Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

467 lines
18 KiB
C++

//===- LoongArch.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfoImpl.h"
#include "TargetInfo.h"
using namespace clang;
using namespace clang::CodeGen;
// LoongArch ABI Implementation. Documented at
// https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
//
//===----------------------------------------------------------------------===//
namespace {
class LoongArchABIInfo : public DefaultABIInfo {
private:
// Size of the integer ('r') registers in bits.
unsigned GRLen;
// Size of the floating point ('f') registers in bits.
unsigned FRLen;
// Number of general-purpose argument registers.
static const int NumGARs = 8;
// Number of floating-point argument registers.
static const int NumFARs = 8;
bool detectFARsEligibleStructHelper(QualType Ty, CharUnits CurOff,
llvm::Type *&Field1Ty,
CharUnits &Field1Off,
llvm::Type *&Field2Ty,
CharUnits &Field2Off) const;
public:
LoongArchABIInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, unsigned FRLen)
: DefaultABIInfo(CGT), GRLen(GRLen), FRLen(FRLen) {}
void computeInfo(CGFunctionInfo &FI) const override;
ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &GARsLeft,
int &FARsLeft) const;
ABIArgInfo classifyReturnType(QualType RetTy) const;
RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
AggValueSlot Slot) const override;
ABIArgInfo extendType(QualType Ty) const;
bool detectFARsEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
CharUnits &Field1Off, llvm::Type *&Field2Ty,
CharUnits &Field2Off, int &NeededArgGPRs,
int &NeededArgFPRs) const;
ABIArgInfo coerceAndExpandFARsEligibleStruct(llvm::Type *Field1Ty,
CharUnits Field1Off,
llvm::Type *Field2Ty,
CharUnits Field2Off) const;
};
} // end anonymous namespace
void LoongArchABIInfo::computeInfo(CGFunctionInfo &FI) const {
QualType RetTy = FI.getReturnType();
if (!getCXXABI().classifyReturnType(FI))
FI.getReturnInfo() = classifyReturnType(RetTy);
// IsRetIndirect is true if classifyArgumentType indicated the value should
// be passed indirect, or if the type size is a scalar greater than 2*GRLen
// and not a complex type with elements <= FRLen. e.g. fp128 is passed direct
// in LLVM IR, relying on the backend lowering code to rewrite the argument
// list and pass indirectly on LA32.
bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
if (!IsRetIndirect && RetTy->isScalarType() &&
getContext().getTypeSize(RetTy) > (2 * GRLen)) {
if (RetTy->isComplexType() && FRLen) {
QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
IsRetIndirect = getContext().getTypeSize(EltTy) > FRLen;
} else {
// This is a normal scalar > 2*GRLen, such as fp128 on LA32.
IsRetIndirect = true;
}
}
// We must track the number of GARs and FARs used in order to conform to the
// LoongArch ABI. As GAR usage is different for variadic arguments, we must
// also track whether we are examining a vararg or not.
int GARsLeft = IsRetIndirect ? NumGARs - 1 : NumGARs;
int FARsLeft = FRLen ? NumFARs : 0;
int NumFixedArgs = FI.getNumRequiredArgs();
int ArgNum = 0;
for (auto &ArgInfo : FI.arguments()) {
ArgInfo.info = classifyArgumentType(
ArgInfo.type, /*IsFixed=*/ArgNum < NumFixedArgs, GARsLeft, FARsLeft);
ArgNum++;
}
}
// Returns true if the struct is a potential candidate to be passed in FARs (and
// GARs). If this function returns true, the caller is responsible for checking
// that if there is only a single field then that field is a float.
bool LoongArchABIInfo::detectFARsEligibleStructHelper(
QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off,
llvm::Type *&Field2Ty, CharUnits &Field2Off) const {
bool IsInt = Ty->isIntegralOrEnumerationType();
bool IsFloat = Ty->isRealFloatingType();
if (IsInt || IsFloat) {
uint64_t Size = getContext().getTypeSize(Ty);
if (IsInt && Size > GRLen)
return false;
// Can't be eligible if larger than the FP registers. Handling of half
// precision values has been specified in the ABI, so don't block those.
