Wolfgang Pieb 4424c44c8c [Clang] Add fake use emission to Clang with -fextend-lifetimes (#110102)
Following the previous patch which adds the "extend lifetimes" flag
without (almost) any functionality, this patch adds the real feature by
allowing Clang to emit fake uses. These are emitted as a new form of cleanup,
set for variable addresses, which just emits a fake use intrinsic when the
variable falls out of scope. The code for achieving this is simple, with most
of the logic centered on determining whether to emit a fake use for a given
address, and on ensuring that fake uses are ignored in a few cases.

Co-authored-by: Stephen Tozer <stephen.tozer@sony.com>
2025-01-28 12:30:31 +00:00

709 lines
22 KiB
C++

//===-- CGCleanup.h - Classes for cleanups IR generation --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These classes support the generation of LLVM IR for cleanups.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_CODEGEN_CGCLEANUP_H
#define LLVM_CLANG_LIB_CODEGEN_CGCLEANUP_H
#include "EHScopeStack.h"
#include "Address.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Instruction.h"
namespace llvm {
class BasicBlock;
class Value;
class ConstantInt;
}
namespace clang {
class FunctionDecl;
namespace CodeGen {
class CodeGenModule;
class CodeGenFunction;
/// The MS C++ ABI needs a pointer to RTTI data plus some flags to describe the
/// type of a catch handler, so we use this wrapper.
struct CatchTypeInfo {
llvm::Constant *RTTI;
unsigned Flags;
};
/// A protected scope for zero-cost EH handling.
class EHScope {
public:
enum Kind { Cleanup, Catch, Terminate, Filter };
private:
llvm::BasicBlock *CachedLandingPad;
llvm::BasicBlock *CachedEHDispatchBlock;
EHScopeStack::stable_iterator EnclosingEHScope;
class CommonBitFields {
friend class EHScope;
LLVM_PREFERRED_TYPE(Kind)
unsigned Kind : 3;
};
enum { NumCommonBits = 3 };
protected:
class CatchBitFields {
friend class EHCatchScope;
unsigned : NumCommonBits;
unsigned NumHandlers : 32 - NumCommonBits;
};
class CleanupBitFields {
friend class EHCleanupScope;
unsigned : NumCommonBits;
/// Whether this cleanup needs to be run along normal edges.
LLVM_PREFERRED_TYPE(bool)
unsigned IsNormalCleanup : 1;
/// Whether this cleanup needs to be run along exception edges.
LLVM_PREFERRED_TYPE(bool)
unsigned IsEHCleanup : 1;
/// Whether this cleanup is currently active.
LLVM_PREFERRED_TYPE(bool)
unsigned IsActive : 1;
/// Whether this cleanup is a lifetime marker
LLVM_PREFERRED_TYPE(bool)
unsigned IsLifetimeMarker : 1;
/// Whether this cleanup is a fake use
LLVM_PREFERRED_TYPE(bool)
unsigned IsFakeUse : 1;
/// Whether the normal cleanup should test the activation flag.
LLVM_PREFERRED_TYPE(bool)
unsigned TestFlagInNormalCleanup : 1;
/// Whether the EH cleanup should test the activation flag.
LLVM_PREFERRED_TYPE(bool)
unsigned TestFlagInEHCleanup : 1;
/// The amount of extra storage needed by the Cleanup.
/// Always a multiple of the scope-stack alignment.
