
Add `ValueObject::CreateValueObjectFromScalar` function and adjust `Scalar::GetData` to be able to both extend and truncate the data bytes in Scalar to the specified size.
3759 lines
134 KiB
C++
3759 lines
134 KiB
C++
//===-- ValueObject.cpp ---------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "lldb/ValueObject/ValueObject.h"
|
|
|
|
#include "lldb/Core/Address.h"
|
|
#include "lldb/Core/Declaration.h"
|
|
#include "lldb/Core/Module.h"
|
|
#include "lldb/DataFormatters/DataVisualization.h"
|
|
#include "lldb/DataFormatters/DumpValueObjectOptions.h"
|
|
#include "lldb/DataFormatters/FormatManager.h"
|
|
#include "lldb/DataFormatters/StringPrinter.h"
|
|
#include "lldb/DataFormatters/TypeFormat.h"
|
|
#include "lldb/DataFormatters/TypeSummary.h"
|
|
#include "lldb/DataFormatters/ValueObjectPrinter.h"
|
|
#include "lldb/Expression/ExpressionVariable.h"
|
|
#include "lldb/Host/Config.h"
|
|
#include "lldb/Symbol/CompileUnit.h"
|
|
#include "lldb/Symbol/CompilerType.h"
|
|
#include "lldb/Symbol/SymbolContext.h"
|
|
#include "lldb/Symbol/Type.h"
|
|
#include "lldb/Symbol/Variable.h"
|
|
#include "lldb/Target/ExecutionContext.h"
|
|
#include "lldb/Target/Language.h"
|
|
#include "lldb/Target/LanguageRuntime.h"
|
|
#include "lldb/Target/Process.h"
|
|
#include "lldb/Target/StackFrame.h"
|
|
#include "lldb/Target/Target.h"
|
|
#include "lldb/Target/Thread.h"
|
|
#include "lldb/Target/ThreadList.h"
|
|
#include "lldb/Utility/DataBuffer.h"
|
|
#include "lldb/Utility/DataBufferHeap.h"
|
|
#include "lldb/Utility/Flags.h"
|
|
#include "lldb/Utility/LLDBLog.h"
|
|
#include "lldb/Utility/Log.h"
|
|
#include "lldb/Utility/Scalar.h"
|
|
#include "lldb/Utility/Stream.h"
|
|
#include "lldb/Utility/StreamString.h"
|
|
#include "lldb/ValueObject/ValueObjectCast.h"
|
|
#include "lldb/ValueObject/ValueObjectChild.h"
|
|
#include "lldb/ValueObject/ValueObjectConstResult.h"
|
|
#include "lldb/ValueObject/ValueObjectDynamicValue.h"
|
|
#include "lldb/ValueObject/ValueObjectMemory.h"
|
|
#include "lldb/ValueObject/ValueObjectSynthetic.h"
|
|
#include "lldb/ValueObject/ValueObjectVTable.h"
|
|
#include "lldb/lldb-private-types.h"
|
|
|
|
#include "llvm/Support/Compiler.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <tuple>
|
|
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
|
|
namespace lldb_private {
|
|
class ExecutionContextScope;
|
|
}
|
|
namespace lldb_private {
|
|
class SymbolContextScope;
|
|
}
|
|
|
|
using namespace lldb;
|
|
using namespace lldb_private;
|
|
|
|
static user_id_t g_value_obj_uid = 0;
|
|
|
|
// ValueObject constructor
|
|
ValueObject::ValueObject(ValueObject &parent)
|
|
: m_parent(&parent), m_update_point(parent.GetUpdatePoint()),
|
|
m_manager(parent.GetManager()), m_id(++g_value_obj_uid) {
|
|
m_flags.m_is_synthetic_children_generated =
|
|
parent.m_flags.m_is_synthetic_children_generated;
|
|
m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder());
|
|
m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize());
|
|
m_manager->ManageObject(this);
|
|
}
|
|
|
|
// ValueObject constructor
|
|
ValueObject::ValueObject(ExecutionContextScope *exe_scope,
|
|
ValueObjectManager &manager,
|
|
AddressType child_ptr_or_ref_addr_type)
|
|
: m_update_point(exe_scope), m_manager(&manager),
|
|
m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type),
