llvm-project/flang/test/Lower/HLFIR/elemental-call-vector-subscripts.f90
jeanPerier 44261dae5b
[flang][NFC] use hlfir.declare first result when both results are raw pointers (#132261)
Currently, the helpers to get fir::ExtendedValue out of hlfir::Entity
use hlfir.declare second result (`#1`) in most cases. This is because
this result is the same as the input and matches what FIR was getting
before lowering to HLFIR.

But this creates odd situations when both hlfir.declare are raw pointers
and either result ends-up being used in the IR depending on whether the
code was generated by a helper using fir::ExtendedValue, or via "pure
HLFIR" helpers using the first result.

This will typically prevent simple CSE and easy identification that two
operation (e.g load/store) are touching the exact same memory location
without using alias analysis or "manual detection" (looking for common
hlfir.declare defining op).

Hence, when hlfir.declare results are both raw pointers, use `#0` when
producing `fir::ExtendedValue`.
When `#0` is a fir.box, keep using `#1` because these are not the same. 
The only code change is in HLFIRTools.cpp and is pretty small, but there
is a big test fallout of `#1` to `#0`.
2025-03-21 11:41:04 +01:00

94 lines
5.2 KiB
Fortran

! Test passing of vector subscripted entities inside elemental
! procedures.
! RUN: bbc --emit-hlfir -o - %s | FileCheck %s
subroutine test()
interface
elemental subroutine foo(x, y)
real, intent(in) :: x
real, value :: y
end subroutine
end interface
real :: x(10)
call foo(x([1,3,7]), 0.)
end subroutine
! CHECK-LABEL: func.func @_QPtest() {
! CHECK: %[[VAL_0:.*]] = arith.constant 10 : index
! CHECK: %[[VAL_1:.*]] = fir.alloca !fir.array<10xf32> {bindc_name = "x", uniq_name = "_QFtestEx"}
! CHECK: %[[VAL_2:.*]] = fir.shape %[[VAL_0]] : (index) -> !fir.shape<1>
! CHECK: %[[VAL_3:.*]]:2 = hlfir.declare %[[VAL_1]](%[[VAL_2]]) {uniq_name = "_QFtestEx"} : (!fir.ref<!fir.array<10xf32>>, !fir.shape<1>) -> (!fir.ref<!fir.array<10xf32>>, !fir.ref<!fir.array<10xf32>>)
! CHECK: %[[VAL_4:.*]] = fir.address_of(@_QQro.3xi8.0) : !fir.ref<!fir.array<3xi64>>
! CHECK: %[[VAL_5:.*]] = arith.constant 3 : index
! CHECK: %[[VAL_6:.*]] = fir.shape %[[VAL_5]] : (index) -> !fir.shape<1>
! CHECK: %[[VAL_7:.*]]:2 = hlfir.declare %[[VAL_4]](%[[VAL_6]])
! CHECK: %[[VAL_8:.*]] = arith.constant 3 : index
! CHECK: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
! CHECK: %[[VAL_10:.*]] = arith.constant 1 : index
! CHECK: fir.do_loop %[[VAL_11:.*]] = %[[VAL_10]] to %[[VAL_8]] step %[[VAL_10]] unordered {
! CHECK: %[[VAL_12:.*]] = hlfir.designate %[[VAL_7]]#0 (%[[VAL_11]]) : (!fir.ref<!fir.array<3xi64>>, index) -> !fir.ref<i64>
! CHECK: %[[VAL_13:.*]] = fir.load %[[VAL_12]] : !fir.ref<i64>
! CHECK: %[[VAL_14:.*]] = hlfir.designate %[[VAL_3]]#0 (%[[VAL_13]]) : (!fir.ref<!fir.array<10xf32>>, i64) -> !fir.ref<f32>
! CHECK: fir.call @_QPfoo(%[[VAL_14]], %[[VAL_9]]) {{.*}}: (!fir.ref<f32>, f32) -> ()