unsigned CleanupSize : 12;
};
class FilterBitFields {
friend class EHFilterScope;
unsigned : NumCommonBits;
unsigned NumFilters : 32 - NumCommonBits;
};
union {
CommonBitFields CommonBits;
CatchBitFields CatchBits;
CleanupBitFields CleanupBits;
FilterBitFields FilterBits;
};
public:
EHScope(Kind kind, EHScopeStack::stable_iterator enclosingEHScope)
: CachedLandingPad(nullptr), CachedEHDispatchBlock(nullptr),
EnclosingEHScope(enclosingEHScope) {
CommonBits.Kind = kind;
}
Kind getKind() const { return static_cast<Kind>(CommonBits.Kind); }
llvm::BasicBlock *getCachedLandingPad() const {
return CachedLandingPad;
}
void setCachedLandingPad(llvm::BasicBlock *block) {
CachedLandingPad = block;
}
llvm::BasicBlock *getCachedEHDispatchBlock() const {
return CachedEHDispatchBlock;
}
void setCachedEHDispatchBlock(llvm::BasicBlock *block) {
CachedEHDispatchBlock = block;
}
bool hasEHBranches() const {
if (llvm::BasicBlock *block = getCachedEHDispatchBlock())
return !block->use_empty();
return false;
}
EHScopeStack::stable_iterator getEnclosingEHScope() const {
return EnclosingEHScope;
}
};
/// A scope which attempts to handle some, possibly all, types of
/// exceptions.
///
/// Objective C \@finally blocks are represented using a cleanup scope
/// after the catch scope.
class EHCatchScope : public EHScope {
// In effect, we have a flexible array member
// Handler Handlers[0];
// But that's only standard in C99, not C++, so we have to do
// annoying pointer arithmetic instead.
public:
struct Handler {
/// A type info value, or null (C++ null, not an LLVM null pointer)
/// for a catch-all.
CatchTypeInfo Type;
/// The catch handler for this type.
llvm::BasicBlock *Block;
bool isCatchAll() const { return Type.RTTI == nullptr; }
};
private:
friend class EHScopeStack;
Handler *getHandlers() {
return reinterpret_cast<Handler*>(this+1);
}
const Handler *getHandlers() const {
return reinterpret_cast<const Handler*>(this+1);
}
public:
static size_t getSizeForNumHandlers(unsigned N) {
return sizeof(EHCatchScope) + N * sizeof(Handler);
}
EHCatchScope(unsigned numHandlers,
EHScopeStack::stable_iterator enclosingEHScope)
: EHScope(Catch, enclosingEHScope) {
CatchBits.NumHandlers = numHandlers;
assert(CatchBits.NumHandlers == numHandlers && "NumHandlers overflow?");
}
unsigned getNumHandlers() const {
return CatchBits.NumHandlers;
}
void setCatchAllHandler(unsigned I, llvm::BasicBlock *Block) {
setHandler(I, CatchTypeInfo{nullptr, 0}, Block);
}
void setHandler(unsigned I, llvm::Constant *Type, llvm::BasicBlock *Block) {
assert(I < getNumHandlers());
getHandlers()[I].Type = CatchTypeInfo{Type, 0};
getHandlers()[I].Block = Block;
}
void setHandler(unsigned I, CatchTypeInfo Type, llvm::BasicBlock *Block) {
assert(I < getNumHandlers());
getHandlers()[I].Type = Type;
getHandlers()[I].Block = Block;
}
const Handler &getHandler(unsigned I) const {
assert(I < getNumHandlers());
return getHandlers()[I];
}
// Clear all handler blocks.
// FIXME: it's better to always call clearHandlerBlocks in DTOR and have a
// 'takeHandler' or some such function which removes ownership from the
// EHCatchScope object if the handlers should live longer than EHCatchScope.
void clearHandlerBlocks() {
for (unsigned I = 0, N = getNumHandlers(); I != N; ++I)
delete getHandler(I).Block;
}
typedef const Handler *iterator;
iterator begin() const { return getHandlers(); }
iterator end() const { return getHandlers() + getNumHandlers(); }
static bool classof(const EHScope *Scope) {
return Scope->getKind() == Catch;
}
};
/// A cleanup scope which generates the cleanup blocks lazily.
class alignas(8) EHCleanupScope : public EHScope {
/// The nearest normal cleanup scope enclosing this one.
EHScopeStack::stable_iterator EnclosingNormal;
/// The nearest EH scope enclosing this one.
EHScopeStack::stable_iterator EnclosingEH;
/// The dual entry/exit block along the normal edge. This is lazily
/// created if needed before the cleanup is popped.
llvm::BasicBlock *NormalBlock;
/// An optional i1 variable indicating whether this cleanup has been
/// activated yet.