if (IsFloat && Size > FRLen)
return false;
// Can't be eligible if an integer type was already found (int+int pairs
// are not eligible).
if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
return false;
if (!Field1Ty) {
Field1Ty = CGT.ConvertType(Ty);
Field1Off = CurOff;
return true;
}
if (!Field2Ty) {
Field2Ty = CGT.ConvertType(Ty);
Field2Off = CurOff;
return true;
}
return false;
}
if (auto CTy = Ty->getAs<ComplexType>()) {
if (Field1Ty)
return false;
QualType EltTy = CTy->getElementType();
if (getContext().getTypeSize(EltTy) > FRLen)
return false;
Field1Ty = CGT.ConvertType(EltTy);
Field1Off = CurOff;
Field2Ty = Field1Ty;
Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
return true;
}
if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
uint64_t ArraySize = ATy->getZExtSize();
QualType EltTy = ATy->getElementType();
// Non-zero-length arrays of empty records make the struct ineligible to be
// passed via FARs in C++.
if (const auto *RTy = EltTy->getAs<RecordType>()) {
if (ArraySize != 0 && isa<CXXRecordDecl>(RTy->getOriginalDecl()) &&
isEmptyRecord(getContext(), EltTy, true, true))
return false;
}
CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
for (uint64_t i = 0; i < ArraySize; ++i) {
if (!detectFARsEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off,
Field2Ty, Field2Off))
return false;
CurOff += EltSize;
}
return true;
}
if (const auto *RTy = Ty->getAs<RecordType>()) {
// Structures with either a non-trivial destructor or a non-trivial
// copy constructor are not eligible for the FP calling convention.
if (getRecordArgABI(Ty, CGT.getCXXABI()))
return false;
const RecordDecl *RD = RTy->getOriginalDecl()->getDefinitionOrSelf();
if (isEmptyRecord(getContext(), Ty, true, true) &&
(!RD->isUnion() || !isa<CXXRecordDecl>(RD)))
return true;
// Unions aren't eligible unless they're empty in C (which is caught above).
if (RD->isUnion())
return false;
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
// If this is a C++ record, check the bases first.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
for (const CXXBaseSpecifier &B : CXXRD->bases()) {
const auto *BDecl =
cast<CXXRecordDecl>(
B.getType()->castAs<RecordType>()->getOriginalDecl())
->getDefinitionOrSelf();
if (!detectFARsEligibleStructHelper(
B.getType(), CurOff + Layout.getBaseClassOffset(BDecl),
Field1Ty, Field1Off, Field2Ty, Field2Off))
return false;
}
}
for (const FieldDecl *FD : RD->fields()) {
QualType QTy = FD->getType();
if (FD->isBitField()) {
unsigned BitWidth = FD->getBitWidthValue();
// Zero-width bitfields are ignored.
if (BitWidth == 0)
continue;
// Allow a bitfield with a type greater than GRLen as long as the
// bitwidth is GRLen or less.
if (getContext().getTypeSize(QTy) > GRLen && BitWidth <= GRLen) {
QTy = getContext().getIntTypeForBitwidth(GRLen, false);
}
}
if (!detectFARsEligibleStructHelper(
QTy,
CurOff + getContext().toCharUnitsFromBits(
Layout.getFieldOffset(FD->getFieldIndex())),
Field1Ty, Field1Off, Field2Ty, Field2Off))
return false;
}
return Field1Ty != nullptr;
}
return false;
}
// Determine if a struct is eligible to be passed in FARs (and GARs) (i.e., when
// flattened it contains a single fp value, fp+fp, or int+fp of appropriate
// size). If so, NeededFARs and NeededGARs are incremented appropriately.
bool LoongArchABIInfo::detectFARsEligibleStruct(
QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off,
llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededGARs,
int &NeededFARs) const {
Field1Ty = nullptr;
Field2Ty = nullptr;
NeededGARs = 0;
NeededFARs = 0;
if (!detectFARsEligibleStructHelper(Ty, CharUnits::Zero(), Field1Ty,
Field1Off, Field2Ty, Field2Off))
return false;
if (!Field1Ty)
return false;
// Not really a candidate if we have a single int but no float.
if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
return false;
if (Field1Ty && Field1Ty->isFloatingPointTy())
NeededFARs++;
else if (Field1Ty)
NeededGARs++;
if (Field2Ty && Field2Ty->isFloatingPointTy())
NeededFARs++;
else if (Field2Ty)
NeededGARs++;
return true;
}
// Call getCoerceAndExpand for the two-element flattened struct described by
// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
// appropriate coerceToType and unpaddedCoerceToType.