! CHECK: }
! CHECK: return
! CHECK: }
subroutine test_value()
interface
elemental subroutine foo_value(x, y)
real, value :: x
real, value :: y
end subroutine
end interface
real :: x(10)
call foo_value(x([1,3,7]), 0.)
end subroutine
! CHECK-LABEL: func.func @_QPtest_value() {
! CHECK: %[[VAL_0:.*]] = arith.constant 10 : index
! CHECK: %[[VAL_1:.*]] = fir.alloca !fir.array<10xf32> {bindc_name = "x", uniq_name = "_QFtest_valueEx"}
! CHECK: %[[VAL_2:.*]] = fir.shape %[[VAL_0]] : (index) -> !fir.shape<1>
! CHECK: %[[VAL_3:.*]]:2 = hlfir.declare %[[VAL_1]](%[[VAL_2]]) {uniq_name = "_QFtest_valueEx"} : (!fir.ref<!fir.array<10xf32>>, !fir.shape<1>) -> (!fir.ref<!fir.array<10xf32>>, !fir.ref<!fir.array<10xf32>>)
! CHECK: %[[VAL_4:.*]] = fir.address_of(@_QQro.3xi8.0) : !fir.ref<!fir.array<3xi64>>
! CHECK: %[[VAL_5:.*]] = arith.constant 3 : index
! CHECK: %[[VAL_6:.*]] = fir.shape %[[VAL_5]] : (index) -> !fir.shape<1>
! CHECK: %[[VAL_7:.*]]:2 = hlfir.declare %[[VAL_4]](%[[VAL_6]])
! CHECK: %[[VAL_8:.*]] = arith.constant 3 : index
! CHECK: %[[VAL_9:.*]] = fir.shape %[[VAL_8]] : (index) -> !fir.shape<1>
! CHECK: %[[VAL_10:.*]] = hlfir.elemental %[[VAL_9]] unordered : (!fir.shape<1>) -> !hlfir.expr<3xf32> {
! CHECK: ^bb0(%[[VAL_11:.*]]: index):
! CHECK: %[[VAL_12:.*]] = hlfir.designate %[[VAL_7]]#0 (%[[VAL_11]]) : (!fir.ref<!fir.array<3xi64>>, index) -> !fir.ref<i64>
! CHECK: %[[VAL_13:.*]] = fir.load %[[VAL_12]] : !fir.ref<i64>
! CHECK: %[[VAL_14:.*]] = hlfir.designate %[[VAL_3]]#0 (%[[VAL_13]]) : (!fir.ref<!fir.array<10xf32>>, i64) -> !fir.ref<f32>
! CHECK: %[[VAL_15:.*]] = fir.load %[[VAL_14]] : !fir.ref<f32>
! CHECK: hlfir.yield_element %[[VAL_15]] : f32
! CHECK: }
! CHECK: %[[VAL_16:.*]] = arith.constant 0.000000e+00 : f32
! CHECK: %[[VAL_17:.*]] = arith.constant 1 : index
! CHECK: fir.do_loop %[[VAL_18:.*]] = %[[VAL_17]] to %[[VAL_8]] step %[[VAL_17]] unordered {
! CHECK: %[[VAL_19:.*]] = hlfir.apply %[[VAL_10]], %[[VAL_18]] : (!hlfir.expr<3xf32>, index) -> f32
! CHECK: fir.call @_QPfoo_value(%[[VAL_19]], %[[VAL_16]]) {{.*}}: (f32, f32) -> ()
! CHECK: }
! CHECK: hlfir.destroy %[[VAL_10]] : !hlfir.expr<3xf32>
! CHECK: return
subroutine test_not_a_variable(i)
interface
elemental subroutine foo2(j)
integer(8), intent(in) :: j
end subroutine
end interface
integer(8) :: i(:)
call foo2((i(i)))
end subroutine
! CHECK-LABEL: func.func @_QPtest_not_a_variable(
! CHECK: hlfir.elemental
! CHECK: %[[VAL_16:.*]] = hlfir.elemental
! CHECK: %[[VAL_20:.*]] = arith.constant 1 : index
! CHECK: fir.do_loop %[[VAL_21:.*]] = {{.*}}
! CHECK: %[[VAL_22:.*]] = hlfir.apply %[[VAL_16]], %[[VAL_21]] : (!hlfir.expr<?xi64>, index) -> i64
! CHECK: %[[VAL_23:.*]]:3 = hlfir.associate %[[VAL_22]] {adapt.valuebyref} : (i64) -> (!fir.ref<i64>, !fir.ref<i64>, i1)
! CHECK: fir.call @_QPfoo2(%[[VAL_23]]#0){{.*}}: (!fir.ref<i64>) -> ()
! CHECK: hlfir.end_associate %[[VAL_23]]#1, %[[VAL_23]]#2 : !fir.ref<i64>, i1
! CHECK: }