llvm-project/clang/test/Analysis/stack-addr-ps.cpp
David Tarditi 8138d85f63
[analyzer] Update the undefined assignment checker diagnostics to not use the term 'garbage' (#126596)
A clang user pointed out that messages for the static analyzer undefined
assignment checker use the term ‘garbage’, which might have a negative
connotation to some users. This change updates the messages to use the
term ‘uninitialized’. This is the usual reason why a value is undefined
in the static analyzer and describes the logical error that a programmer
should take action to fix.

Out-of-bounds reads can also produce undefined values in the static
analyzer. The right long-term design is to have to the array bounds
checker cover out-of-bounds reads, so we do not cover that case in the
updated messages. The recent improvements to the array bounds checker
make it a candidate to add to the core set of checkers.

rdar://133418644
2025-02-26 13:57:33 +01:00

1130 lines
33 KiB
C++

// RUN: %clang_analyze_cc1 \
// RUN: -analyzer-checker=core,debug.ExprInspection \
// RUN: -verify %s \
// RUN: -Wno-undefined-bool-conversion
// RUN: %clang_analyze_cc1 \
// RUN: -analyzer-checker=core,debug.ExprInspection,unix.Malloc \
// RUN: -verify %s \
// RUN: -Wno-undefined-bool-conversion
// unix.Malloc is necessary to model __builtin_alloca,
// which could trigger an "unexpected region" bug in StackAddrEscapeChecker.
typedef __INTPTR_TYPE__ intptr_t;
template <typename T>
void clang_analyzer_dump(T x);
using size_t = decltype(sizeof(int));
void * malloc(size_t size);
void free(void*);
const int& g() {
int s;
return s; // expected-warning{{Address of stack memory associated with local variable 's' returned}} expected-warning{{reference to stack memory associated with local variable 's' returned}}
}
const int& g2() {
int s1;
int &s2 = s1; // expected-note {{binding reference variable 's2' here}}
return s2; // expected-warning{{Address of stack memory associated with local variable 's1' returned}} expected-warning {{reference to stack memory associated with local variable 's1' returned}}
}
const int& g3() {
int s1;
int &s2 = s1; // expected-note {{binding reference variable 's2' here}}
int &s3 = s2; // expected-note {{binding reference variable 's3' here}}
return s3; // expected-warning{{Address of stack memory associated with local variable 's1' returned}} expected-warning {{reference to stack memory associated with local variable 's1' returned}}
}
void g4() {
static const int &x = 3; // no warning
}
int get_value();
const int &get_reference1() { return get_value(); } // expected-warning{{Address of stack memory associated with temporary object of type 'int' returned}} expected-warning {{returning reference to local temporary}}
const int &get_reference2() {
const int &x = get_value(); // expected-note {{binding reference variable 'x' here}}
return x; // expected-warning{{Address of stack memory associated with temporary object of type 'int' lifetime extended by local variable 'x' returned to caller}} expected-warning {{returning reference to local temporary}}
}
const int &get_reference3() {
const int &x1 = get_value(); // expected-note {{binding reference variable 'x1' here}}
const int &x2 = x1; // expected-note {{binding reference variable 'x2' here}}
return x2; // expected-warning{{Address of stack memory associated with temporary object of type 'int' lifetime extended by local variable 'x1' returned to caller}} expected-warning {{returning reference to local temporary}}
}
int global_var;
int *f1() {
int &y = global_var;
return &y;
}
int *f2() {
int x1;
int &x2 = x1; // expected-note {{binding reference variable 'x2' here}}
return &x2; // expected-warning{{Address of stack memory associated with local variable 'x1' returned}} expected-warning {{address of stack memory associated with local variable 'x1' returned}}
}
int *f3() {
int x1;
int *const &x2 = &x1; // expected-note {{binding reference variable 'x2' here}}
return x2; // expected-warning {{address of stack memory associated with local variable 'x1' returned}} expected-warning {{Address of stack memory associated with local variable 'x1' returned to caller}}
}
const int *f4() {
const int &x1 = get_value(); // expected-note {{binding reference variable 'x1' here}}
const int &x2 = x1; // expected-note {{binding reference variable 'x2' here}}
return &x2; // expected-warning{{Address of stack memory associated with temporary object of type 'int' lifetime extended by local variable 'x1' returned to caller}} expected-warning {{returning address of local temporary}}
}
struct S {
int x;
};
int *mf() {
S s1;
S &s2 = s1; // expected-note {{binding reference variable 's2' here}}
int &x = s2.x; // expected-note {{binding reference variable 'x' here}}
return &x; // expected-warning{{Address of stack memory associated with local variable 's1' returned}} expected-warning {{address of stack memory associated with local variable 's1' returned}}
}
int *return_assign_expr_leak() {
int x = 1;
int *y;
return y = &x; // expected-warning{{Address of stack memory associated with local variable 'x' returned}}
}
// Additional diagnostic from -Wreturn-stack-address in the simple case?