Address ActiveFlag;
/// Extra information required for cleanups that have resolved
/// branches through them. This has to be allocated on the side
/// because everything on the cleanup stack has be trivially
/// movable.
struct ExtInfo {
/// The destinations of normal branch-afters and branch-throughs.
llvm::SmallPtrSet<llvm::BasicBlock*, 4> Branches;
/// Normal branch-afters.
SmallVector<std::pair<llvm::BasicBlock*,llvm::ConstantInt*>, 4>
BranchAfters;
};
mutable struct ExtInfo *ExtInfo;
/// Erases auxillary allocas and their usages for an unused cleanup.
/// Cleanups should mark these allocas as 'used' if the cleanup is
/// emitted, otherwise these instructions would be erased.
struct AuxillaryAllocas {
SmallVector<llvm::Instruction *, 1> AuxAllocas;
bool used = false;
// Records a potentially unused instruction to be erased later.
void Add(llvm::AllocaInst *Alloca) { AuxAllocas.push_back(Alloca); }
// Mark all recorded instructions as used. These will not be erased later.
void MarkUsed() {
used = true;
AuxAllocas.clear();
}
~AuxillaryAllocas() {
if (used)
return;
llvm::SetVector<llvm::Instruction *> Uses;
for (auto *Inst : llvm::reverse(AuxAllocas))
CollectUses(Inst, Uses);
// Delete uses in the reverse order of insertion.
for (auto *I : llvm::reverse(Uses))
I->eraseFromParent();
}
private:
void CollectUses(llvm::Instruction *I,
llvm::SetVector<llvm::Instruction *> &Uses) {
if (!I || !Uses.insert(I))
return;
for (auto *User : I->users())
CollectUses(cast<llvm::Instruction>(User), Uses);
}
};
mutable struct AuxillaryAllocas *AuxAllocas;
AuxillaryAllocas &getAuxillaryAllocas() {
if (!AuxAllocas) {
AuxAllocas = new struct AuxillaryAllocas();
}
return *AuxAllocas;
}
/// The number of fixups required by enclosing scopes (not including
/// this one). If this is the top cleanup scope, all the fixups
/// from this index onwards belong to this scope.
unsigned FixupDepth;
struct ExtInfo &getExtInfo() {
if (!ExtInfo) ExtInfo = new struct ExtInfo();
return *ExtInfo;
}
const struct ExtInfo &getExtInfo() const {
if (!ExtInfo) ExtInfo = new struct ExtInfo();
return *ExtInfo;
}
public:
/// Gets the size required for a lazy cleanup scope with the given
/// cleanup-data requirements.
static size_t getSizeForCleanupSize(size_t Size) {
return sizeof(EHCleanupScope) + Size;
}
size_t getAllocatedSize() const {
return sizeof(EHCleanupScope) + CleanupBits.CleanupSize;
}
EHCleanupScope(bool isNormal, bool isEH, unsigned cleanupSize,
unsigned fixupDepth,
EHScopeStack::stable_iterator enclosingNormal,
EHScopeStack::stable_iterator enclosingEH)
: EHScope(EHScope::Cleanup, enclosingEH),
EnclosingNormal(enclosingNormal), NormalBlock(nullptr),
ActiveFlag(Address::invalid()), ExtInfo(nullptr), AuxAllocas(nullptr),
FixupDepth(fixupDepth) {
CleanupBits.IsNormalCleanup = isNormal;
CleanupBits.IsEHCleanup = isEH;
CleanupBits.IsActive = true;
CleanupBits.IsLifetimeMarker = false;
CleanupBits.IsFakeUse = false;
CleanupBits.TestFlagInNormalCleanup = false;
CleanupBits.TestFlagInEHCleanup = false;
CleanupBits.CleanupSize = cleanupSize;
assert(CleanupBits.CleanupSize == cleanupSize && "cleanup size overflow");
}
void Destroy() {
if (AuxAllocas)
delete AuxAllocas;
delete ExtInfo;
}
void AddAuxAllocas(llvm::SmallVector<llvm::AllocaInst *> Allocas) {
for (auto *Alloca : Allocas)
getAuxillaryAllocas().Add(Alloca);
}
void MarkEmitted() { getAuxillaryAllocas().MarkUsed(); }
// Objects of EHCleanupScope are not destructed. Use Destroy().