|
|
m_id(++g_value_obj_uid) {
|
|
if (exe_scope) {
|
|
TargetSP target_sp(exe_scope->CalculateTarget());
|
|
if (target_sp) {
|
|
const ArchSpec &arch = target_sp->GetArchitecture();
|
|
m_data.SetByteOrder(arch.GetByteOrder());
|
|
m_data.SetAddressByteSize(arch.GetAddressByteSize());
|
|
}
|
|
}
|
|
m_manager->ManageObject(this);
|
|
}
|
|
|
|
// Destructor
|
|
ValueObject::~ValueObject() = default;
|
|
|
|
bool ValueObject::UpdateValueIfNeeded(bool update_format) {
|
|
|
|
bool did_change_formats = false;
|
|
|
|
if (update_format)
|
|
did_change_formats = UpdateFormatsIfNeeded();
|
|
|
|
// If this is a constant value, then our success is predicated on whether we
|
|
// have an error or not
|
|
if (GetIsConstant()) {
|
|
// if you are constant, things might still have changed behind your back
|
|
// (e.g. you are a frozen object and things have changed deeper than you
|
|
// cared to freeze-dry yourself) in this case, your value has not changed,
|
|
// but "computed" entries might have, so you might now have a different
|
|
// summary, or a different object description. clear these so we will
|
|
// recompute them
|
|
if (update_format && !did_change_formats)
|
|
ClearUserVisibleData(eClearUserVisibleDataItemsSummary |
|
|
eClearUserVisibleDataItemsDescription);
|
|
return m_error.Success();
|
|
}
|
|
|
|
bool first_update = IsChecksumEmpty();
|
|
|
|
if (NeedsUpdating()) {
|
|
m_update_point.SetUpdated();
|
|
|
|
// Save the old value using swap to avoid a string copy which also will
|
|
// clear our m_value_str
|
|
if (m_value_str.empty()) {
|
|
m_flags.m_old_value_valid = false;
|
|
} else {
|
|
m_flags.m_old_value_valid = true;
|
|
m_old_value_str.swap(m_value_str);
|
|
ClearUserVisibleData(eClearUserVisibleDataItemsValue);
|
|
}
|
|
|
|
ClearUserVisibleData();
|
|
|
|
if (IsInScope()) {
|
|
const bool value_was_valid = GetValueIsValid();
|
|
SetValueDidChange(false);
|
|
|
|
m_error.Clear();
|
|
|
|
// Call the pure virtual function to update the value
|
|
|
|
bool need_compare_checksums = false;
|
|
llvm::SmallVector<uint8_t, 16> old_checksum;
|
|
|
|
if (!first_update && CanProvideValue()) {
|
|
need_compare_checksums = true;
|
|
old_checksum.resize(m_value_checksum.size());
|
|
std::copy(m_value_checksum.begin(), m_value_checksum.end(),
|
|
old_checksum.begin());
|
|
}
|
|
|
|
bool success = UpdateValue();
|
|
|
|
SetValueIsValid(success);
|
|
|
|
if (success) {
|
|
UpdateChildrenAddressType();
|
|
const uint64_t max_checksum_size = 128;
|
|
m_data.Checksum(m_value_checksum, max_checksum_size);
|
|
} else {
|
|
need_compare_checksums = false;
|
|
m_value_checksum.clear();
|
|
}
|
|
|
|
assert(!need_compare_checksums ||
|
|
(!old_checksum.empty() && !m_value_checksum.empty()));
|
|
|
|
if (first_update)
|
|
SetValueDidChange(false);
|
|
else if (!m_flags.m_value_did_change && !success) {
|
|
// The value wasn't gotten successfully, so we mark this as changed if
|
|
// the value used to be valid and now isn't
|
|
SetValueDidChange(value_was_valid);
|
|
} else if (need_compare_checksums) {
|
|
SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0],
|
|
m_value_checksum.size()));
|
|
}
|
|
|
|
} else {
|
|
m_error = Status::FromErrorString("out of scope");
|
|
}
|
|
}
|
|
return m_error.Success();
|
|
}
|
|
|
|