int *return_comma_separated_expressions_leak() {
int x = 1;
return (x=14), &x; // expected-warning{{Address of stack memory associated with local variable 'x' returned to caller}} expected-warning{{address of stack memory associated with local variable 'x' returned}}
}
void *lf() {
label:
void *const &x = &&label; // expected-note {{binding reference variable 'x' here}}
return x; // expected-warning {{returning address of label, which is local}}
}
template <typename T>
struct TS {
int *get();
int *m() {
int *&x = get();
return x;
}
};
int* f5() {
int& i = i; // expected-warning {{Assigned value is uninitialized}} expected-warning{{reference 'i' is not yet bound to a value when used within its own initialization}}
return &i;
}
void *radar13226577() {
void *p = &p;
return p; // expected-warning {{stack memory associated with local variable 'p' returned to caller}}
}
namespace rdar13296133 {
class ConvertsToBool {
public:
operator bool() const { return this; }
};
class ConvertsToIntptr {
public:
operator intptr_t() const { return reinterpret_cast<intptr_t>(this); }
};
class ConvertsToPointer {
public:
operator const void *() const { return this; }
};
intptr_t returnAsNonLoc() {
ConvertsToIntptr obj;
return obj; // expected-warning{{Address of stack memory associated with local variable 'obj' returned to caller}}
}
bool returnAsBool() {
ConvertsToBool obj;
return obj; // no-warning
}
intptr_t returnAsNonLocViaPointer() {
ConvertsToPointer obj;
return reinterpret_cast<intptr_t>(static_cast<const void *>(obj)); // expected-warning{{Address of stack memory associated with local variable 'obj' returned to caller}}
}
bool returnAsBoolViaPointer() {
ConvertsToPointer obj;
return obj; // no-warning
}
} // namespace rdar13296133
void* ret_cpp_static_cast(short x) {
return static_cast<void*>(&x); // expected-warning {{Address of stack memory associated with local variable 'x' returned to caller}} expected-warning {{address of stack memory}}
}
int* ret_cpp_reinterpret_cast(double x) {
return reinterpret_cast<int*>(&x); // expected-warning {{Address of stack memory associated with local variable 'x' returned to caller}} expected-warning {{address of stack me}}
}
int* ret_cpp_const_cast(const int x) {
return const_cast<int*>(&x); // expected-warning {{Address of stack memory associated with local variable 'x' returned to caller}} expected-warning {{address of stack memory}}
}
void write_stack_address_to(char **q) {
char local;
*q = &local;
// expected-warning@-1 {{Address of stack memory associated with local \
variable 'local' is still referred to by the caller variable 'p' upon \
returning to the caller}}
}
void test_stack() {
char *p;
write_stack_address_to(&p);
}
struct C {
~C() {} // non-trivial class
};
C make1() {
C c;
return c; // no-warning
}
void test_copy_elision() {
C c1 = make1();
}
C&& return_bind_rvalue_reference_to_temporary() {
return C(); // expected-warning{{Address of stack memory associated with temporary object of type 'C' returned to caller}}
// expected-warning@-1{{returning reference to local temporary object}} -Wreturn-stack-address
}
namespace leaking_via_direct_pointer {
void* returned_direct_pointer_top() {
int local = 42;
int* p = &local;
return p; // expected-warning{{associated with local variable 'local' returned}}
}
int* returned_direct_pointer_callee() {
int local = 42;
int* p = &local;
return p; // expected-warning{{associated with local variable 'local' returned}}
}
void returned_direct_pointer_caller() {
int* loc_ptr = nullptr;
loc_ptr = returned_direct_pointer_callee();
(void)loc_ptr;
}
void* global_ptr;
void global_direct_pointer() {
int local = 42;
global_ptr = &local; // expected-warning{{local variable 'local' is still referred to by the global variable 'global_ptr'}}
}
void static_direct_pointer_top() {
int local = 42;
static int* p = &local;
(void)p; // expected-warning{{local variable 'local' is still referred to by the static variable 'p'}}
}
void static_direct_pointer_callee() {
int local = 42;
static int* p = &local;
(void)p; // expected-warning{{local variable 'local' is still referred to by the static variable 'p'}}
}
void static_direct_pointer_caller() {
static_direct_pointer_callee();
}
void lambda_to_global_direct_pointer() {
auto lambda = [&] {
int local = 42;
global_ptr = &local; // expected-warning{{local variable 'local' is still referred to by the global variable 'global_ptr'}}
};
lambda();
}
void lambda_to_context_direct_pointer() {
int *p = nullptr;
auto lambda = [&] {
int local = 42;