~EHCleanupScope() = delete;
bool isNormalCleanup() const { return CleanupBits.IsNormalCleanup; }
llvm::BasicBlock *getNormalBlock() const { return NormalBlock; }
void setNormalBlock(llvm::BasicBlock *BB) { NormalBlock = BB; }
bool isEHCleanup() const { return CleanupBits.IsEHCleanup; }
bool isActive() const { return CleanupBits.IsActive; }
void setActive(bool A) { CleanupBits.IsActive = A; }
bool isLifetimeMarker() const { return CleanupBits.IsLifetimeMarker; }
void setLifetimeMarker() { CleanupBits.IsLifetimeMarker = true; }
bool isFakeUse() const { return CleanupBits.IsFakeUse; }
void setFakeUse() { CleanupBits.IsFakeUse = true; }
bool hasActiveFlag() const { return ActiveFlag.isValid(); }
Address getActiveFlag() const {
return ActiveFlag;
}
void setActiveFlag(RawAddress Var) {
assert(Var.getAlignment().isOne());
ActiveFlag = Var;
}
void setTestFlagInNormalCleanup() {
CleanupBits.TestFlagInNormalCleanup = true;
}
bool shouldTestFlagInNormalCleanup() const {
return CleanupBits.TestFlagInNormalCleanup;
}
void setTestFlagInEHCleanup() {
CleanupBits.TestFlagInEHCleanup = true;
}
bool shouldTestFlagInEHCleanup() const {
return CleanupBits.TestFlagInEHCleanup;
}
unsigned getFixupDepth() const { return FixupDepth; }
EHScopeStack::stable_iterator getEnclosingNormalCleanup() const {
return EnclosingNormal;
}
size_t getCleanupSize() const { return CleanupBits.CleanupSize; }
void *getCleanupBuffer() { return this + 1; }
EHScopeStack::Cleanup *getCleanup() {
return reinterpret_cast<EHScopeStack::Cleanup*>(getCleanupBuffer());
}
/// True if this cleanup scope has any branch-afters or branch-throughs.
bool hasBranches() const { return ExtInfo && !ExtInfo->Branches.empty(); }
/// Add a branch-after to this cleanup scope. A branch-after is a
/// branch from a point protected by this (normal) cleanup to a
/// point in the normal cleanup scope immediately containing it.
/// For example,
/// for (;;) { A a; break; }
/// contains a branch-after.
///
/// Branch-afters each have their own destination out of the
/// cleanup, guaranteed distinct from anything else threaded through
/// it. Therefore branch-afters usually force a switch after the
/// cleanup.
void addBranchAfter(llvm::ConstantInt *Index,
llvm::BasicBlock *Block) {
struct ExtInfo &ExtInfo = getExtInfo();
if (ExtInfo.Branches.insert(Block).second)
ExtInfo.BranchAfters.push_back(std::make_pair(Block, Index));
}
/// Return the number of unique branch-afters on this scope.
unsigned getNumBranchAfters() const {
return ExtInfo ? ExtInfo->BranchAfters.size() : 0;
}
llvm::BasicBlock *getBranchAfterBlock(unsigned I) const {
assert(I < getNumBranchAfters());
return ExtInfo->BranchAfters[I].first;
}
llvm::ConstantInt *getBranchAfterIndex(unsigned I) const {
assert(I < getNumBranchAfters());
return ExtInfo->BranchAfters[I].second;
}
/// Add a branch-through to this cleanup scope. A branch-through is
/// a branch from a scope protected by this (normal) cleanup to an
/// enclosing scope other than the immediately-enclosing normal
/// cleanup scope.