bool ValueObject::UpdateFormatsIfNeeded() {
|
|
Log *log = GetLog(LLDBLog::DataFormatters);
|
|
LLDB_LOGF(log,
|
|
"[%s %p] checking for FormatManager revisions. ValueObject "
|
|
"rev: %d - Global rev: %d",
|
|
GetName().GetCString(), static_cast<void *>(this),
|
|
m_last_format_mgr_revision,
|
|
DataVisualization::GetCurrentRevision());
|
|
|
|
bool any_change = false;
|
|
|
|
if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) {
|
|
m_last_format_mgr_revision = DataVisualization::GetCurrentRevision();
|
|
any_change = true;
|
|
|
|
SetValueFormat(DataVisualization::GetFormat(*this, GetDynamicValueType()));
|
|
SetSummaryFormat(
|
|
DataVisualization::GetSummaryFormat(*this, GetDynamicValueType()));
|
|
SetSyntheticChildren(
|
|
DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType()));
|
|
}
|
|
|
|
return any_change;
|
|
}
|
|
|
|
void ValueObject::SetNeedsUpdate() {
|
|
m_update_point.SetNeedsUpdate();
|
|
// We have to clear the value string here so ConstResult children will notice
|
|
// if their values are changed by hand (i.e. with SetValueAsCString).
|
|
ClearUserVisibleData(eClearUserVisibleDataItemsValue);
|
|
}
|
|
|
|
void ValueObject::ClearDynamicTypeInformation() {
|
|
m_flags.m_children_count_valid = false;
|
|
m_flags.m_did_calculate_complete_objc_class_type = false;
|
|
m_last_format_mgr_revision = 0;
|
|
m_override_type = CompilerType();
|
|
SetValueFormat(lldb::TypeFormatImplSP());
|
|
SetSummaryFormat(lldb::TypeSummaryImplSP());
|
|
SetSyntheticChildren(lldb::SyntheticChildrenSP());
|
|
}
|
|
|
|
CompilerType ValueObject::MaybeCalculateCompleteType() {
|
|
CompilerType compiler_type(GetCompilerTypeImpl());
|
|
|
|
if (m_flags.m_did_calculate_complete_objc_class_type) {
|
|
if (m_override_type.IsValid())
|
|
return m_override_type;
|
|
else
|
|
return compiler_type;
|
|
}
|
|
|
|
m_flags.m_did_calculate_complete_objc_class_type = true;
|
|
|
|
ProcessSP process_sp(
|
|
GetUpdatePoint().GetExecutionContextRef().GetProcessSP());
|
|
|
|
if (!process_sp)
|
|
return compiler_type;
|
|
|
|
if (auto *runtime =
|
|
process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) {
|
|
if (std::optional<CompilerType> complete_type =
|
|
runtime->GetRuntimeType(compiler_type)) {
|
|
m_override_type = *complete_type;
|
|
if (m_override_type.IsValid())
|
|
return m_override_type;
|
|
}
|
|
}
|
|
return compiler_type;
|
|
}
|
|
|
|
DataExtractor &ValueObject::GetDataExtractor() {
|
|
UpdateValueIfNeeded(false);
|
|
return m_data;
|
|
}
|
|
|
|
const Status &ValueObject::GetError() {
|
|
UpdateValueIfNeeded(false);
|
|
return m_error;
|
|
}
|
|
|
|
const char *ValueObject::GetLocationAsCStringImpl(const Value &value,
|
|
const DataExtractor &data) {
|
|
if (UpdateValueIfNeeded(false)) {
|
|
if (m_location_str.empty()) {
|
|
StreamString sstr;
|
|
|
|
Value::ValueType value_type = value.GetValueType();
|
|
|
|
switch (value_type) {
|
|
case Value::ValueType::Invalid:
|
|
m_location_str = "invalid";
|
|
break;
|
|
case Value::ValueType::Scalar:
|
|
if (value.GetContextType() == Value::ContextType::RegisterInfo) {
|
|
RegisterInfo *reg_info = value.GetRegisterInfo();
|
|
if (reg_info) {
|
|
if (reg_info->name)
|
|
m_location_str = reg_info->name;
|
|
else if (reg_info->alt_name)
|
|
m_location_str = reg_info->alt_name;
|
|
if (m_location_str.empty())
|
|