p = &local; // expected-warning{{local variable 'local' is still referred to by the caller variable 'p'}}
};
lambda();
(void)p;
}
template<typename Callable>
class MyFunction {
Callable* fptr;
public:
MyFunction(Callable* callable) :fptr(callable) {}
};
void* lambda_to_context_direct_pointer_uncalled() {
int *p = nullptr;
auto lambda = [&] {
int local = 42;
p = &local; // no-warning: analyzed only as top-level, ignored explicitly by the checker
};
return new MyFunction(&lambda); // expected-warning{{Address of stack memory associated with local variable 'lambda' returned to caller}}
}
void lambda_to_context_direct_pointer_lifetime_extended() {
int *p = nullptr;
auto lambda = [&] {
int&& local = 42;
p = &local; // expected-warning{{'int' lifetime extended by local variable 'local' is still referred to by the caller variable 'p'}}
};
lambda();
(void)p;
}
template<typename Callback>
void lambda_param_capture_direct_pointer_callee(Callback& callee) {
int local = 42;
callee(local); // expected-warning{{'local' is still referred to by the caller variable 'p'}}
}
void lambda_param_capture_direct_pointer_caller() {
int* p = nullptr;
auto capt = [&p](int& param) {
p = &param;
};
lambda_param_capture_direct_pointer_callee(capt);
}
} // namespace leaking_via_direct_pointer
namespace leaking_via_ptr_to_ptr {
void** returned_ptr_to_ptr_top() {
int local = 42;
int* p = &local;
void** pp = (void**)&p;
return pp; // expected-warning{{associated with local variable 'p' returned}}
}
void** global_pp;
void global_ptr_local_to_ptr() {
int local = 42;
int* p = &local;
global_pp = (void**)&p; // expected-warning{{local variable 'p' is still referred to by the global variable 'global_pp'}}
}
void global_ptr_to_ptr() {
int local = 42;
*global_pp = &local; // expected-warning{{local variable 'local' is still referred to by the global variable 'global_pp'}}
}
void *** global_ppp;
void global_ptr_to_ptr_to_ptr() {
int local = 42;
**global_ppp = &local; // expected-warning{{local variable 'local' is still referred to by the global variable 'global_ppp'}}
}
void** get_some_pp();
void static_ptr_to_ptr() {
int local = 42;
static void** pp = get_some_pp();
*pp = &local;
} // no-warning False Negative, requires relating multiple bindings to cross the invented pointer.
void param_ptr_to_ptr_top(void** pp) {
int local = 42;
*pp = &local; // expected-warning{{local variable 'local' is still referred to by the caller variable 'pp'}}
}
void param_ptr_to_ptr_callee(void** pp) {
int local = 42;
*pp = &local; // expected-warning{{local variable 'local' is still referred to by the caller variable 'p'}}
}
void param_ptr_to_ptr_caller() {
void* p = nullptr;
param_ptr_to_ptr_callee((void**)&p);
}
void param_ptr_to_ptr_to_ptr_top(void*** ppp) {
int local = 42;
**ppp = &local; // expected-warning {{local variable 'local' is still referred to by the caller variable 'ppp'}}
}
void param_ptr_to_ptr_to_ptr_callee(void*** ppp) {
int local = 42;
**ppp = &local; // expected-warning{{local variable 'local' is still referred to by the caller variable 'pp'}}
}
void ***param_ptr_to_ptr_to_ptr_return(void ***ppp) {
int local = 0;
**ppp = &local;
return ppp;
// expected-warning@-1 {{Address of stack memory associated with local variable 'local' is still referred to by the caller variable 'ppp' upon returning to the caller. This will be a dangling reference}}
}
void param_ptr_to_ptr_to_ptr_caller(void** pp) {
param_ptr_to_ptr_to_ptr_callee(&pp);
}
void lambda_to_context_ptr_to_ptr(int **pp) {
auto lambda = [&] {
int local = 42;
*pp = &local; // expected-warning{{local variable 'local' is still referred to by the caller variable 'pp'}}
};
lambda();
(void)*pp;
}
void param_ptr_to_ptr_fptr(int **pp) {
int local = 42;
*pp = &local; // expected-warning{{local variable 'local' is still referred to by the caller variable 'p'}}
}
void param_ptr_to_ptr_fptr_caller(void (*fptr)(int**)) {
int* p = nullptr;
fptr(&p);
}
void param_ptr_to_ptr_caller_caller() {
void (*fptr)(int**) = param_ptr_to_ptr_fptr;
param_ptr_to_ptr_fptr_caller(fptr);
}
} // namespace leaking_via_ptr_to_ptr
namespace leaking_via_ref_to_ptr {
void** make_ptr_to_ptr();
void*& global_rtp = *make_ptr_to_ptr();
void global_ref_to_ptr() {
int local = 42;
int* p = &local;
global_rtp = p; // expected-warning{{local variable 'local' is still referred to by the global variable 'global_rtp'}}
}
void static_ref_to_ptr() {
int local = 42;
static void*& p = *make_ptr_to_ptr();
p = &local;
(void)p;
} // no-warning False Negative, requires relating multiple bindings to cross the invented pointer.
