Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

1177 lines
44 KiB
C++

//===--- InlayHints.cpp ------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InlayHints.h"
#include "../clang-tidy/utils/DesignatedInitializers.h"
#include "AST.h"
#include "Config.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "SourceCode.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/HeuristicResolver.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <iterator>
#include <optional>
#include <string>
namespace clang {
namespace clangd {
namespace {
// For now, inlay hints are always anchored at the left or right of their range.
enum class HintSide { Left, Right };
void stripLeadingUnderscores(StringRef &Name) { Name = Name.ltrim('_'); }
// getDeclForType() returns the decl responsible for Type's spelling.
// This is the inverse of ASTContext::getTypeDeclType().
const NamedDecl *getDeclForType(const Type *T) {
switch (T->getTypeClass()) {
case Type::Enum:
case Type::Record:
case Type::InjectedClassName:
return cast<TagType>(T)->getOriginalDecl();
case Type::TemplateSpecialization:
return cast<TemplateSpecializationType>(T)
->getTemplateName()
.getAsTemplateDecl(/*IgnoreDeduced=*/true);
case Type::Typedef:
return cast<TypedefType>(T)->getDecl();
case Type::UnresolvedUsing:
return cast<UnresolvedUsingType>(T)->getDecl();
case Type::Using:
return cast<UsingType>(T)->getDecl();
default:
return nullptr;
}
llvm_unreachable("Unknown TypeClass enum");
}
// getSimpleName() returns the plain identifier for an entity, if any.
llvm::StringRef getSimpleName(const DeclarationName &DN) {
if (IdentifierInfo *Ident = DN.getAsIdentifierInfo())
return Ident->getName();
return "";
}
llvm::StringRef getSimpleName(const NamedDecl &D) {
return getSimpleName(D.getDeclName());
}
llvm::StringRef getSimpleName(QualType T) {
if (const auto *BT = llvm::dyn_cast<BuiltinType>(T)) {
PrintingPolicy PP(LangOptions{});
PP.adjustForCPlusPlus();
return BT->getName(PP);
}
if (const auto *D = getDeclForType(T.getTypePtr()))
return getSimpleName(D->getDeclName());
return "";
}
// Returns a very abbreviated form of an expression, or "" if it's too complex.
// For example: `foo->bar()` would produce "bar".
// This is used to summarize e.g. the condition of a while loop.
std::string summarizeExpr(const Expr *E) {
struct Namer : ConstStmtVisitor<Namer, std::string> {
std::string Visit(const Expr *E) {
if (E == nullptr)
return "";
return ConstStmtVisitor::Visit(E->IgnoreImplicit());
}
// Any sort of decl reference, we just use the unqualified name.
std::string VisitMemberExpr(const MemberExpr *E) {
return getSimpleName(*E->getMemberDecl()).str();
}
std::string VisitDeclRefExpr(const DeclRefExpr *E) {
return getSimpleName(*E->getFoundDecl()).str();
}
std::string VisitCallExpr(const CallExpr *E) {
std::string Result = Visit(E->getCallee());
Result += E->getNumArgs() == 0 ? "()" : "(...)";
return Result;
}
std::string
VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
return getSimpleName(E->getMember()).str();
}
std::string
VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
return getSimpleName(E->getDeclName()).str();
}
std::string VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *E) {
return getSimpleName(E->getType()).str();
}
std::string VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) {
return getSimpleName(E->getType()).str();
}
// Step through implicit nodes that clang doesn't classify as such.
std::string VisitCXXMemberCallExpr(const CXXMemberCallExpr *E) {
// Call to operator bool() inside if (X): dispatch to X.
if (E->getNumArgs() == 0 && E->getMethodDecl() &&
E->getMethodDecl()->getDeclName().getNameKind() ==
DeclarationName::CXXConversionFunctionName &&
E->getSourceRange() ==
E->getImplicitObjectArgument()->getSourceRange())
return Visit(E->getImplicitObjectArgument());
return ConstStmtVisitor::VisitCXXMemberCallExpr(E);
}
std::string VisitCXXConstructExpr(const CXXConstructExpr *E) {
if (E->getNumArgs() == 1)
return Visit(E->getArg(0));
return "";
}
// Literals are just printed
std::string VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
return "nullptr";
}
std::string VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
return E->getValue() ? "true" : "false";
}
std::string VisitIntegerLiteral(const IntegerLiteral *E) {
return llvm::to_string(E->getValue());
}
std::string VisitFloatingLiteral(const FloatingLiteral *E) {
std::string Result;
llvm::raw_string_ostream OS(Result);
E->getValue().print(OS);
// Printer adds newlines?!