ABIArgInfo LoongArchABIInfo::coerceAndExpandFARsEligibleStruct(
llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
CharUnits Field2Off) const {
SmallVector<llvm::Type *, 3> CoerceElts;
SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
if (!Field1Off.isZero())
CoerceElts.push_back(llvm::ArrayType::get(
llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
CoerceElts.push_back(Field1Ty);
UnpaddedCoerceElts.push_back(Field1Ty);
if (!Field2Ty) {
return ABIArgInfo::getCoerceAndExpand(
llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
UnpaddedCoerceElts[0]);
}
CharUnits Field2Align =
CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty));
CharUnits Field1End =
Field1Off +
CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
CharUnits Padding = CharUnits::Zero();
if (Field2Off > Field2OffNoPadNoPack)
Padding = Field2Off - Field2OffNoPadNoPack;
else if (Field2Off != Field2Align && Field2Off > Field1End)
Padding = Field2Off - Field1End;
bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
if (!Padding.isZero())
CoerceElts.push_back(llvm::ArrayType::get(
llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
CoerceElts.push_back(Field2Ty);
UnpaddedCoerceElts.push_back(Field2Ty);
return ABIArgInfo::getCoerceAndExpand(
llvm::StructType::get(getVMContext(), CoerceElts, IsPacked),
llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked));
}
ABIArgInfo LoongArchABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
int &GARsLeft,
int &FARsLeft) const {
assert(GARsLeft <= NumGARs && "GAR tracking underflow");
Ty = useFirstFieldIfTransparentUnion(Ty);
// Structures with either a non-trivial destructor or a non-trivial
// copy constructor are always passed indirectly.
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
if (GARsLeft)
GARsLeft -= 1;
return getNaturalAlignIndirect(
Ty, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
/*ByVal=*/RAA == CGCXXABI::RAA_DirectInMemory);
}
uint64_t Size = getContext().getTypeSize(Ty);
// Ignore empty struct or union whose size is zero, e.g. `struct { }` in C or
// `struct { int a[0]; }` in C++. In C++, `struct { }` is empty but it's size
// is 1 byte and g++ doesn't ignore it; clang++ matches this behaviour.
if (isEmptyRecord(getContext(), Ty, true) && Size == 0)
return ABIArgInfo::getIgnore();
// Pass floating point values via FARs if possible.
if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
FRLen >= Size && FARsLeft) {
FARsLeft--;
return ABIArgInfo::getDirect();
}
// Complex types for the *f or *d ABI must be passed directly rather than
// using CoerceAndExpand.
if (IsFixed && Ty->isComplexType() && FRLen && FARsLeft >= 2) {
QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
if (getContext().getTypeSize(EltTy) <= FRLen) {
FARsLeft -= 2;
return ABIArgInfo::getDirect();
}
}
if (IsFixed && FRLen && Ty->isStructureOrClassType()) {
llvm::Type *Field1Ty = nullptr;
llvm::Type *Field2Ty = nullptr;
CharUnits Field1Off = CharUnits::Zero();
CharUnits Field2Off = CharUnits::Zero();
int NeededGARs = 0;
int NeededFARs = 0;
bool IsCandidate = detectFARsEligibleStruct(
Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededGARs, NeededFARs);
if (IsCandidate && NeededGARs <= GARsLeft && NeededFARs <= FARsLeft) {
GARsLeft -= NeededGARs;
FARsLeft -= NeededFARs;
return coerceAndExpandFARsEligibleStruct(Field1Ty, Field1Off, Field2Ty,
Field2Off);
}
}
uint64_t NeededAlign = getContext().getTypeAlign(Ty);
// Determine the number of GARs needed to pass the current argument
// according to the ABI. 2*GRLen-aligned varargs are passed in "aligned"
// register pairs, so may consume 3 registers.