void param_ref_to_ptr_top(void*& rp) {
int local = 42;
int* p = &local;
rp = p; // expected-warning{{local variable 'local' is still referred to by the caller variable 'rp'}}
}
void param_ref_to_ptr_callee(void*& rp) {
int local = 42;
int* p = &local;
rp = p; // expected-warning{{local variable 'local' is still referred to by the caller variable 'p'}}
}
void param_ref_to_ptr_caller() {
void* p = nullptr;
param_ref_to_ptr_callee(p);
}
} // namespace leaking_via_ref_to_ptr
namespace leaking_via_arr_of_ptr_static_idx {
void** returned_arr_of_ptr_top() {
int local = 42;
int* p = &local;
void** arr = new void*[2];
arr[1] = p;
return arr; // expected-warning{{Address of stack memory associated with local variable 'local' returned to caller}}
}
void** returned_arr_of_ptr_callee() {
int local = 42;
int* p = &local;
void** arr = new void*[2];
arr[1] = p;
return arr; // expected-warning{{Address of stack memory associated with local variable 'local' returned to caller}}
}
void returned_arr_of_ptr_caller() {
void** arr = returned_arr_of_ptr_callee();
(void)arr[1];
}
void* global_aop[2];
void global_arr_of_ptr() {
int local = 42;
int* p = &local;
global_aop[1] = p; // expected-warning{{local variable 'local' is still referred to by the global variable 'global_aop'}}
}
void static_arr_of_ptr() {
int local = 42;
static void* arr[2];
arr[1] = &local;
(void)arr[1]; // expected-warning{{local variable 'local' is still referred to by the static variable 'arr'}}
}
void param_arr_of_ptr_top(void* arr[2]) {
int local = 42;
int* p = &local;
arr[1] = p; // expected-warning{{local variable 'local' is still referred to by the caller variable 'arr'}}
}
void param_arr_of_ptr_callee(void* arr[2]) {
int local = 42;
int* p = &local;
arr[1] = p; // expected-warning{{local variable 'local' is still referred to by the caller variable 'arrStack'}}
}
void param_arr_of_ptr_caller() {
void* arrStack[2];
param_arr_of_ptr_callee(arrStack);
(void)arrStack[1];
}
} // namespace leaking_via_arr_of_ptr_static_idx
namespace leaking_via_arr_of_ptr_dynamic_idx {
void** returned_arr_of_ptr_top(int idx) {
int local = 42;
int* p = &local;
void** arr = new void*[2];
arr[idx] = p;
return arr; // expected-warning{{Address of stack memory associated with local variable 'local' returned to caller}}
}
void** returned_arr_of_ptr_callee(int idx) {
int local = 42;
int* p = &local;
void** arr = new void*[2];
arr[idx] = p;
return arr; // expected-warning{{Address of stack memory associated with local variable 'local' returned to caller}}
}
void returned_arr_of_ptr_caller(int idx) {
void** arr = returned_arr_of_ptr_callee(idx);
(void)arr[idx];
}
void* global_aop[2];
void global_arr_of_ptr(int idx) {
int local = 42;
int* p = &local;
global_aop[idx] = p; // expected-warning{{local variable 'local' is still referred to by the global variable 'global_aop'}}
}
void static_arr_of_ptr(int idx) {
int local = 42;
static void* arr[2];
arr[idx] = &local;
(void)arr[idx]; // expected-warning{{local variable 'local' is still referred to by the static variable 'arr'}}
}