Result.resize(llvm::StringRef(Result).rtrim().size());
return Result;
}
std::string VisitStringLiteral(const StringLiteral *E) {
std::string Result = "\"";
if (E->containsNonAscii()) {
Result += "...";
} else {
llvm::raw_string_ostream OS(Result);
if (E->getLength() > 10) {
llvm::printEscapedString(E->getString().take_front(7), OS);
Result += "...";
} else {
llvm::printEscapedString(E->getString(), OS);
}
}
Result.push_back('"');
return Result;
}
// Simple operators. Motivating cases are `!x` and `I < Length`.
std::string printUnary(llvm::StringRef Spelling, const Expr *Operand,
bool Prefix) {
std::string Sub = Visit(Operand);
if (Sub.empty())
return "";
if (Prefix)
return (Spelling + Sub).str();
Sub += Spelling;
return Sub;
}
bool InsideBinary = false; // No recursing into binary expressions.
std::string printBinary(llvm::StringRef Spelling, const Expr *LHSOp,
const Expr *RHSOp) {
if (InsideBinary)
return "";
llvm::SaveAndRestore InBinary(InsideBinary, true);
std::string LHS = Visit(LHSOp);
std::string RHS = Visit(RHSOp);
if (LHS.empty() && RHS.empty())
return "";
if (LHS.empty())
LHS = "...";
LHS.push_back(' ');
LHS += Spelling;
LHS.push_back(' ');
if (RHS.empty())
LHS += "...";
else
LHS += RHS;
return LHS;
}
std::string VisitUnaryOperator(const UnaryOperator *E) {
return printUnary(E->getOpcodeStr(E->getOpcode()), E->getSubExpr(),
!E->isPostfix());
}
std::string VisitBinaryOperator(const BinaryOperator *E) {
return printBinary(E->getOpcodeStr(E->getOpcode()), E->getLHS(),
E->getRHS());
}
std::string VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *E) {
const char *Spelling = getOperatorSpelling(E->getOperator());
// Handle weird unary-that-look-like-binary postfix operators.
if ((E->getOperator() == OO_PlusPlus ||
E->getOperator() == OO_MinusMinus) &&
E->getNumArgs() == 2)
return printUnary(Spelling, E->getArg(0), false);
if (E->isInfixBinaryOp())
return printBinary(Spelling, E->getArg(0), E->getArg(1));
if (E->getNumArgs() == 1) {
switch (E->getOperator()) {
case OO_Plus:
case OO_Minus:
case OO_Star:
case OO_Amp:
case OO_Tilde:
case OO_Exclaim:
case OO_PlusPlus:
case OO_MinusMinus:
return printUnary(Spelling, E->getArg(0), true);
default:
break;
}
}
return "";
}
};
return Namer{}.Visit(E);
}
// Determines if any intermediate type in desugaring QualType QT is of
// substituted template parameter type. Ignore pointer or reference wrappers.
bool isSugaredTemplateParameter(QualType QT) {
static auto PeelWrapper = [](QualType QT) {
// Neither `PointerType` nor `ReferenceType` is considered as sugared
// type. Peel it.
QualType Peeled = QT->getPointeeType();
return Peeled.isNull() ? QT : Peeled;
};
// This is a bit tricky: we traverse the type structure and find whether or
// not a type in the desugaring process is of SubstTemplateTypeParmType.
// During the process, we may encounter pointer or reference types that are
// not marked as sugared; therefore, the desugar function won't apply. To
// move forward the traversal, we retrieve the pointees using
// QualType::getPointeeType().
//
// However, getPointeeType could leap over our interests: The QT::getAs<T>()
// invoked would implicitly desugar the type. Consequently, if the
// SubstTemplateTypeParmType is encompassed within a TypedefType, we may lose
// the chance to visit it.
// For example, given a QT that represents `std::vector<int *>::value_type`:
// `-ElaboratedType 'value_type' sugar
// `-TypedefType 'vector<int *>::value_type' sugar
// |-Typedef 'value_type'
// `-SubstTemplateTypeParmType 'int *' sugar class depth 0 index 0 T
// |-ClassTemplateSpecialization 'vector'
// `-PointerType 'int *'
// `-BuiltinType 'int'
// Applying `getPointeeType` to QT results in 'int', a child of our target
// node SubstTemplateTypeParmType.
//
// As such, we always prefer the desugared over the pointee for next type
// in the iteration. It could avoid the getPointeeType's implicit desugaring.
while (true) {
if (QT->getAs<SubstTemplateTypeParmType>())
return true;
QualType Desugared = QT->getLocallyUnqualifiedSingleStepDesugaredType();
if (Desugared != QT)
QT = Desugared;
else if (auto Peeled = PeelWrapper(Desugared); Peeled != QT)
QT = Peeled;
else
break;
}
return false;
}
// A simple wrapper for `clang::desugarForDiagnostic` that provides optional
// semantic.
std::optional<QualType> desugar(ASTContext &AST, QualType QT) {
bool ShouldAKA = false;
auto Desugared = clang::desugarForDiagnostic(AST, QT, ShouldAKA);
if (!ShouldAKA)
return std::nullopt;
return Desugared;
}
// Apply a series of heuristic methods to determine whether or not a QualType QT
// is suitable for desugaring (e.g. getting the real name behind the using-alias
// name). If so, return the desugared type. Otherwise, return the unchanged
// parameter QT.
//
// This could be refined further. See
// https://github.com/clangd/clangd/issues/1298.
QualType maybeDesugar(ASTContext &AST, QualType QT) {
// Prefer desugared type for name that aliases the template parameters.
