//===------- VectorCombine.cpp - Optimize partial vector operations -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass optimizes scalar/vector interactions using target cost models. The // transforms implemented here may not fit in traditional loop-based or SLP // vectorization passes. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Vectorize/VectorCombine.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Vectorize.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "vector-combine" STATISTIC(NumVecCmp, "Number of vector compares formed"); STATISTIC(NumVecBO, "Number of vector binops formed"); static cl::opt DisableVectorCombine( "disable-vector-combine", cl::init(false), cl::Hidden, cl::desc("Disable all vector combine transforms")); static cl::opt DisableBinopExtractShuffle( "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, cl::desc("Disable binop extract to shuffle transforms")); /// Compare the relative costs of 2 extracts followed by scalar operation vs. /// vector operation(s) followed by extract. Return true if the existing /// instructions are cheaper than a vector alternative. Otherwise, return false /// and if one of the extracts should be transformed to a shufflevector, set /// \p ConvertToShuffle to that extract instruction. static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1, unsigned Opcode, const TargetTransformInfo &TTI, Instruction *&ConvertToShuffle) { assert(isa(Ext0->getOperand(1)) && isa(Ext1->getOperand(1)) && "Expected constant extract indexes"); Type *ScalarTy = Ext0->getType(); Type *VecTy = Ext0->getOperand(0)->getType(); int ScalarOpCost, VectorOpCost; // Get cost estimates for scalar and vector versions of the operation. bool IsBinOp = Instruction::isBinaryOp(Opcode); if (IsBinOp) { ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); } else { assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && "Expected a compare"); ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy)); VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, CmpInst::makeCmpResultType(VecTy)); } // Get cost estimates for the extract elements. These costs will factor into // both sequences. unsigned Ext0Index = cast(Ext0->getOperand(1))->getZExtValue(); unsigned Ext1Index = cast(Ext1->getOperand(1))->getZExtValue(); int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); // A more expensive extract will always be replaced by a splat shuffle. // For example, if Ext0 is more expensive: // opcode (extelt V0, Ext0), (ext V1, Ext1) --> // extelt (opcode (splat V0, Ext0), V1), Ext1 // TODO: Evaluate whether that always results in lowest cost. Alternatively, // check the cost of creating a broadcast shuffle and shuffling both // operands to element 0. int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); // Extra uses of the extracts mean that we include those costs in the // vector total because those instructions will not be eliminated. int OldCost, NewCost; if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { // Handle a special case. If the 2 extracts are identical, adjust the // formulas to account for that. The extra use charge allows for either the // CSE'd pattern or an unoptimized form with identical values: // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) : !Ext0->hasOneUse() || !Ext1->hasOneUse(); OldCost = CheapExtractCost + ScalarOpCost; NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; } else { // Handle the general case. Each extract is actually a different value: // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; NewCost = VectorOpCost + CheapExtractCost + !Ext0->hasOneUse() * Extract0Cost + !Ext1->hasOneUse() * Extract1Cost; } if (Ext0Index == Ext1Index) { // If the extract indexes are identical, no shuffle is needed. ConvertToShuffle = nullptr; } else { if (IsBinOp && DisableBinopExtractShuffle) return true; // If we are extracting from 2 different indexes, then one operand must be // shuffled before performing the vector operation. The shuffle mask is // undefined except for 1 lane that is being translated to the remaining // extraction lane. Therefore, it is a splat shuffle. Ex: // ShufMask = { undef, undef, 0, undef } // TODO: The cost model has an option for a "broadcast" shuffle // (splat-from-element-0), but no option for a more general splat. NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); // The more expensive extract will be replaced by a shuffle. If the extracts // have the same cost, replace the extract with the higher index. if (Extract0Cost > Extract1Cost) ConvertToShuffle = Ext0; else if (Extract1Cost > Extract0Cost) ConvertToShuffle = Ext1; else ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1; } // Aggressively form a vector op if the cost is equal because the transform // may enable further optimization. // Codegen can reverse this transform (scalarize) if it was not profitable. return OldCost < NewCost; } /// Try to reduce extract element costs by converting scalar compares to vector /// compares followed by extract. /// cmp (ext0 V0, C), (ext1 V1, C) static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1, Instruction &I, const TargetTransformInfo &TTI) { assert(isa(&I) && "Expected a compare"); // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C ++NumVecCmp; IRBuilder<> Builder(&I); CmpInst::Predicate Pred = cast(&I)->getPredicate(); Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); Value *VecCmp = Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1) : Builder.CreateICmp(Pred, V0, V1); Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1)); I.replaceAllUsesWith(Extract); } /// Try to reduce extract element costs by converting scalar binops to vector /// binops followed by extract. /// bo (ext0 V0, C), (ext1 V1, C) static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1, Instruction &I, const TargetTransformInfo &TTI) { assert(isa(&I) && "Expected a binary operator"); // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C ++NumVecBO; IRBuilder<> Builder(&I); Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); Value *VecBO = Builder.CreateBinOp(cast(&I)->getOpcode(), V0, V1); // All IR flags are safe to back-propagate because any potential poison // created in unused vector elements is discarded by the extract. if (auto *VecBOInst = dyn_cast(VecBO)) VecBOInst->copyIRFlags(&I); Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1)); I.replaceAllUsesWith(Extract); } /// Match an instruction with extracted vector operands. static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) { // It is not safe to transform things like div, urem, etc. because we may // create undefined behavior when executing those on unknown vector elements. if (!isSafeToSpeculativelyExecute(&I)) return false; Instruction *Ext0, *Ext1; CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) && !match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1)))) return false; Value *V0, *V1; uint64_t C0, C1; if (!match(Ext0, m_ExtractElement(m_Value(V0), m_ConstantInt(C0))) || !match(Ext1, m_ExtractElement(m_Value(V1), m_ConstantInt(C1))) || V0->getType() != V1->getType()) return false; Instruction *ConvertToShuffle; if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ConvertToShuffle)) return false; if (ConvertToShuffle) { // The shuffle mask is undefined except for 1 lane that is being translated // to the cheap extraction lane. Example: // ShufMask = { 2, undef, undef, undef } uint64_t SplatIndex = ConvertToShuffle == Ext0 ? C0 : C1; uint64_t CheapExtIndex = ConvertToShuffle == Ext0 ? C1 : C0; Type *VecTy = V0->getType(); Type *I32Ty = IntegerType::getInt32Ty(I.getContext()); UndefValue *Undef = UndefValue::get(I32Ty); SmallVector ShufMask(VecTy->getVectorNumElements(), Undef); ShufMask[CheapExtIndex] = ConstantInt::get(I32Ty, SplatIndex); IRBuilder<> Builder(ConvertToShuffle); // extelt X, C --> extelt (splat X), C' Value *Shuf = Builder.CreateShuffleVector(ConvertToShuffle->getOperand(0), UndefValue::get(VecTy), ConstantVector::get(ShufMask)); Value *NewExt = Builder.CreateExtractElement(Shuf, CheapExtIndex); if (ConvertToShuffle == Ext0) Ext0 = cast(NewExt); else Ext1 = cast(NewExt); } if (Pred != CmpInst::BAD_ICMP_PREDICATE) foldExtExtCmp(Ext0, Ext1, I, TTI); else foldExtExtBinop(Ext0, Ext1, I, TTI); return true; } /// This is the entry point for all transforms. Pass manager differences are /// handled in the callers of this function. static bool runImpl(Function &F, const TargetTransformInfo &TTI, const DominatorTree &DT) { if (DisableVectorCombine) return false; bool MadeChange = false; for (BasicBlock &BB : F) { // Ignore unreachable basic blocks. if (!DT.isReachableFromEntry(&BB)) continue; // Do not delete instructions under here and invalidate the iterator. // Walk the block backwards for efficiency. We're matching a chain of // use->defs, so we're more likely to succeed by starting from the bottom. // TODO: It could be more efficient to remove dead instructions // iteratively in this loop rather than waiting until the end. for (Instruction &I : make_range(BB.rbegin(), BB.rend())) { if (isa(I)) continue; MadeChange |= foldExtractExtract(I, TTI); } } // We're done with transforms, so remove dead instructions. if (MadeChange) for (BasicBlock &BB : F) SimplifyInstructionsInBlock(&BB); return MadeChange; } // Pass manager boilerplate below here. namespace { class VectorCombineLegacyPass : public FunctionPass { public: static char ID; VectorCombineLegacyPass() : FunctionPass(ID) { initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); AU.addPreserved(); AU.addPreserved(); FunctionPass::getAnalysisUsage(AU); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &TTI = getAnalysis().getTTI(F); auto &DT = getAnalysis().getDomTree(); return runImpl(F, TTI, DT); } }; } // namespace char VectorCombineLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", "Optimize scalar/vector ops", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", "Optimize scalar/vector ops", false, false) Pass *llvm::createVectorCombinePass() { return new VectorCombineLegacyPass(); } PreservedAnalyses VectorCombinePass::run(Function &F, FunctionAnalysisManager &FAM) { TargetTransformInfo &TTI = FAM.getResult(F); DominatorTree &DT = FAM.getResult(F); if (!runImpl(F, TTI, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); return PA; }