void param_arr_of_ptr_top(void* arr[2], int idx) {
int local = 42;
int* p = &local;
arr[idx] = p; // expected-warning{{local variable 'local' is still referred to by the caller variable 'arr'}}
}
void param_arr_of_ptr_callee(void* arr[2], int idx) {
int local = 42;
int* p = &local;
arr[idx] = p; // expected-warning{{local variable 'local' is still referred to by the caller variable 'arrStack'}}
}
void param_arr_of_ptr_caller(int idx) {
void* arrStack[2];
param_arr_of_ptr_callee(arrStack, idx);
(void)arrStack[idx];
}
} // namespace leaking_via_arr_of_ptr_dynamic_idx
namespace leaking_via_struct_with_ptr {
struct S {
int* p;
};
S returned_struct_with_ptr_top() {
int local = 42;
S s;
s.p = &local;
return s; // expected-warning{{Address of stack memory associated with local variable 'local' returned to caller}}
}
S returned_struct_with_ptr_callee() {
int local = 42;
S s;
s.p = &local;
return s; // expected-warning {{Address of stack memory associated with local variable 'local' returned to caller}} expected-warning{{Address of stack memory associated with local variable 'local' is still referred to by the caller variable 's' upon returning to the caller. This will be a dangling reference}}
}
S leak_through_field_of_returned_object() {
int local = 14;
S s{&local};
return s; // expected-warning {{Address of stack memory associated with local variable 'local' returned to caller}}
}
S leak_through_compound_literal() {
int local = 0;
return (S) { &local }; // expected-warning {{Address of stack memory associated with local variable 'local' returned to caller}}
}
void returned_struct_with_ptr_caller() {
S s = returned_struct_with_ptr_callee();
(void)s.p;
}
S global_s;
void global_struct_with_ptr() {
int local = 42;
global_s.p = &local; // expected-warning{{'local' is still referred to by the global variable 'global_s'}}
}
void static_struct_with_ptr() {
int local = 42;
static S s;
s.p = &local;
(void)s.p; // expected-warning{{'local' is still referred to by the static variable 's'}}
}
} // namespace leaking_via_struct_with_ptr
namespace leaking_via_nested_structs_with_ptr {
struct Inner {
int *ptr;
};
struct Outer {
Inner I;
};
struct Deriving : public Outer {};
Outer leaks_through_nested_objects() {
int local = 0;
Outer O{&local};
return O; // expected-warning {{Address of stack memory associated with local variable 'local' returned to caller}}
}
Deriving leaks_through_base_objects() {
int local = 0;
Deriving D{&local};
return D; // expected-warning {{Address of stack memory associated with local variable 'local' returned to caller}}
}
} // namespace leaking_via_nested_structs_with_ptr
namespace leaking_via_ref_to_struct_with_ptr {
struct S {
int* p;
};
S &global_s = *(new S);
void global_ref_to_struct_with_ptr() {
int local = 42;
global_s.p = &local; // expected-warning{{'local' is still referred to by the global variable 'global_s'}}
}
void static_ref_to_struct_with_ptr() {
int local = 42;
static S &s = *(new S);
s.p = &local;
(void)s.p;
} // no-warning False Negative, requires relating multiple bindings to cross a heap region.