///
/// In the following example, the branch through B's scope is a
/// branch-through, while the branch through A's scope is a
/// branch-after:
/// for (;;) { A a; B b; break; }
///
/// All branch-throughs have a common destination out of the
/// cleanup, one possibly shared with the fall-through. Therefore
/// branch-throughs usually don't force a switch after the cleanup.
///
/// \return true if the branch-through was new to this scope
bool addBranchThrough(llvm::BasicBlock *Block) {
return getExtInfo().Branches.insert(Block).second;
}
/// Determines if this cleanup scope has any branch throughs.
bool hasBranchThroughs() const {
if (!ExtInfo) return false;
return (ExtInfo->BranchAfters.size() != ExtInfo->Branches.size());
}
static bool classof(const EHScope *Scope) {
return (Scope->getKind() == Cleanup);
}
};
// NOTE: there's a bunch of different data classes tacked on after an
// EHCleanupScope. It is asserted (in EHScopeStack::pushCleanup*) that
// they don't require greater alignment than ScopeStackAlignment. So,
// EHCleanupScope ought to have alignment equal to that -- not more
// (would be misaligned by the stack allocator), and not less (would
// break the appended classes).
static_assert(alignof(EHCleanupScope) == EHScopeStack::ScopeStackAlignment,
"EHCleanupScope expected alignment");
/// An exceptions scope which filters exceptions thrown through it.
/// Only exceptions matching the filter types will be permitted to be
/// thrown.
///
/// This is used to implement C++ exception specifications.
class EHFilterScope : public EHScope {
// Essentially ends in a flexible array member:
// llvm::Value *FilterTypes[0];
llvm::Value **getFilters() {
return reinterpret_cast<llvm::Value**>(this+1);
}
llvm::Value * const *getFilters() const {
return reinterpret_cast<llvm::Value* const *>(this+1);
}
public:
EHFilterScope(unsigned numFilters)
: EHScope(Filter, EHScopeStack::stable_end()) {
FilterBits.NumFilters = numFilters;
assert(FilterBits.NumFilters == numFilters && "NumFilters overflow");
}
static size_t getSizeForNumFilters(unsigned numFilters) {
return sizeof(EHFilterScope) + numFilters * sizeof(llvm::Value*);
}
unsigned getNumFilters() const { return FilterBits.NumFilters; }
void setFilter(unsigned i, llvm::Value *filterValue) {
assert(i < getNumFilters());
getFilters()[i] = filterValue;
}
llvm::Value *getFilter(unsigned i) const {
assert(i < getNumFilters());
return getFilters()[i];
}
static bool classof(const EHScope *scope) {
return scope->getKind() == Filter;
}
};
/// An exceptions scope which calls std::terminate if any exception
/// reaches it.
class EHTerminateScope : public EHScope {
public:
EHTerminateScope(EHScopeStack::stable_iterator enclosingEHScope)
: EHScope(Terminate, enclosingEHScope) {}
static size_t getSize() { return sizeof(EHTerminateScope); }
static bool classof(const EHScope *scope) {
return scope->getKind() == Terminate;
}
};
/// A non-stable pointer into the scope stack.
