Jonas Devlieghere b852fb1ec5
[lldb] Move ValueObject into its own library (NFC) (#113393)
ValueObject is part of lldbCore for historical reasons, but conceptually
it deserves to be its own library. This does introduce a (link-time) circular
dependency between lldbCore and lldbValueObject, which is unfortunate
but probably unavoidable because so many things in LLDB rely on
ValueObject. We already have cycles and these libraries are never built
as dylibs so while this doesn't improve the situation, it also doesn't
make things worse.

The header includes were updated with the following command:

```
find . -type f -exec sed -i.bak "s%include \"lldb/Core/ValueObject%include \"lldb/ValueObject/ValueObject%" '{}' \;
```
2024-10-24 20:20:48 -07:00

314 lines
10 KiB
C++

//===-- ABI.cpp -----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/ABI.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Expression/ExpressionVariable.h"
#include "lldb/Symbol/CompilerType.h"
#include "lldb/Symbol/TypeSystem.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/ValueObject/ValueObjectConstResult.h"
#include "llvm/MC/TargetRegistry.h"
#include <cctype>
using namespace lldb;
using namespace lldb_private;
ABISP
ABI::FindPlugin(lldb::ProcessSP process_sp, const ArchSpec &arch) {
ABISP abi_sp;
ABICreateInstance create_callback;
for (uint32_t idx = 0;
(create_callback = PluginManager::GetABICreateCallbackAtIndex(idx)) !=
nullptr;
++idx) {
abi_sp = create_callback(process_sp, arch);
if (abi_sp)
return abi_sp;
}
abi_sp.reset();
return abi_sp;
}
ABI::~ABI() = default;
bool RegInfoBasedABI::GetRegisterInfoByName(llvm::StringRef name,
RegisterInfo &info) {
uint32_t count = 0;
const RegisterInfo *register_info_array = GetRegisterInfoArray(count);
if (register_info_array) {
uint32_t i;
for (i = 0; i < count; ++i) {
const char *reg_name = register_info_array[i].name;
if (reg_name == name) {
info = register_info_array[i];
return true;
}
}
for (i = 0; i < count; ++i) {
const char *reg_alt_name = register_info_array[i].alt_name;
if (reg_alt_name == name) {
info = register_info_array[i];
return true;
}
}
}
return false;
}
ValueObjectSP ABI::GetReturnValueObject(Thread &thread, CompilerType &ast_type,
bool persistent) const {
if (!ast_type.IsValid())
return ValueObjectSP();
ValueObjectSP return_valobj_sp;
return_valobj_sp = GetReturnValueObjectImpl(thread, ast_type);
if (!return_valobj_sp)
return return_valobj_sp;
// Now turn this into a persistent variable.
// FIXME: This code is duplicated from Target::EvaluateExpression, and it is
// used in similar form in a couple
// of other places. Figure out the correct Create function to do all this
// work.
if (persistent) {
Target &target = *thread.CalculateTarget();
PersistentExpressionState *persistent_expression_state =
target.GetPersistentExpressionStateForLanguage(
ast_type.GetMinimumLanguage());
if (!persistent_expression_state)
return {};
ConstString persistent_variable_name =
persistent_expression_state->GetNextPersistentVariableName();
lldb::ValueObjectSP const_valobj_sp;
// Check in case our value is already a constant value
if (return_valobj_sp->GetIsConstant()) {
const_valobj_sp = return_valobj_sp;
const_valobj_sp->SetName(persistent_variable_name);
} else
const_valobj_sp =
return_valobj_sp->CreateConstantValue(persistent_variable_name);
lldb::ValueObjectSP live_valobj_sp = return_valobj_sp;
return_valobj_sp = const_valobj_sp;
ExpressionVariableSP expr_variable_sp(
persistent_expression_state->CreatePersistentVariable(
return_valobj_sp));
assert(expr_variable_sp);
// Set flags and live data as appropriate
const Value &result_value = live_valobj_sp->GetValue();
switch (result_value.GetValueType()) {
case Value::ValueType::Invalid:
return {};
case Value::ValueType::HostAddress:
case Value::ValueType::FileAddress:
// we odon't do anything with these for now
break;
case Value::ValueType::Scalar:
expr_variable_sp->m_flags |=
ExpressionVariable::EVIsFreezeDried;
expr_variable_sp->m_flags |=
ExpressionVariable::EVIsLLDBAllocated;
expr_variable_sp->m_flags |=
ExpressionVariable::EVNeedsAllocation;
break;
case Value::ValueType::LoadAddress:
expr_variable_sp->m_live_sp = live_valobj_sp;
expr_variable_sp->m_flags |=
ExpressionVariable::EVIsProgramReference;
break;
}
return_valobj_sp = expr_variable_sp->GetValueObject();
}
return return_valobj_sp;
}
addr_t ABI::FixCodeAddress(lldb::addr_t pc) {
ProcessSP process_sp(GetProcessSP());
addr_t mask = process_sp->GetCodeAddressMask();
if (mask == LLDB_INVALID_ADDRESS_MASK)
return pc;
// Assume the high bit is used for addressing, which
// may not be correct on all architectures e.g. AArch64
// where Top Byte Ignore mode is often used to store
// metadata in the top byte, and b55 is the bit used for
// differentiating between low- and high-memory addresses.
// That target's ABIs need to override this method.