void param_ref_to_struct_with_ptr_top(S &s) {
int local = 42;
s.p = &local; // expected-warning{{'local' is still referred to by the caller variable 's'}}
}
void param_ref_to_struct_with_ptr_callee(S &s) {
int local = 42;
s.p = &local; // expected-warning{{'local' is still referred to by the caller variable 'sStack'}}
}
void param_ref_to_struct_with_ptr_caller() {
S sStack;
param_ref_to_struct_with_ptr_callee(sStack);
}
template<typename Callable>
void lambda_param_capture_callee(Callable& callee) {
int local = 42;
callee(local); // expected-warning{{'local' is still referred to by the caller variable 'p'}}
}
void lambda_param_capture_caller() {
int* p = nullptr;
auto capt = [&p](int& param) {
p = &param;
};
lambda_param_capture_callee(capt);
}
} // namespace leaking_via_ref_to_struct_with_ptr
namespace leaking_via_ptr_to_struct_with_ptr {
struct S {
int* p;
};
S* returned_ptr_to_struct_with_ptr_top() {
int local = 42;
S* s = new S;
s->p = &local;
return s; // expected-warning {{Address of stack memory associated with local variable 'local' returned to caller}}
}
S* returned_ptr_to_struct_with_ptr_callee() {
int local = 42;
S* s = new S;
s->p = &local;
return s; // expected-warning {{Address of stack memory associated with local variable 'local' returned to caller}}
}
void returned_ptr_to_struct_with_ptr_caller() {
S* s = returned_ptr_to_struct_with_ptr_callee();
(void)s->p;
}
S* global_s;
void global_ptr_to_struct_with_ptr() {
int local = 42;
global_s->p = &local; // expected-warning{{'local' is still referred to by the global variable 'global_s'}}
}
void static_ptr_to_struct_with_ptr_new() {
int local = 42;
static S* s = new S;
s->p = &local;
(void)s->p;
} // no-warning False Negative, requires relating multiple bindings to cross a heap region.
S* get_some_s();
void static_ptr_to_struct_with_ptr_generated() {
int local = 42;
static S* s = get_some_s();
s->p = &local;
} // no-warning False Negative, requires relating multiple bindings to cross the invented pointer.
void param_ptr_to_struct_with_ptr_top(S* s) {
int local = 42;
s->p = &local; // expected-warning{{'local' is still referred to by the caller variable 's'}}
}
void param_ptr_to_struct_with_ptr_callee(S* s) {
int local = 42;
s->p = &local; // expected-warning{{'local' is still referred to by the caller variable 's'}}
}
void param_ptr_to_struct_with_ptr_caller() {
S s;
param_ptr_to_struct_with_ptr_callee(&s);
(void)s.p;
}
} // namespace leaking_via_ptr_to_struct_with_ptr
namespace leaking_via_arr_of_struct_with_ptr {
struct S {
int* p;
};
S* returned_ptr_to_struct_with_ptr_top() {
int local = 42;
S* s = new S[2];
s[1].p = &local;
return s; // expected-warning {{Address of stack memory associated with local variable 'local' returned to caller}}
}
S* returned_ptr_to_struct_with_ptr_callee() {
int local = 42;
S* s = new S[2];
s[1].p = &local;
return s; // expected-warning {{Address of stack memory associated with local variable 'local' returned to caller}}
}
void returned_ptr_to_struct_with_ptr_caller() {
S* s = returned_ptr_to_struct_with_ptr_callee();
(void)s[1].p;
}
S global_s[2];
void global_ptr_to_struct_with_ptr() {
int local = 42;
global_s[1].p = &local; // expected-warning{{'local' is still referred to by the global variable 'global_s'}}
}
void static_ptr_to_struct_with_ptr_new() {
int local = 42;
static S* s = new S[2];
s[1].p = &local;
(void)s[1].p;
}
S* get_some_s();
void static_ptr_to_struct_with_ptr_generated() {
int local = 42;
static S* s = get_some_s();
s[1].p = &local;
} // no-warning False Negative, requires relating multiple bindings to cross the invented pointer.
void param_ptr_to_struct_with_ptr_top(S s[2]) {
int local = 42;
s[1].p = &local; // expected-warning{{'local' is still referred to by the caller variable 's'}}
}
void param_ptr_to_struct_with_ptr_callee(S s[2]) {
int local = 42;
s[1].p = &local; // expected-warning{{'local' is still referred to by the caller variable 's'}}
}
void param_ptr_to_struct_with_ptr_caller() {
S s[2];
param_ptr_to_struct_with_ptr_callee(s);
(void)s[1].p;
}
} // namespace leaking_via_arr_of_struct_with_ptr
namespace leaking_via_nested_and_indirect {
struct NestedAndTransitive {
int** p;
NestedAndTransitive* next[3];
};
NestedAndTransitive global_nat;
void global_nested_and_transitive() {
int local = 42;
*global_nat.next[2]->next[1]->p = &local; // expected-warning{{'local' is still referred to by the global variable 'global_nat'}}
}
void param_nested_and_transitive_top(NestedAndTransitive* nat) {
int local = 42;
*nat->next[2]->next[1]->p = &local; // expected-warning{{'local' is still referred to by the caller variable 'nat'}}
}
void param_nested_and_transitive_callee(NestedAndTransitive* nat) {
int local = 42;
*nat->next[2]->next[1]->p = &local; // expected-warning{{'local' is still referred to by the caller variable 'natCaller'}}
}
void param_nested_and_transitive_caller(NestedAndTransitive natCaller) {
param_nested_and_transitive_callee(&natCaller);
}
} // namespace leaking_via_nested_and_indirect
namespace leaking_as_member {
class CRef {
int& ref; // expected-note{{reference member declared here}}
CRef(int x) : ref(x) {}
// expected-warning@-1 {{binding reference member 'ref' to stack allocated parameter 'x'}}
};
class CPtr {
int* ptr;
void memFun(int x) {
ptr = &x;
}
};
} // namespace leaking_as_member
namespace origin_region_limitation {
void leaker(int ***leakerArg) {
int local;
clang_analyzer_dump(*leakerArg); // expected-warning{{&SymRegion{reg_$0<int ** arg>}}}
// Incorrect message: 'arg', after it is reinitialized with value returned by 'tweak'
// is no longer relevant.