class EHScopeStack::iterator {
char *Ptr;
friend class EHScopeStack;
explicit iterator(char *Ptr) : Ptr(Ptr) {}
public:
iterator() : Ptr(nullptr) {}
EHScope *get() const {
return reinterpret_cast<EHScope*>(Ptr);
}
EHScope *operator->() const { return get(); }
EHScope &operator*() const { return *get(); }
iterator &operator++() {
size_t Size;
switch (get()->getKind()) {
case EHScope::Catch:
Size = EHCatchScope::getSizeForNumHandlers(
static_cast<const EHCatchScope *>(get())->getNumHandlers());
break;
case EHScope::Filter:
Size = EHFilterScope::getSizeForNumFilters(
static_cast<const EHFilterScope *>(get())->getNumFilters());
break;
case EHScope::Cleanup:
Size = static_cast<const EHCleanupScope *>(get())->getAllocatedSize();
break;
case EHScope::Terminate:
Size = EHTerminateScope::getSize();
break;
}
Ptr += llvm::alignTo(Size, ScopeStackAlignment);
return *this;
}
iterator next() {
iterator copy = *this;
++copy;
return copy;
}
iterator operator++(int) {
iterator copy = *this;
operator++();
return copy;
}
bool encloses(iterator other) const { return Ptr >= other.Ptr; }
bool strictlyEncloses(iterator other) const { return Ptr > other.Ptr; }
bool operator==(iterator other) const { return Ptr == other.Ptr; }
bool operator!=(iterator other) const { return Ptr != other.Ptr; }
};
inline EHScopeStack::iterator EHScopeStack::begin() const {
return iterator(StartOfData);
}
inline EHScopeStack::iterator EHScopeStack::end() const {
return iterator(EndOfBuffer);
}
inline void EHScopeStack::popCatch() {
assert(!empty() && "popping exception stack when not empty");
EHCatchScope &scope = cast<EHCatchScope>(*begin());
InnermostEHScope = scope.getEnclosingEHScope();
deallocate(EHCatchScope::getSizeForNumHandlers(scope.getNumHandlers()));
}
inline void EHScopeStack::popTerminate() {
assert(!empty() && "popping exception stack when not empty");
EHTerminateScope &scope = cast<EHTerminateScope>(*begin());
InnermostEHScope = scope.getEnclosingEHScope();
deallocate(EHTerminateScope::getSize());
}
inline EHScopeStack::iterator EHScopeStack::find(stable_iterator sp) const {
assert(sp.isValid() && "finding invalid savepoint");
assert(sp.Size <= stable_begin().Size && "finding savepoint after pop");
return iterator(EndOfBuffer - sp.Size);
}
inline EHScopeStack::stable_iterator
EHScopeStack::stabilize(iterator ir) const {
assert(StartOfData <= ir.Ptr && ir.Ptr <= EndOfBuffer);
return stable_iterator(EndOfBuffer - ir.Ptr);
}
/// The exceptions personality for a function.
struct EHPersonality {
const char *PersonalityFn;
// If this is non-null, this personality requires a non-standard
// function for rethrowing an exception after a catchall cleanup.
// This function must have prototype void(void*).
const char *CatchallRethrowFn;
static const EHPersonality &get(CodeGenModule &CGM, const FunctionDecl *FD);
static const EHPersonality &get(CodeGenFunction &CGF);
static const EHPersonality GNU_C;
static const EHPersonality GNU_C_SJLJ;
static const EHPersonality GNU_C_SEH;
static const EHPersonality GNU_ObjC;
static const EHPersonality GNU_ObjC_SJLJ;
static const EHPersonality GNU_ObjC_SEH;
static const EHPersonality GNUstep_ObjC;
static const EHPersonality GNU_ObjCXX;
static const EHPersonality NeXT_ObjC;
static const EHPersonality GNU_CPlusPlus;
static const EHPersonality GNU_CPlusPlus_SJLJ;
static const EHPersonality GNU_CPlusPlus_SEH;
static const EHPersonality MSVC_except_handler;
static const EHPersonality MSVC_C_specific_handler;
static const EHPersonality MSVC_CxxFrameHandler3;
static const EHPersonality GNU_Wasm_CPlusPlus;
static const EHPersonality XL_CPlusPlus;
static const EHPersonality ZOS_CPlusPlus;
/// Does this personality use landingpads or the family of pad instructions
/// designed to form funclets?
bool usesFuncletPads() const {
return isMSVCPersonality() || isWasmPersonality();
}
bool isMSVCPersonality() const {
return this == &MSVC_except_handler || this == &MSVC_C_specific_handler ||
this == &MSVC_CxxFrameHandler3;
}
bool isWasmPersonality() const { return this == &GNU_Wasm_CPlusPlus; }
bool isMSVCXXPersonality() const { return this == &MSVC_CxxFrameHandler3; }
};
}
}
#endif