Henrich Lauko 4820b183a8
[CIR] Simplify ConstantOp accesses and its getDefiningOp (#151216)
- Replaces  dyn_cast<cir::ConstantOp>(v.getDefiningOp()) and similar with v.getDefiningOp<cir::ConstantOp>()
- Adds `getValueAttr` method to ConstantOp
2025-08-01 21:04:54 +02:00

325 lines
11 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Region.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "clang/CIR/Dialect/IR/CIRDialect.h"
#include "clang/CIR/Dialect/Passes.h"
#include "llvm/ADT/SmallVector.h"
using namespace mlir;
using namespace cir;
//===----------------------------------------------------------------------===//
// Rewrite patterns
//===----------------------------------------------------------------------===//
namespace {
/// Simplify suitable ternary operations into select operations.
///
/// For now we only simplify those ternary operations whose true and false
/// branches directly yield a value or a constant. That is, both of the true and
/// the false branch must either contain a cir.yield operation as the only
/// operation in the branch, or contain a cir.const operation followed by a
/// cir.yield operation that yields the constant value.
///
/// For example, we will simplify the following ternary operation:
///
/// %0 = ...
/// %1 = cir.ternary (%condition, true {
/// %2 = cir.const ...
/// cir.yield %2
/// } false {
/// cir.yield %0
///
/// into the following sequence of operations:
///
/// %1 = cir.const ...
/// %0 = cir.select if %condition then %1 else %2
struct SimplifyTernary final : public OpRewritePattern<TernaryOp> {
using OpRewritePattern<TernaryOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TernaryOp op,
PatternRewriter &rewriter) const override {
if (op->getNumResults() != 1)
return mlir::failure();
if (!isSimpleTernaryBranch(op.getTrueRegion()) ||
!isSimpleTernaryBranch(op.getFalseRegion()))
return mlir::failure();
cir::YieldOp trueBranchYieldOp =
mlir::cast<cir::YieldOp>(op.getTrueRegion().front().getTerminator());
cir::YieldOp falseBranchYieldOp =
mlir::cast<cir::YieldOp>(op.getFalseRegion().front().getTerminator());
mlir::Value trueValue = trueBranchYieldOp.getArgs()[0];
mlir::Value falseValue = falseBranchYieldOp.getArgs()[0];
rewriter.inlineBlockBefore(&op.getTrueRegion().front(), op);
rewriter.inlineBlockBefore(&op.getFalseRegion().front(), op);
rewriter.eraseOp(trueBranchYieldOp);
rewriter.eraseOp(falseBranchYieldOp);
rewriter.replaceOpWithNewOp<cir::SelectOp>(op, op.getCond(), trueValue,
falseValue);
return mlir::success();
}
private:
bool isSimpleTernaryBranch(mlir::Region &region) const {
if (!region.hasOneBlock())
return false;
mlir::Block &onlyBlock = region.front();
mlir::Block::OpListType &ops = onlyBlock.getOperations();
// The region/block could only contain at most 2 operations.
if (ops.size() > 2)
return false;
if (ops.size() == 1) {
// The region/block only contain a cir.yield operation.
return true;
}
// Check whether the region/block contains a cir.const followed by a
// cir.yield that yields the value.
auto yieldOp = mlir::cast<cir::YieldOp>(onlyBlock.getTerminator());
auto yieldValueDefOp =
yieldOp.getArgs()[0].getDefiningOp<cir::ConstantOp>();
return yieldValueDefOp && yieldValueDefOp->getBlock() == &onlyBlock;
}
};
/// Simplify select operations with boolean constants into simpler forms.
///
/// This pattern simplifies select operations where both true and false values
/// are boolean constants. Two specific cases are handled:
///
/// 1. When selecting between true and false based on a condition,
/// the operation simplifies to just the condition itself:
///
/// %0 = cir.select if %condition then true else false
/// ->
/// (replaced with %condition directly)
///
/// 2. When selecting between false and true based on a condition,
/// the operation simplifies to the logical negation of the condition:
///
/// %0 = cir.select if %condition then false else true
/// ->
/// %0 = cir.unary not %condition
struct SimplifySelect : public OpRewritePattern<SelectOp> {
using OpRewritePattern<SelectOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SelectOp op,
PatternRewriter &rewriter) const final {
auto trueValueOp = op.getTrueValue().getDefiningOp<cir::ConstantOp>();
auto falseValueOp = op.getFalseValue().getDefiningOp<cir::ConstantOp>();
if (!trueValueOp || !falseValueOp)
return mlir::failure();
auto trueValue = trueValueOp.getValueAttr<cir::BoolAttr>();
auto falseValue = falseValueOp.getValueAttr<cir::BoolAttr>();
if (!trueValue || !falseValue)
return mlir::failure();
// cir.select if %0 then #true else #false -> %0
if (trueValue.getValue() && !falseValue.getValue()) {
rewriter.replaceAllUsesWith(op, op.getCondition());
rewriter.eraseOp(op);
return mlir::success();
}
// cir.select if %0 then #false else #true -> cir.unary not %0
if (!trueValue.getValue() && falseValue.getValue()) {
rewriter.replaceOpWithNewOp<cir::UnaryOp>(op, cir::UnaryOpKind::Not,
op.getCondition());
return mlir::success();
}
return mlir::failure();
}
};
/// Simplify `cir.switch` operations by folding cascading cases
/// into a single `cir.case` with the `anyof` kind.
///
/// This pattern identifies cascading cases within a `cir.switch` operation.
/// Cascading cases are defined as consecutive `cir.case` operations of kind
/// `equal`, each containing a single `cir.yield` operation in their body.