// The message must refer to 'original_arg' instead, but there is no easy way to
// connect the SymRegion stored in 'original_arg' and 'original_arg' as variable.
**leakerArg = &local; // expected-warning{{ 'local' is still referred to by the caller variable 'arg'}}
}
int **tweak();
void foo(int **arg) {
int **original_arg = arg;
arg = tweak();
leaker(&original_arg);
}
} // namespace origin_region_limitation
namespace leaking_via_indirect_global_invalidated {
void** global_pp;
void opaque();
void global_ptr_to_ptr() {
int local = 42;
*global_pp = &local;
opaque();
*global_pp = nullptr;
}
} // namespace leaking_via_indirect_global_invalidated
namespace not_leaking_via_simple_ptr {
void simple_ptr(const char *p) {
char tmp;
p = &tmp; // no-warning
}
void ref_ptr(const char *&p) {
char tmp;
p = &tmp; // expected-warning{{variable 'tmp' is still referred to by the caller variable 'p'}}
}
struct S {
const char *p;
};
void struct_ptr(S s) {
char tmp;
s.p = &tmp; // no-warning
}
void array(const char arr[2]) {
char tmp;
arr = &tmp; // no-warning
}
extern void copy(char *output, const char *input, unsigned size);
extern bool foo(const char *input);
extern void bar(char *output, unsigned count);
extern bool baz(char *output, const char *input);
void repo(const char *input, char *output) {
char temp[64];
copy(temp, input, sizeof(temp));
char result[64];
input = temp;
if (foo(temp)) {
bar(result, sizeof(result));
input = result;
}
if (!baz(output, input)) {
copy(output, input, sizeof(result));
}
}
} // namespace not_leaking_via_simple_ptr
namespace early_reclaim_dead_limitation {
void foo();
void top(char **p) {
char local;
*p = &local;
foo(); // no-warning FIXME: p binding is reclaimed before the function end
}
} // namespace early_reclaim_dead_limitation
namespace alloca_region_pointer {
void callee(char **pptr) {
char local;
*pptr = &local;
} // no crash
void top_alloca_no_crash_fn() {
char **pptr = (char**)__builtin_alloca(sizeof(char*));
callee(pptr);
}
void top_malloc_no_crash_fn() {
char **pptr = (char**)malloc(sizeof(char*));
callee(pptr);
free(pptr);
}
} // namespace alloca_region_pointer
// These all warn with -Wreturn-stack-address also
namespace return_address_of_true_positives {
int* ret_local_addrOf() {
int x = 1;
return &*&x; // expected-warning {{Address of stack memory associated with local variable 'x' returned to caller}} expected-warning {{address of stack memory associated with local variable 'x' returned}}
}
int* ret_local_addrOf_paren() {
int x = 1;
return (&(*(&x))); // expected-warning {{Address of stack memory associated with local variable 'x' returned to caller}} expected-warning {{address of stack memory associated with local variable 'x' returned}}
}
int* ret_local_addrOf_ptr_arith() {
int x = 1;
return &*(&x+1); // expected-warning {{Address of stack memory associated with local variable 'x' returned to caller}} expected-warning {{address of stack memory associated with local variable 'x' returned}}
}
int* ret_local_addrOf_ptr_arith2() {
int x = 1;
return &*(&x+1); // expected-warning {{Address of stack memory associated with local variable 'x' returned to caller}} expected-warning {{address of stack memory associated with local variable 'x' returned}}
}
int* ret_local_field() {
struct { int x; } a;
return &a.x; // expected-warning {{Address of stack memory associated with local variable 'a' returned to caller}} expected-warning {{address of stack memory associated with local variable 'a' returned}}
}
int& ret_local_field_ref() {
struct { int x; } a;
return a.x; // expected-warning {{Address of stack memory associated with local variable 'a' returned to caller}} expected-warning {{reference to stack memory associated with local variable 'a' returned}}
}
} //namespace return_address_of_true_positives
namespace return_from_child_block_scope {
struct S {
int *p;
};
S return_child_stack_context() {