// This can prevent things like printing opaque `: type` when accessing std
// containers.
if (isSugaredTemplateParameter(QT))
return desugar(AST, QT).value_or(QT);
// Prefer desugared type for `decltype(expr)` specifiers.
if (QT->isDecltypeType())
return QT.getCanonicalType();
if (const AutoType *AT = QT->getContainedAutoType())
if (!AT->getDeducedType().isNull() &&
AT->getDeducedType()->isDecltypeType())
return QT.getCanonicalType();
return QT;
}
ArrayRef<const ParmVarDecl *>
maybeDropCxxExplicitObjectParameters(ArrayRef<const ParmVarDecl *> Params) {
if (!Params.empty() && Params.front()->isExplicitObjectParameter())
Params = Params.drop_front(1);
return Params;
}
template <typename R>
std::string joinAndTruncate(const R &Range, size_t MaxLength) {
std::string Out;
llvm::raw_string_ostream OS(Out);
llvm::ListSeparator Sep(", ");
for (auto &&Element : Range) {
OS << Sep;
if (Out.size() + Element.size() >= MaxLength) {
OS << "...";
break;
}
OS << Element;
}
OS.flush();
return Out;
}
struct Callee {
// Only one of Decl or Loc is set.
// Loc is for calls through function pointers.
const FunctionDecl *Decl = nullptr;
FunctionProtoTypeLoc Loc;
};
class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> {
public:
InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST,
const Config &Cfg, std::optional<Range> RestrictRange,
InlayHintOptions HintOptions)
: Results(Results), AST(AST.getASTContext()), Tokens(AST.getTokens()),
Cfg(Cfg), RestrictRange(std::move(RestrictRange)),
MainFileID(AST.getSourceManager().getMainFileID()),
Resolver(AST.getHeuristicResolver()),
TypeHintPolicy(this->AST.getPrintingPolicy()),
HintOptions(HintOptions) {
bool Invalid = false;
llvm::StringRef Buf =
AST.getSourceManager().getBufferData(MainFileID, &Invalid);
MainFileBuf = Invalid ? StringRef{} : Buf;
TypeHintPolicy.SuppressScope = true; // keep type names short
TypeHintPolicy.AnonymousTagLocations =
false; // do not print lambda locations
// Not setting PrintCanonicalTypes for "auto" allows
// SuppressDefaultTemplateArgs (set by default) to have an effect.
}
bool VisitTypeLoc(TypeLoc TL) {
if (const auto *DT = llvm::dyn_cast<DecltypeType>(TL.getType()))
if (QualType UT = DT->getUnderlyingType(); !UT->isDependentType())
addTypeHint(TL.getSourceRange(), UT, ": ");
return true;
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
// Weed out constructor calls that don't look like a function call with
// an argument list, by checking the validity of getParenOrBraceRange().
// Also weed out std::initializer_list constructors as there are no names
// for the individual arguments.
if (!E->getParenOrBraceRange().isValid() ||
E->isStdInitListInitialization()) {
return true;
}
Callee Callee;
Callee.Decl = E->getConstructor();
if (!Callee.Decl)
return true;
processCall(Callee, E->getParenOrBraceRange().getEnd(),
{E->getArgs(), E->getNumArgs()});
return true;
}
// Carefully recurse into PseudoObjectExprs, which typically incorporate
// a syntactic expression and several semantic expressions.
bool TraversePseudoObjectExpr(PseudoObjectExpr *E) {
Expr *SyntacticExpr = E->getSyntacticForm();
if (isa<CallExpr>(SyntacticExpr))
// Since the counterpart semantics usually get the identical source
// locations as the syntactic one, visiting those would end up presenting
// confusing hints e.g., __builtin_dump_struct.
// Thus, only traverse the syntactic forms if this is written as a
// CallExpr. This leaves the door open in case the arguments in the
// syntactic form could possibly get parameter names.
return RecursiveASTVisitor<InlayHintVisitor>::TraverseStmt(SyntacticExpr);
// We don't want the hints for some of the MS property extensions.
// e.g.
// struct S {
// __declspec(property(get=GetX, put=PutX)) int x[];
// void PutX(int y);
// void Work(int y) { x = y; } // Bad: `x = y: y`.
// };
if (isa<BinaryOperator>(SyntacticExpr))
return true;
// FIXME: Handle other forms of a pseudo object expression.
return RecursiveASTVisitor<InlayHintVisitor>::TraversePseudoObjectExpr(E);
}
bool VisitCallExpr(CallExpr *E) {
if (!Cfg.InlayHints.Parameters)
return true;
bool IsFunctor = isFunctionObjectCallExpr(E);
// Do not show parameter hints for user-defined literals or
// operator calls except for operator(). (Among other reasons, the resulting
// hints can look awkward, e.g. the expression can itself be a function
// argument and then we'd get two hints side by side).
if ((isa<CXXOperatorCallExpr>(E) && !IsFunctor) ||
isa<UserDefinedLiteral>(E))
return true;
auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E);
if (CalleeDecls.size() != 1)
return true;
Callee Callee;
if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0]))
Callee.Decl = FD;
else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0]))
Callee.Decl = FTD->getTemplatedDecl();
else if (FunctionProtoTypeLoc Loc =
Resolver->getFunctionProtoTypeLoc(E->getCallee()))
Callee.Loc = Loc;
else
return true;
// N4868 [over.call.object]p3 says,
// The argument list submitted to overload resolution consists of the
// argument expressions present in the function call syntax preceded by the
// implied object argument (E).