m_location_str = (reg_info->encoding == lldb::eEncodingVector)
|
|
? "vector"
|
|
: "scalar";
|
|
}
|
|
}
|
|
if (m_location_str.empty())
|
|
m_location_str = "scalar";
|
|
break;
|
|
|
|
case Value::ValueType::LoadAddress:
|
|
case Value::ValueType::FileAddress:
|
|
case Value::ValueType::HostAddress: {
|
|
uint32_t addr_nibble_size = data.GetAddressByteSize() * 2;
|
|
sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size,
|
|
value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS));
|
|
m_location_str = std::string(sstr.GetString());
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
return m_location_str.c_str();
|
|
}
|
|
|
|
bool ValueObject::ResolveValue(Scalar &scalar) {
|
|
if (UpdateValueIfNeeded(
|
|
false)) // make sure that you are up to date before returning anything
|
|
{
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
Value tmp_value(m_value);
|
|
scalar = tmp_value.ResolveValue(&exe_ctx, GetModule().get());
|
|
if (scalar.IsValid()) {
|
|
const uint32_t bitfield_bit_size = GetBitfieldBitSize();
|
|
if (bitfield_bit_size)
|
|
return scalar.ExtractBitfield(bitfield_bit_size,
|
|
GetBitfieldBitOffset());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ValueObject::IsLogicalTrue(Status &error) {
|
|
if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
|
|
LazyBool is_logical_true = language->IsLogicalTrue(*this, error);
|
|
switch (is_logical_true) {
|
|
case eLazyBoolYes:
|
|
case eLazyBoolNo:
|
|
return (is_logical_true == true);
|
|
case eLazyBoolCalculate:
|
|
break;
|
|
}
|
|
}
|
|
|
|
Scalar scalar_value;
|
|
|
|
if (!ResolveValue(scalar_value)) {
|
|
error = Status::FromErrorString("failed to get a scalar result");
|
|
return false;
|
|
}
|
|
|
|
bool ret;
|
|
ret = scalar_value.ULongLong(1) != 0;
|
|
error.Clear();
|
|
return ret;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetChildAtIndex(uint32_t idx, bool can_create) {
|
|
ValueObjectSP child_sp;
|
|
// We may need to update our value if we are dynamic
|
|
if (IsPossibleDynamicType())
|
|
UpdateValueIfNeeded(false);
|
|
if (idx < GetNumChildrenIgnoringErrors()) {
|
|
// Check if we have already made the child value object?
|
|
if (can_create && !m_children.HasChildAtIndex(idx)) {
|
|
// No we haven't created the child at this index, so lets have our
|
|
// subclass do it and cache the result for quick future access.
|
|
m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx));
|
|
}
|
|
|
|
ValueObject *child = m_children.GetChildAtIndex(idx);
|
|
if (child != nullptr)
|
|
return child->GetSP();
|
|
}
|
|
return child_sp;
|
|
}
|
|
|
|
lldb::ValueObjectSP
|
|
ValueObject::GetChildAtNamePath(llvm::ArrayRef<llvm::StringRef> names) {
|
|
if (names.size() == 0)
|
|
return GetSP();
|
|
ValueObjectSP root(GetSP());
|
|
for (llvm::StringRef name : names) {
|
|
root = root->GetChildMemberWithName(name);
|
|
if (!root) {
|
|
return root;
|
|
}
|
|
}
|
|
return root;
|
|
}
|
|
|
|
llvm::Expected<size_t>
|
|
ValueObject::GetIndexOfChildWithName(llvm::StringRef name) {
|
|
bool omit_empty_base_classes = true;
|
|
return GetCompilerType().GetIndexOfChildWithName(name,
|
|
omit_empty_base_classes);
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetChildMemberWithName(llvm::StringRef name,
|
|
bool can_create) {
|
|
// We may need to update our value if we are dynamic.