int NeededGARs = 1;
if (!IsFixed && NeededAlign == 2 * GRLen)
NeededGARs = 2 + (GARsLeft % 2);
else if (Size > GRLen && Size <= 2 * GRLen)
NeededGARs = 2;
if (NeededGARs > GARsLeft)
NeededGARs = GARsLeft;
GARsLeft -= NeededGARs;
if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getOriginalDecl()->getDefinitionOrSelf()->getIntegerType();
// All integral types are promoted to GRLen width.
if (Size < GRLen && Ty->isIntegralOrEnumerationType())
return extendType(Ty);
if (const auto *EIT = Ty->getAs<BitIntType>()) {
if (EIT->getNumBits() < GRLen)
return extendType(Ty);
if (EIT->getNumBits() > 128 ||
(!getContext().getTargetInfo().hasInt128Type() &&
EIT->getNumBits() > 64))
return getNaturalAlignIndirect(
Ty, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
/*ByVal=*/false);
}
return ABIArgInfo::getDirect();
}
// Aggregates which are <= 2*GRLen will be passed in registers if possible,
// so coerce to integers.
if (Size <= 2 * GRLen) {
// Use a single GRLen int if possible, 2*GRLen if 2*GRLen alignment is
// required, and a 2-element GRLen array if only GRLen alignment is
// required.
if (Size <= GRLen) {
return ABIArgInfo::getDirect(
llvm::IntegerType::get(getVMContext(), GRLen));
}
if (getContext().getTypeAlign(Ty) == 2 * GRLen) {
return ABIArgInfo::getDirect(
llvm::IntegerType::get(getVMContext(), 2 * GRLen));
}
return ABIArgInfo::getDirect(
llvm::ArrayType::get(llvm::IntegerType::get(getVMContext(), GRLen), 2));
}
return getNaturalAlignIndirect(
Ty, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
/*ByVal=*/false);
}
ABIArgInfo LoongArchABIInfo::classifyReturnType(QualType RetTy) const {
if (RetTy->isVoidType())
return ABIArgInfo::getIgnore();
// The rules for return and argument types are the same, so defer to
// classifyArgumentType.
int GARsLeft = 2;
int FARsLeft = FRLen ? 2 : 0;
return classifyArgumentType(RetTy, /*IsFixed=*/true, GARsLeft, FARsLeft);
}
RValue LoongArchABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty, AggValueSlot Slot) const {
CharUnits SlotSize = CharUnits::fromQuantity(GRLen / 8);
// Empty records are ignored for parameter passing purposes.
if (isEmptyRecord(getContext(), Ty, true))
return Slot.asRValue();
auto TInfo = getContext().getTypeInfoInChars(Ty);
// Arguments bigger than 2*GRLen bytes are passed indirectly.
return emitVoidPtrVAArg(CGF, VAListAddr, Ty,
/*IsIndirect=*/TInfo.Width > 2 * SlotSize, TInfo,
SlotSize,
/*AllowHigherAlign=*/true, Slot);
}
ABIArgInfo LoongArchABIInfo::extendType(QualType Ty) const {
int TySize = getContext().getTypeSize(Ty);
// LA64 ABI requires unsigned 32 bit integers to be sign extended.
if (GRLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
return ABIArgInfo::getSignExtend(Ty);
return ABIArgInfo::getExtend(Ty);
}
namespace {
class LoongArchTargetCodeGenInfo : public TargetCodeGenInfo {
public:
LoongArchTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen,
unsigned FRLen)
: TargetCodeGenInfo(
std::make_unique<LoongArchABIInfo>(CGT, GRLen, FRLen)) {}
};
} // namespace
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen,
unsigned FLen) {
return std::make_unique<LoongArchTargetCodeGenInfo>(CGM.getTypes(), GRLen,
FLen);
}