//
// As well as the provision from P0847R7 Deducing This [expr.call]p7:
// ...If the function is an explicit object member function and there is an
// implied object argument ([over.call.func]), the list of provided
// arguments is preceded by the implied object argument for the purposes of
// this correspondence...
llvm::ArrayRef<const Expr *> Args = {E->getArgs(), E->getNumArgs()};
// We don't have the implied object argument through a function pointer
// either.
if (const CXXMethodDecl *Method =
dyn_cast_or_null<CXXMethodDecl>(Callee.Decl))
if (IsFunctor || Method->hasCXXExplicitFunctionObjectParameter())
Args = Args.drop_front(1);
processCall(Callee, E->getRParenLoc(), Args);
return true;
}
bool VisitFunctionDecl(FunctionDecl *D) {
if (auto *FPT =
llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) {
if (!FPT->hasTrailingReturn()) {
if (auto FTL = D->getFunctionTypeLoc())
addReturnTypeHint(D, FTL.getRParenLoc());
}
}
if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) {
// We use `printName` here to properly print name of ctor/dtor/operator
// overload.
if (const Stmt *Body = D->getBody())
addBlockEndHint(Body->getSourceRange(), "", printName(AST, *D), "");
}
return true;
}
bool VisitForStmt(ForStmt *S) {
if (Cfg.InlayHints.BlockEnd) {
std::string Name;
// Common case: for (int I = 0; I < N; I++). Use "I" as the name.
if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S->getInit());
DS && DS->isSingleDecl())
Name = getSimpleName(llvm::cast<NamedDecl>(*DS->getSingleDecl()));
else
Name = summarizeExpr(S->getCond());
markBlockEnd(S->getBody(), "for", Name);
}
return true;
}
bool VisitCXXForRangeStmt(CXXForRangeStmt *S) {
if (Cfg.InlayHints.BlockEnd)
markBlockEnd(S->getBody(), "for", getSimpleName(*S->getLoopVariable()));
return true;
}
bool VisitWhileStmt(WhileStmt *S) {
if (Cfg.InlayHints.BlockEnd)
markBlockEnd(S->getBody(), "while", summarizeExpr(S->getCond()));
return true;
}
bool VisitSwitchStmt(SwitchStmt *S) {
if (Cfg.InlayHints.BlockEnd)
markBlockEnd(S->getBody(), "switch", summarizeExpr(S->getCond()));
return true;
}
// If/else chains are tricky.
// if (cond1) {
// } else if (cond2) {
// } // mark as "cond1" or "cond2"?
// For now, the answer is neither, just mark as "if".
// The ElseIf is a different IfStmt that doesn't know about the outer one.
llvm::DenseSet<const IfStmt *> ElseIfs; // not eligible for names
bool VisitIfStmt(IfStmt *S) {
if (Cfg.InlayHints.BlockEnd) {
if (const auto *ElseIf = llvm::dyn_cast_or_null<IfStmt>(S->getElse()))
ElseIfs.insert(ElseIf);
// Don't use markBlockEnd: the relevant range is [then.begin, else.end].
if (const auto *EndCS = llvm::dyn_cast<CompoundStmt>(
S->getElse() ? S->getElse() : S->getThen())) {
addBlockEndHint(
{S->getThen()->getBeginLoc(), EndCS->getRBracLoc()}, "if",
ElseIfs.contains(S) ? "" : summarizeExpr(S->getCond()), "");
}
}
return true;
}
void markBlockEnd(const Stmt *Body, llvm::StringRef Label,
llvm::StringRef Name = "") {
if (const auto *CS = llvm::dyn_cast_or_null<CompoundStmt>(Body))
addBlockEndHint(CS->getSourceRange(), Label, Name, "");
}
bool VisitTagDecl(TagDecl *D) {
if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) {
std::string DeclPrefix = D->getKindName().str();
if (const auto *ED = dyn_cast<EnumDecl>(D)) {
if (ED->isScoped())
DeclPrefix += ED->isScopedUsingClassTag() ? " class" : " struct";
};
addBlockEndHint(D->getBraceRange(), DeclPrefix, getSimpleName(*D), ";");
}
return true;
}
bool VisitNamespaceDecl(NamespaceDecl *D) {
if (Cfg.InlayHints.BlockEnd) {
// For namespace, the range actually starts at the namespace keyword. But
// it should be fine since it's usually very short.
addBlockEndHint(D->getSourceRange(), "namespace", getSimpleName(*D), "");
}
return true;
}
bool VisitLambdaExpr(LambdaExpr *E) {
FunctionDecl *D = E->getCallOperator();
if (!E->hasExplicitResultType()) {
SourceLocation TypeHintLoc;
if (!E->hasExplicitParameters())
TypeHintLoc = E->getIntroducerRange().getEnd();
else if (auto FTL = D->getFunctionTypeLoc())
TypeHintLoc = FTL.getRParenLoc();
if (TypeHintLoc.isValid())
addReturnTypeHint(D, TypeHintLoc);
}
return true;
}
void addReturnTypeHint(FunctionDecl *D, SourceRange Range) {
auto *AT = D->getReturnType()->getContainedAutoType();
if (!AT || AT->getDeducedType().isNull())
return;
addTypeHint(Range, D->getReturnType(), /*Prefix=*/"-> ");
}
bool VisitVarDecl(VarDecl *D) {
// Do not show hints for the aggregate in a structured binding,
// but show hints for the individual bindings.