///
/// The pattern merges these cascading cases into a single `cir.case` operation
/// with kind `anyof`, aggregating all the case values.
///
/// The merging process continues until a `cir.case` with a different body
/// (e.g., containing `cir.break` or compound stmt) is encountered, which
/// breaks the chain.
///
/// Example:
///
/// Before:
/// cir.case equal, [#cir.int<0> : !s32i] {
/// cir.yield
/// }
/// cir.case equal, [#cir.int<1> : !s32i] {
/// cir.yield
/// }
/// cir.case equal, [#cir.int<2> : !s32i] {
/// cir.break
/// }
///
/// After applying SimplifySwitch:
/// cir.case anyof, [#cir.int<0> : !s32i, #cir.int<1> : !s32i, #cir.int<2> :
/// !s32i] {
/// cir.break
/// }
struct SimplifySwitch : public OpRewritePattern<SwitchOp> {
using OpRewritePattern<SwitchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SwitchOp op,
PatternRewriter &rewriter) const override {
LogicalResult changed = mlir::failure();
SmallVector<CaseOp, 8> cases;
SmallVector<CaseOp, 4> cascadingCases;
SmallVector<mlir::Attribute, 4> cascadingCaseValues;
op.collectCases(cases);
if (cases.empty())
return mlir::failure();
auto flushMergedOps = [&]() {
for (CaseOp &c : cascadingCases)
rewriter.eraseOp(c);
cascadingCases.clear();
cascadingCaseValues.clear();
};
auto mergeCascadingInto = [&](CaseOp &target) {
rewriter.modifyOpInPlace(target, [&]() {
target.setValueAttr(rewriter.getArrayAttr(cascadingCaseValues));
target.setKind(CaseOpKind::Anyof);
});
changed = mlir::success();
};
for (CaseOp c : cases) {
cir::CaseOpKind kind = c.getKind();
if (kind == cir::CaseOpKind::Equal &&
isa<YieldOp>(c.getCaseRegion().front().front())) {
// If the case contains only a YieldOp, collect it for cascading merge
cascadingCases.push_back(c);
cascadingCaseValues.push_back(c.getValue()[0]);
} else if (kind == cir::CaseOpKind::Equal && !cascadingCases.empty()) {
// merge previously collected cascading cases
cascadingCaseValues.push_back(c.getValue()[0]);
mergeCascadingInto(c);
flushMergedOps();
} else if (kind != cir::CaseOpKind::Equal && cascadingCases.size() > 1) {
// If a Default, Anyof or Range case is found and there are previous
// cascading cases, merge all of them into the last cascading case.
// We don't currently fold case range statements with other case
// statements.
assert(!cir::MissingFeatures::foldRangeCase());
CaseOp lastCascadingCase = cascadingCases.back();
mergeCascadingInto(lastCascadingCase);
cascadingCases.pop_back();
flushMergedOps();
} else {
cascadingCases.clear();
cascadingCaseValues.clear();
}
}
// Edge case: all cases are simple cascading cases
if (cascadingCases.size() == cases.size()) {
CaseOp lastCascadingCase = cascadingCases.back();
mergeCascadingInto(lastCascadingCase);
cascadingCases.pop_back();
flushMergedOps();
}
return changed;
}
};
struct SimplifyVecSplat : public OpRewritePattern<VecSplatOp> {
using OpRewritePattern<VecSplatOp>::OpRewritePattern;
LogicalResult matchAndRewrite(VecSplatOp op,
PatternRewriter &rewriter) const override {
mlir::Value splatValue = op.getValue();
auto constant = splatValue.getDefiningOp<cir::ConstantOp>();
if (!constant)
return mlir::failure();
auto value = constant.getValue();
if (!mlir::isa_and_nonnull<cir::IntAttr>(value) &&
!mlir::isa_and_nonnull<cir::FPAttr>(value))
return mlir::failure();
cir::VectorType resultType = op.getResult().getType();
SmallVector<mlir::Attribute, 16> elements(resultType.getSize(), value);
auto constVecAttr = cir::ConstVectorAttr::get(
resultType, mlir::ArrayAttr::get(getContext(), elements));
rewriter.replaceOpWithNewOp<cir::ConstantOp>(op, constVecAttr);
return mlir::success();
}
};
//===----------------------------------------------------------------------===//
// CIRSimplifyPass
//===----------------------------------------------------------------------===//
struct CIRSimplifyPass : public CIRSimplifyBase<CIRSimplifyPass> {
using CIRSimplifyBase::CIRSimplifyBase;
void runOnOperation() override;
};
void populateMergeCleanupPatterns(RewritePatternSet &patterns) {
// clang-format off
patterns.add<
SimplifyTernary,
SimplifySelect,
SimplifySwitch,
SimplifyVecSplat
>(patterns.getContext());
// clang-format on
}
void CIRSimplifyPass::runOnOperation() {
// Collect rewrite patterns.
RewritePatternSet patterns(&getContext());
populateMergeCleanupPatterns(patterns);
// Collect operations to apply patterns.
llvm::SmallVector<Operation *, 16> ops;
getOperation()->walk([&](Operation *op) {
if (isa<TernaryOp, SelectOp, SwitchOp, VecSplatOp>(op))
ops.push_back(op);
});
// Apply patterns.
if (applyOpPatternsGreedily(ops, std::move(patterns)).failed())
signalPassFailure();
}
} // namespace
std::unique_ptr<Pass> mlir::createCIRSimplifyPass() {
return std::make_unique<CIRSimplifyPass>();
}