|
|
if (IsPossibleDynamicType())
|
|
UpdateValueIfNeeded(false);
|
|
|
|
// When getting a child by name, it could be buried inside some base classes
|
|
// (which really aren't part of the expression path), so we need a vector of
|
|
// indexes that can get us down to the correct child.
|
|
std::vector<uint32_t> child_indexes;
|
|
bool omit_empty_base_classes = true;
|
|
|
|
if (!GetCompilerType().IsValid())
|
|
return ValueObjectSP();
|
|
|
|
const size_t num_child_indexes =
|
|
GetCompilerType().GetIndexOfChildMemberWithName(
|
|
name, omit_empty_base_classes, child_indexes);
|
|
if (num_child_indexes == 0)
|
|
return nullptr;
|
|
|
|
ValueObjectSP child_sp = GetSP();
|
|
for (uint32_t idx : child_indexes)
|
|
if (child_sp)
|
|
child_sp = child_sp->GetChildAtIndex(idx, can_create);
|
|
return child_sp;
|
|
}
|
|
|
|
llvm::Expected<uint32_t> ValueObject::GetNumChildren(uint32_t max) {
|
|
UpdateValueIfNeeded();
|
|
|
|
if (max < UINT32_MAX) {
|
|
if (m_flags.m_children_count_valid) {
|
|
size_t children_count = m_children.GetChildrenCount();
|
|
return children_count <= max ? children_count : max;
|
|
} else
|
|
return CalculateNumChildren(max);
|
|
}
|
|
|
|
if (!m_flags.m_children_count_valid) {
|
|
auto num_children_or_err = CalculateNumChildren();
|
|
if (num_children_or_err)
|
|
SetNumChildren(*num_children_or_err);
|
|
else
|
|
return num_children_or_err;
|
|
}
|
|
return m_children.GetChildrenCount();
|
|
}
|
|
|
|
uint32_t ValueObject::GetNumChildrenIgnoringErrors(uint32_t max) {
|
|
auto value_or_err = GetNumChildren(max);
|
|
if (value_or_err)
|
|
return *value_or_err;
|
|
LLDB_LOG_ERRORV(GetLog(LLDBLog::DataFormatters), value_or_err.takeError(),
|
|
"{0}");
|
|
return 0;
|
|
}
|
|
|
|
bool ValueObject::MightHaveChildren() {
|
|
bool has_children = false;
|
|
const uint32_t type_info = GetTypeInfo();
|
|
if (type_info) {
|
|
if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference))
|
|
has_children = true;
|
|
} else {
|
|
has_children = GetNumChildrenIgnoringErrors() > 0;
|
|
}
|
|
return has_children;
|
|
}
|
|
|
|
// Should only be called by ValueObject::GetNumChildren()
|
|
void ValueObject::SetNumChildren(uint32_t num_children) {
|
|
m_flags.m_children_count_valid = true;
|
|
m_children.SetChildrenCount(num_children);
|
|
}
|
|
|
|
ValueObject *ValueObject::CreateChildAtIndex(size_t idx) {
|
|
bool omit_empty_base_classes = true;
|
|
bool ignore_array_bounds = false;
|
|
std::string child_name;
|
|
uint32_t child_byte_size = 0;
|
|
int32_t child_byte_offset = 0;
|
|
uint32_t child_bitfield_bit_size = 0;
|
|
uint32_t child_bitfield_bit_offset = 0;
|
|
bool child_is_base_class = false;
|
|
bool child_is_deref_of_parent = false;
|
|
uint64_t language_flags = 0;
|
|
const bool transparent_pointers = true;
|
|
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
|
|
auto child_compiler_type_or_err =
|
|
GetCompilerType().GetChildCompilerTypeAtIndex(
|
|
&exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
|
|
ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
|
|
child_bitfield_bit_size, child_bitfield_bit_offset,
|
|
child_is_base_class, child_is_deref_of_parent, this, language_flags);
|
|
if (!child_compiler_type_or_err || !child_compiler_type_or_err->IsValid()) {
|
|
LLDB_LOG_ERROR(GetLog(LLDBLog::Types),
|
|
child_compiler_type_or_err.takeError(),
|
|
"could not find child: {0}");
|
|
return nullptr;
|
|
}
|
|
|
|
return new ValueObjectChild(
|
|
*this, *child_compiler_type_or_err, ConstString(child_name),
|
|
child_byte_size, child_byte_offset, child_bitfield_bit_size,
|
|