if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
for (auto *Binding : DD->bindings()) {
// For structured bindings, print canonical types. This is important
// because for bindings that use the tuple_element protocol, the
// non-canonical types would be "tuple_element<I, A>::type".
if (auto Type = Binding->getType();
!Type.isNull() && !Type->isDependentType())
addTypeHint(Binding->getLocation(), Type.getCanonicalType(),
/*Prefix=*/": ");
}
return true;
}
if (auto *AT = D->getType()->getContainedAutoType()) {
if (AT->isDeduced() && !D->getType()->isDependentType()) {
// Our current approach is to place the hint on the variable
// and accordingly print the full type
// (e.g. for `const auto& x = 42`, print `const int&`).
// Alternatively, we could place the hint on the `auto`
// (and then just print the type deduced for the `auto`).
addTypeHint(D->getLocation(), D->getType(), /*Prefix=*/": ");
}
}
// Handle templates like `int foo(auto x)` with exactly one instantiation.
if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) {
if (D->getIdentifier() && PVD->getType()->isDependentType() &&
!getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc())
.isNull()) {
if (auto *IPVD = getOnlyParamInstantiation(PVD))
addTypeHint(D->getLocation(), IPVD->getType(), /*Prefix=*/": ");
}
}
return true;
}
ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) {
auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext());
if (!TemplateFunction)
return nullptr;
auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>(
getOnlyInstantiation(TemplateFunction));
if (!InstantiatedFunction)
return nullptr;
unsigned ParamIdx = 0;
for (auto *Param : TemplateFunction->parameters()) {
// Can't reason about param indexes in the presence of preceding packs.
// And if this param is a pack, it may expand to multiple params.
if (Param->isParameterPack())
return nullptr;
if (Param == D)
break;
++ParamIdx;
}
assert(ParamIdx < TemplateFunction->getNumParams() &&
"Couldn't find param in list?");
assert(ParamIdx < InstantiatedFunction->getNumParams() &&
"Instantiated function has fewer (non-pack) parameters?");
return InstantiatedFunction->getParamDecl(ParamIdx);
}
bool VisitInitListExpr(InitListExpr *Syn) {
// We receive the syntactic form here (shouldVisitImplicitCode() is false).
// This is the one we will ultimately attach designators to.
// It may have subobject initializers inlined without braces. The *semantic*
// form of the init-list has nested init-lists for these.
// getUnwrittenDesignators will look at the semantic form to determine the
// labels.
assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!");
if (!Cfg.InlayHints.Designators)
return true;
if (Syn->isIdiomaticZeroInitializer(AST.getLangOpts()))
return true;
llvm::DenseMap<SourceLocation, std::string> Designators =
tidy::utils::getUnwrittenDesignators(Syn);
for (const Expr *Init : Syn->inits()) {
if (llvm::isa<DesignatedInitExpr>(Init))
continue;
auto It = Designators.find(Init->getBeginLoc());
if (It != Designators.end() &&
!isPrecededByParamNameComment(Init, It->second))
addDesignatorHint(Init->getSourceRange(), It->second);
}
return true;
}
// FIXME: Handle RecoveryExpr to try to hint some invalid calls.
private:
using NameVec = SmallVector<StringRef, 8>;
void processCall(Callee Callee, SourceLocation RParenOrBraceLoc,
llvm::ArrayRef<const Expr *> Args) {
assert(Callee.Decl || Callee.Loc);
if ((!Cfg.InlayHints.Parameters && !Cfg.InlayHints.DefaultArguments) ||
Args.size() == 0)
return;
// The parameter name of a move or copy constructor is not very interesting.
if (Callee.Decl)
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee.Decl))
if (Ctor->isCopyOrMoveConstructor())
return;
SmallVector<std::string> FormattedDefaultArgs;
bool HasNonDefaultArgs = false;
ArrayRef<const ParmVarDecl *> Params, ForwardedParams;
// Resolve parameter packs to their forwarded parameter
SmallVector<const ParmVarDecl *> ForwardedParamsStorage;
if (Callee.Decl) {
Params = maybeDropCxxExplicitObjectParameters(Callee.Decl->parameters());
ForwardedParamsStorage = resolveForwardingParameters(Callee.Decl);
ForwardedParams =
maybeDropCxxExplicitObjectParameters(ForwardedParamsStorage);
} else {
Params = maybeDropCxxExplicitObjectParameters(Callee.Loc.getParams());
ForwardedParams = {Params.begin(), Params.end()};
}
NameVec ParameterNames = chooseParameterNames(ForwardedParams);
// Exclude setters (i.e. functions with one argument whose name begins with
// "set"), and builtins like std::move/forward/... as their parameter name
// is also not likely to be interesting.
if (Callee.Decl &&
(isSetter(Callee.Decl, ParameterNames) || isSimpleBuiltin(Callee.Decl)))
return;
for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) {
// Pack expansion expressions cause the 1:1 mapping between arguments and
// parameters to break down, so we don't add further inlay hints if we
// encounter one.