bool is_highmem = pc & (1ULL << 63);
return is_highmem ? pc | mask : pc & (~mask);
}
addr_t ABI::FixDataAddress(lldb::addr_t pc) {
ProcessSP process_sp(GetProcessSP());
addr_t mask = process_sp->GetDataAddressMask();
if (mask == LLDB_INVALID_ADDRESS_MASK)
return pc;
// Assume the high bit is used for addressing, which
// may not be correct on all architectures e.g. AArch64
// where Top Byte Ignore mode is often used to store
// metadata in the top byte, and b55 is the bit used for
// differentiating between low- and high-memory addresses.
// That target's ABIs need to override this method.
bool is_highmem = pc & (1ULL << 63);
return is_highmem ? pc | mask : pc & (~mask);
}
ValueObjectSP ABI::GetReturnValueObject(Thread &thread, llvm::Type &ast_type,
bool persistent) const {
ValueObjectSP return_valobj_sp;
return_valobj_sp = GetReturnValueObjectImpl(thread, ast_type);
return return_valobj_sp;
}
// specialized to work with llvm IR types
//
// for now we will specify a default implementation so that we don't need to
// modify other ABIs
lldb::ValueObjectSP ABI::GetReturnValueObjectImpl(Thread &thread,
llvm::Type &ir_type) const {
ValueObjectSP return_valobj_sp;
/* this is a dummy and will only be called if an ABI does not override this */
return return_valobj_sp;
}
bool ABI::PrepareTrivialCall(Thread &thread, lldb::addr_t sp,
lldb::addr_t functionAddress,
lldb::addr_t returnAddress, llvm::Type &returntype,
llvm::ArrayRef<ABI::CallArgument> args) const {
// dummy prepare trivial call
llvm_unreachable("Should never get here!");
}
bool ABI::GetFallbackRegisterLocation(
const RegisterInfo *reg_info,
UnwindPlan::Row::AbstractRegisterLocation &unwind_regloc) {
// Did the UnwindPlan fail to give us the caller's stack pointer? The stack
// pointer is defined to be the same as THIS frame's CFA, so return the CFA
// value as the caller's stack pointer. This is true on x86-32/x86-64 at
// least.
if (reg_info->kinds[eRegisterKindGeneric] == LLDB_REGNUM_GENERIC_SP) {
unwind_regloc.SetIsCFAPlusOffset(0);
return true;
}
// If a volatile register is being requested, we don't want to forward the
// next frame's register contents up the stack -- the register is not
// retrievable at this frame.
if (RegisterIsVolatile(reg_info)) {
unwind_regloc.SetUndefined();
return true;
}
return false;
}
std::unique_ptr<llvm::MCRegisterInfo> ABI::MakeMCRegisterInfo(const ArchSpec &arch) {
std::string triple = arch.GetTriple().getTriple();
std::string lookup_error;
const llvm::Target *target =
llvm::TargetRegistry::lookupTarget(triple, lookup_error);
if (!target) {
LLDB_LOG(GetLog(LLDBLog::Process),
"Failed to create an llvm target for {0}: {1}", triple,
lookup_error);
return nullptr;
}
std::unique_ptr<llvm::MCRegisterInfo> info_up(
target->createMCRegInfo(triple));
assert(info_up);
return info_up;
}
void RegInfoBasedABI::AugmentRegisterInfo(
std::vector<DynamicRegisterInfo::Register> &regs) {
for (DynamicRegisterInfo::Register &info : regs) {
if (info.regnum_ehframe != LLDB_INVALID_REGNUM &&
info.regnum_dwarf != LLDB_INVALID_REGNUM)
continue;
RegisterInfo abi_info;
if (!GetRegisterInfoByName(info.name.GetStringRef(), abi_info))
continue;
if (info.regnum_ehframe == LLDB_INVALID_REGNUM)
info.regnum_ehframe = abi_info.kinds[eRegisterKindEHFrame];
if (info.regnum_dwarf == LLDB_INVALID_REGNUM)
info.regnum_dwarf = abi_info.kinds[eRegisterKindDWARF];
if (info.regnum_generic == LLDB_INVALID_REGNUM)
info.regnum_generic = abi_info.kinds[eRegisterKindGeneric];
}
}
void MCBasedABI::AugmentRegisterInfo(
std::vector<DynamicRegisterInfo::Register> &regs) {
for (DynamicRegisterInfo::Register &info : regs) {
uint32_t eh, dwarf;
std::tie(eh, dwarf) = GetEHAndDWARFNums(info.name.GetStringRef());
if (info.regnum_ehframe == LLDB_INVALID_REGNUM)
info.regnum_ehframe = eh;
if (info.regnum_dwarf == LLDB_INVALID_REGNUM)
info.regnum_dwarf = dwarf;
if (info.regnum_generic == LLDB_INVALID_REGNUM)
info.regnum_generic = GetGenericNum(info.name.GetStringRef());
}
}
std::pair<uint32_t, uint32_t>
MCBasedABI::GetEHAndDWARFNums(llvm::StringRef name) {
std::string mc_name = GetMCName(name.str());
for (char &c : mc_name)
c = std::toupper(c);
int eh = -1;
int dwarf = -1;
for (unsigned reg = 0; reg < m_mc_register_info_up->getNumRegs(); ++reg) {
if (m_mc_register_info_up->getName(reg) == mc_name) {
eh = m_mc_register_info_up->getDwarfRegNum(reg, /*isEH=*/true);
dwarf = m_mc_register_info_up->getDwarfRegNum(reg, /*isEH=*/false);
break;
}
}
return std::pair<uint32_t, uint32_t>(eh == -1 ? LLDB_INVALID_REGNUM : eh,
dwarf == -1 ? LLDB_INVALID_REGNUM
: dwarf);
}
void MCBasedABI::MapRegisterName(std::string &name, llvm::StringRef from_prefix,
llvm::StringRef to_prefix) {
llvm::StringRef name_ref = name;
if (!name_ref.consume_front(from_prefix))
return;
uint64_t _;
if (name_ref.empty() || to_integer(name_ref, _, 10))
name = (to_prefix + name_ref).str();
}