S s;
{
int a = 1;
s = (S){ &a };
}
return s; // expected-warning {{Address of stack memory associated with local variable 'a' returned to caller}}
}
S return_child_stack_context_field() {
S s;
{
int a = 1;
s.p = &a;
}
return s; // expected-warning {{Address of stack memory associated with local variable 'a' returned to caller}}
}
// The below are reproducers from Issue #123459
template <typename V>
struct T {
V* q{};
T() = default;
T(T&& rhs) { q = rhs.q; rhs.q = nullptr;}
T& operator=(T&& rhs) { q = rhs.q; rhs.q = nullptr;}
void push_back(const V& v) { if (q == nullptr) q = new V(v); }
~T() { delete q; }
};
T<S> f() {
T<S> t;
{
int a = 1;
t.push_back({ &a });
}
return t; // expected-warning {{Address of stack memory associated with local variable 'a' returned to caller}}
}
} // namespace return_from_child_block_scope
namespace true_negatives_return_expressions {
struct Container { int *x; };
int test2() {
int x = 14;
return x; // no-warning
}
void return_void() {
return void(); // no-warning
}
int return_assign_expr_safe() {
int y, x = 14;
return y = x; // no-warning
}
int return_comma_separated_expressions_safe() {
int x = 1;
int *y;
return (y=&x), (x=15); // no-warning
}
int return_comma_separated_expressions_container_safe() {
int x = 1;
Container Other;
return Other = Container{&x}, x = 14; // no-warning
}
int make_x();
int return_symbol_safe() {
int x = make_x();
clang_analyzer_dump(x); // expected-warning-re {{conj_$2{int, {{.+}}}}}
return x; // no-warning
}
int *return_symbolic_region_safe(int **ptr) {
return *ptr; // no-warning
}
int *return_arg_ptr(int *arg) {
return arg; // no-warning
}
// This has a false positive with -Wreturn-stack-address, but CSA should not
// warn on this
int *return_conditional_never_false(int *arg) {
int x = 14;
return true ? arg : &x; // expected-warning {{address of stack memory associated with local variable 'x' returned}}
}
// This has a false positive with -Wreturn-stack-address, but CSA should not
// warn on this
int *return_conditional_never_true(int *arg) {
int x = 14;
return false ? &x : arg; // expected-warning {{address of stack memory associated with local variable 'x' returned}}
}
int *return_conditional_path_split(int *arg, bool b) {
int x = 14;
return b ? arg : &x; // expected-warning {{Address of stack memory associated with local variable 'x' returned to caller}} expected-warning {{address of stack memory associated with local variable 'x' returned}} -Wreturn-stack-address
}
// compare of two symbolic regions
// maybe in some implementation, make_ptr returns interior pointers that are comparable
int *make_ptr();
bool return_symbolic_exxpression() {
int *a = make_ptr();
int *b = make_ptr();
return a < b; // no-warning
}
int *return_static() {
static int x = 0;
return &x; // no-warning
}
int* return_cpp_reinterpret_cast_no_warning(long x) {
return reinterpret_cast<int*>(x); // no-warning
}
}
// TODO: The tail call expression tree must not hold a reference to an arg or stack local:
// "The lifetimes of all local variables and function parameters end immediately before the
// [tail] call to the function. This means that it is undefined behaviour to pass a pointer or
// reference to a local variable to the called function, which is not the case without the
// attribute."
// These only warn from -Wreturn-stack-address for now
namespace with_attr_musttail {
void TakesIntAndPtr(int, int *);
void PassAddressOfLocal(int a, int *b) {
int c;
[[clang::musttail]] return TakesIntAndPtr(0, &c); // expected-warning {{address of stack memory associated with local variable 'c' pass\
ed to musttail function}} False-negative on CSA
}
void PassAddressOfParam(int a, int *b) {
[[clang::musttail]] return TakesIntAndPtr(0, &a); // expected-warning {{address of stack memory associated with parameter 'a' passed to\
musttail function}} False-negative on CSA
}
} // namespace with_attr_musttail