if (isa<PackExpansionExpr>(Args[I])) {
break;
}
StringRef Name = ParameterNames[I];
const bool NameHint =
shouldHintName(Args[I], Name) && Cfg.InlayHints.Parameters;
const bool ReferenceHint =
shouldHintReference(Params[I], ForwardedParams[I]) &&
Cfg.InlayHints.Parameters;
const bool IsDefault = isa<CXXDefaultArgExpr>(Args[I]);
HasNonDefaultArgs |= !IsDefault;
if (IsDefault) {
if (Cfg.InlayHints.DefaultArguments) {
const auto SourceText = Lexer::getSourceText(
CharSourceRange::getTokenRange(Params[I]->getDefaultArgRange()),
AST.getSourceManager(), AST.getLangOpts());
const auto Abbrev =
(SourceText.size() > Cfg.InlayHints.TypeNameLimit ||
SourceText.contains("\n"))
? "..."
: SourceText;
if (NameHint)
FormattedDefaultArgs.emplace_back(
llvm::formatv("{0}: {1}", Name, Abbrev));
else
FormattedDefaultArgs.emplace_back(llvm::formatv("{0}", Abbrev));
}
} else if (NameHint || ReferenceHint) {
addInlayHint(Args[I]->getSourceRange(), HintSide::Left,
InlayHintKind::Parameter, ReferenceHint ? "&" : "",
NameHint ? Name : "", ": ");
}
}
if (!FormattedDefaultArgs.empty()) {
std::string Hint =
joinAndTruncate(FormattedDefaultArgs, Cfg.InlayHints.TypeNameLimit);
addInlayHint(SourceRange{RParenOrBraceLoc}, HintSide::Left,
InlayHintKind::DefaultArgument,
HasNonDefaultArgs ? ", " : "", Hint, "");
}
}
static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) {
if (ParamNames.size() != 1)
return false;
StringRef Name = getSimpleName(*Callee);
if (!Name.starts_with_insensitive("set"))
return false;
// In addition to checking that the function has one parameter and its
// name starts with "set", also check that the part after "set" matches
// the name of the parameter (ignoring case). The idea here is that if
// the parameter name differs, it may contain extra information that
// may be useful to show in a hint, as in:
// void setTimeout(int timeoutMillis);
// This currently doesn't handle cases where params use snake_case
// and functions don't, e.g.
// void setExceptionHandler(EHFunc exception_handler);
// We could improve this by replacing `equals_insensitive` with some
// `sloppy_equals` which ignores case and also skips underscores.
StringRef WhatItIsSetting = Name.substr(3).ltrim("_");
return WhatItIsSetting.equals_insensitive(ParamNames[0]);
}
// Checks if the callee is one of the builtins
// addressof, as_const, forward, move(_if_noexcept)
static bool isSimpleBuiltin(const FunctionDecl *Callee) {
switch (Callee->getBuiltinID()) {
case Builtin::BIaddressof:
case Builtin::BIas_const:
case Builtin::BIforward:
case Builtin::BImove:
case Builtin::BImove_if_noexcept:
return true;
default:
return false;
}
}
bool shouldHintName(const Expr *Arg, StringRef ParamName) {
if (ParamName.empty())
return false;
// If the argument expression is a single name and it matches the
// parameter name exactly, omit the name hint.
if (ParamName == getSpelledIdentifier(Arg))
return false;
// Exclude argument expressions preceded by a /*paramName*/.
if (isPrecededByParamNameComment(Arg, ParamName))
return false;
return true;
}
bool shouldHintReference(const ParmVarDecl *Param,
const ParmVarDecl *ForwardedParam) {
// We add a & hint only when the argument is passed as mutable reference.
// For parameters that are not part of an expanded pack, this is
// straightforward. For expanded pack parameters, it's likely that they will
// be forwarded to another function. In this situation, we only want to add
// the reference hint if the argument is actually being used via mutable
// reference. This means we need to check
// 1. whether the value category of the argument is preserved, i.e. each
// pack expansion uses std::forward correctly.
// 2. whether the argument is ever copied/cast instead of passed
// by-reference
// Instead of checking this explicitly, we use the following proxy:
// 1. the value category can only change from rvalue to lvalue during
// forwarding, so checking whether both the parameter of the forwarding
// function and the forwarded function are lvalue references detects such
// a conversion.
// 2. if the argument is copied/cast somewhere in the chain of forwarding
// calls, it can only be passed on to an rvalue reference or const lvalue
// reference parameter. Thus if the forwarded parameter is a mutable
// lvalue reference, it cannot have been copied/cast to on the way.
// Additionally, we should not add a reference hint if the forwarded
// parameter was only partially resolved, i.e. points to an expanded pack
// parameter, since we do not know how it will be used eventually.
auto Type = Param->getType();
auto ForwardedType = ForwardedParam->getType();
return Type->isLValueReferenceType() &&
ForwardedType->isLValueReferenceType() &&
!ForwardedType.getNonReferenceType().isConstQualified() &&
!isExpandedFromParameterPack(ForwardedParam);
}
// Checks if "E" is spelled in the main file and preceded by a C-style comment
// whose contents match ParamName (allowing for whitespace and an optional "="
// at the end.
bool isPrecededByParamNameComment(const Expr *E, StringRef ParamName) {
auto &SM = AST.getSourceManager();
auto FileLoc = SM.getFileLoc(E->getBeginLoc());
auto Decomposed = SM.getDecomposedLoc(FileLoc);
if (Decomposed.first != MainFileID)
return false;
StringRef SourcePrefix = MainFileBuf.substr(0, Decomposed.second);
// Allow whitespace between comment and expression.
