility. // So for 1-16 words we use a single QC_SETWMI: // // QC_SETWMI reg1, N, 0(reg2) // // For 17-32 words we use two QC_SETWMI's with the first as 16 words and the // second for the remainder: // // QC_SETWMI reg1, 16, 0(reg2) // QC_SETWMI reg1, N, 64(reg2) // // For 33-48 words, we would like to use (16, 16, n), but that means the last // QC_SETWMI needs an offset of 128 which the instruction doesn't support. // So in this case we use a length of 15 for the second instruction and we do // the rest with the third instruction. // This means the maximum inlined number of words is 47 (for now): // // QC_SETWMI R2, R0, 16, 0 // QC_SETWMI R2, R0, 15, 64 // QC_SETWMI R2, R0, N, 124 // // For 48 words or more, call the target independent memset if (NumberOfWords >= 48) return SDValue(); if (NumberOfWords <= 16) { // 1 - 16 words return getSetwmiNode(NumberOfWords, 0); } if (NumberOfWords <= 32) { // 17 - 32 words OutChains.push_back(getSetwmiNode(NumberOfWords - 16, 64)); OutChains.push_back(getSetwmiNode(16, 0)); } else { // 33 - 47 words OutChains.push_back(getSetwmiNode(NumberOfWords - 31, 124)); OutChains.push_back(getSetwmiNode(15, 64)); OutChains.push_back(getSetwmiNode(16, 0)); } return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); }