SourcePrefix = SourcePrefix.rtrim();
// Check for comment ending.
if (!SourcePrefix.consume_back("*/"))
return false;
// Ignore some punctuation and whitespace around comment.
// In particular this allows designators to match nicely.
llvm::StringLiteral IgnoreChars = " =.";
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
ParamName = ParamName.trim(IgnoreChars);
// Other than that, the comment must contain exactly ParamName.
if (!SourcePrefix.consume_back(ParamName))
return false;
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
return SourcePrefix.ends_with("/*");
}
// If "E" spells a single unqualified identifier, return that name.
// Otherwise, return an empty string.
static StringRef getSpelledIdentifier(const Expr *E) {
E = E->IgnoreUnlessSpelledInSource();
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
if (!DRE->getQualifier())
return getSimpleName(*DRE->getDecl());
if (auto *ME = dyn_cast<MemberExpr>(E))
if (!ME->getQualifier() && ME->isImplicitAccess())
return getSimpleName(*ME->getMemberDecl());
return {};
}
NameVec chooseParameterNames(ArrayRef<const ParmVarDecl *> Parameters) {
NameVec ParameterNames;
for (const auto *P : Parameters) {
if (isExpandedFromParameterPack(P)) {
// If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a
// non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is
// unlikely to be useful.
ParameterNames.emplace_back();
} else {
auto SimpleName = getSimpleName(*P);
// If the parameter is unnamed in the declaration:
// attempt to get its name from the definition
if (SimpleName.empty()) {
if (const auto *PD = getParamDefinition(P)) {
SimpleName = getSimpleName(*PD);
}
}
ParameterNames.emplace_back(SimpleName);
}
}
// Standard library functions often have parameter names that start
// with underscores, which makes the hints noisy, so strip them out.
for (auto &Name : ParameterNames)
stripLeadingUnderscores(Name);
return ParameterNames;
}
// for a ParmVarDecl from a function declaration, returns the corresponding
// ParmVarDecl from the definition if possible, nullptr otherwise.
static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) {
if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) {
if (auto *Def = Callee->getDefinition()) {
auto I = std::distance(Callee->param_begin(),
llvm::find(Callee->parameters(), P));
if (I < (int)Callee->getNumParams()) {
return Def->getParamDecl(I);
}
}
}
return nullptr;
}
// We pass HintSide rather than SourceLocation because we want to ensure
// it is in the same file as the common file range.
void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind,
llvm::StringRef Prefix, llvm::StringRef Label,
llvm::StringRef Suffix) {
auto LSPRange = getHintRange(R);
if (!LSPRange)
return;
addInlayHint(*LSPRange, Side, Kind, Prefix, Label, Suffix);
}
void addInlayHint(Range LSPRange, HintSide Side, InlayHintKind Kind,
llvm::StringRef Prefix, llvm::StringRef Label,
llvm::StringRef Suffix) {
// We shouldn't get as far as adding a hint if the category is disabled.
// We'd like to disable as much of the analysis as possible above instead.
// Assert in debug mode but add a dynamic check in production.
assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!");
switch (Kind) {
#define CHECK_KIND(Enumerator, ConfigProperty) \
case InlayHintKind::Enumerator: \
assert(Cfg.InlayHints.ConfigProperty && \
"Shouldn't get here if kind is disabled!"); \
if (!Cfg.InlayHints.ConfigProperty) \
return; \
break
CHECK_KIND(Parameter, Parameters);
CHECK_KIND(Type, DeducedTypes);
CHECK_KIND(Designator, Designators);
CHECK_KIND(BlockEnd, BlockEnd);
CHECK_KIND(DefaultArgument, DefaultArguments);
#undef CHECK_KIND
}
Position LSPPos = Side == HintSide::Left ? LSPRange.start : LSPRange.end;
if (RestrictRange &&
(LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end)))
return;
bool PadLeft = Prefix.consume_front(" ");
bool PadRight = Suffix.consume_back(" ");
Results.push_back(InlayHint{LSPPos,
/*label=*/{(Prefix + Label + Suffix).str()},
Kind, PadLeft, PadRight, LSPRange});
}
// Get the range of the main file that *exactly* corresponds to R.
std::optional<Range> getHintRange(SourceRange R) {
const auto &SM = AST.getSourceManager();
auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(R));
// TokenBuffer will return null if e.g. R corresponds to only part of a
// macro expansion.
if (!Spelled || Spelled->empty())
return std::nullopt;
// Hint must be within the main file, not e.g. a non-preamble include.
if (SM.getFileID(Spelled->front().location()) != SM.getMainFileID() ||
SM.getFileID(Spelled->back().location()) != SM.getMainFileID())
return std::nullopt;
return Range{sourceLocToPosition(SM, Spelled->front().location()),
sourceLocToPosition(SM, Spelled->back().endLocation())};
}
void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) {
if (!Cfg.InlayHints.DeducedTypes || T.isNull())
return;
// The sugared type is more useful in some cases, and the canonical
// type in other cases.
auto Desugared = maybeDesugar(AST, T);
std::string TypeName = Desugared.getAsString(TypeHintPolicy);
if (T != Desugared && !shouldPrintTypeHint(TypeName)) {
// If the desugared type is too long to display, fallback to the sugared
// type.
TypeName = T.getAsString(TypeHintPolicy);
}
if (shouldPrintTypeHint(TypeName))
addInlayHint(R, HintSide::Right, InlayHintKind::Type, Prefix, TypeName,
/*Suffix=*/"");
}
void addDesignatorHint(SourceRange R, llvm::StringRef Text) {
addInlayHint(R, HintSide::Left, InlayHintKind::Designator,
/*Prefix=*/"", Text, /*Suffix=*/"=");
}
bool shouldPrintTypeHint(llvm::StringRef TypeName) const noexcept {
return Cfg.InlayHints.TypeNameLimit == 0 ||
TypeName.size() < Cfg.InlayHints.TypeNameLimit;
}
void addBlockEndHint(SourceRange BraceRange, StringRef DeclPrefix,
StringRef Name, StringRef OptionalPunctuation) {
auto HintRange = computeBlockEndHintRange(BraceRange, OptionalPunctuation);
if (!HintRange)
return;
std::string Label = DeclPrefix.str();
if (!Label.empty() && !Name.empty())
Label += ' ';
Label += Name;
constexpr unsigned HintMaxLengthLimit = 60;
if (Label.length() > HintMaxLengthLimit)
return;
addInlayHint(*HintRange, HintSide::Right, InlayHintKind::BlockEnd, " // ",
Label, "");
}
// Compute the LSP range to attach the block end hint to, if any allowed.
// 1. "}" is the last non-whitespace character on the line. The range of "}"
// is returned.
// 2. After "}", if the trimmed trailing text is exactly
// `OptionalPunctuation`, say ";". The range of "} ... ;" is returned.
// Otherwise, the hint shouldn't be shown.
std::optional<Range> computeBlockEndHintRange(SourceRange BraceRange,
StringRef OptionalPunctuation) {
auto &SM = AST.getSourceManager();
auto [BlockBeginFileId, BlockBeginOffset] =
SM.getDecomposedLoc(SM.getFileLoc(BraceRange.getBegin()));
auto RBraceLoc = SM.getFileLoc(BraceRange.getEnd());
auto [RBraceFileId, RBraceOffset] = SM.getDecomposedLoc(RBraceLoc);
// Because we need to check the block satisfies the minimum line limit, we
// require both source location to be in the main file. This prevents hint
// to be shown in weird cases like '{' is actually in a "#include", but it's
// rare anyway.
if (BlockBeginFileId != MainFileID || RBraceFileId != MainFileID)
return std::nullopt;
StringRef RestOfLine = MainFileBuf.substr(RBraceOffset).split('\n').first;
if (!RestOfLine.starts_with("}"))
return std::nullopt;
StringRef TrimmedTrailingText = RestOfLine.drop_front().trim();
if (!TrimmedTrailingText.empty() &&
TrimmedTrailingText != OptionalPunctuation)
return std::nullopt;
auto BlockBeginLine = SM.getLineNumber(BlockBeginFileId, BlockBeginOffset);
auto RBraceLine = SM.getLineNumber(RBraceFileId, RBraceOffset);
// Don't show hint on trivial blocks like `class X {};`
if (BlockBeginLine + HintOptions.HintMinLineLimit - 1 > RBraceLine)
return std::nullopt;
// This is what we attach the hint to, usually "}" or "};".
StringRef HintRangeText = RestOfLine.take_front(
TrimmedTrailingText.empty()
? 1
: TrimmedTrailingText.bytes_end() - RestOfLine.bytes_begin());
Position HintStart = sourceLocToPosition(SM, RBraceLoc);
Position HintEnd = sourceLocToPosition(
SM, RBraceLoc.getLocWithOffset(HintRangeText.size()));
return Range{HintStart, HintEnd};
}
static bool isFunctionObjectCallExpr(CallExpr *E) noexcept {
if (auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(E))
return CallExpr->getOperator() == OverloadedOperatorKind::OO_Call;
return false;
}
std::vector<InlayHint> &Results;
ASTContext &AST;
const syntax::TokenBuffer &Tokens;
const Config &Cfg;
std::optional<Range> RestrictRange;
FileID MainFileID;
StringRef MainFileBuf;
const HeuristicResolver *Resolver;
PrintingPolicy TypeHintPolicy;
InlayHintOptions HintOptions;
};
} // namespace
std::vector<InlayHint> inlayHints(ParsedAST &AST,
std::optional<Range> RestrictRange,
InlayHintOptions HintOptions) {
std::vector<InlayHint> Results;
const auto &Cfg = Config::current();
if (!Cfg.InlayHints.Enabled)
return Results;
InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange),
HintOptions);
Visitor.TraverseAST(AST.getASTContext());
// De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit
// template instantiations.
llvm::sort(Results);
Results.erase(llvm::unique(Results), Results.end());
return Results;
}
} // namespace clangd
} // namespace clang