child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent,
|
|
eAddressTypeInvalid, language_flags);
|
|
}
|
|
|
|
ValueObject *ValueObject::CreateSyntheticArrayMember(size_t idx) {
|
|
bool omit_empty_base_classes = true;
|
|
bool ignore_array_bounds = true;
|
|
std::string child_name;
|
|
uint32_t child_byte_size = 0;
|
|
int32_t child_byte_offset = 0;
|
|
uint32_t child_bitfield_bit_size = 0;
|
|
uint32_t child_bitfield_bit_offset = 0;
|
|
bool child_is_base_class = false;
|
|
bool child_is_deref_of_parent = false;
|
|
uint64_t language_flags = 0;
|
|
const bool transparent_pointers = false;
|
|
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
|
|
auto child_compiler_type_or_err =
|
|
GetCompilerType().GetChildCompilerTypeAtIndex(
|
|
&exe_ctx, 0, transparent_pointers, omit_empty_base_classes,
|
|
ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
|
|
child_bitfield_bit_size, child_bitfield_bit_offset,
|
|
child_is_base_class, child_is_deref_of_parent, this, language_flags);
|
|
if (!child_compiler_type_or_err) {
|
|
LLDB_LOG_ERROR(GetLog(LLDBLog::Types),
|
|
child_compiler_type_or_err.takeError(),
|
|
"could not find child: {0}");
|
|
return nullptr;
|
|
}
|
|
|
|
if (child_compiler_type_or_err->IsValid()) {
|
|
child_byte_offset += child_byte_size * idx;
|
|
|
|
return new ValueObjectChild(
|
|
*this, *child_compiler_type_or_err, ConstString(child_name),
|
|
child_byte_size, child_byte_offset, child_bitfield_bit_size,
|
|
child_bitfield_bit_offset, child_is_base_class,
|
|
child_is_deref_of_parent, eAddressTypeInvalid, language_flags);
|
|
}
|
|
|
|
// In case of an incomplete type, try to use the ValueObject's
|
|
// synthetic value to create the child ValueObject.
|
|
if (ValueObjectSP synth_valobj_sp = GetSyntheticValue())
|
|
return synth_valobj_sp->GetChildAtIndex(idx, /*can_create=*/true).get();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
|
|
std::string &destination,
|
|
lldb::LanguageType lang) {
|
|
return GetSummaryAsCString(summary_ptr, destination,
|
|
TypeSummaryOptions().SetLanguage(lang));
|
|
}
|
|
|
|
bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
|
|
std::string &destination,
|
|
const TypeSummaryOptions &options) {
|
|
destination.clear();
|
|
|
|
// If we have a forcefully completed type, don't try and show a summary from
|
|
// a valid summary string or function because the type is not complete and
|
|
// no member variables or member functions will be available.
|
|
if (GetCompilerType().IsForcefullyCompleted()) {
|
|
destination = "<incomplete type>";
|
|
return true;
|
|
}
|
|
|
|
// ideally we would like to bail out if passing NULL, but if we do so we end
|
|
// up not providing the summary for function pointers anymore
|
|
if (/*summary_ptr == NULL ||*/ m_flags.m_is_getting_summary)
|
|
return false;
|
|
|
|
m_flags.m_is_getting_summary = true;
|
|
|
|
TypeSummaryOptions actual_options(options);
|
|
|
|
if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown)
|
|
actual_options.SetLanguage(GetPreferredDisplayLanguage());
|
|
|
|
// this is a hot path in code and we prefer to avoid setting this string all
|
|
// too often also clearing out other information that we might care to see in
|
|
// a crash log. might be useful in very specific situations though.
|
|
/*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s.
|
|
Summary provider's description is %s",
|
|
GetTypeName().GetCString(),
|
|
GetName().GetCString(),
|
|
summary_ptr->GetDescription().c_str());*/
|
|
|
|
if (UpdateValueIfNeeded(false) && summary_ptr) {
|
|
if (HasSyntheticValue())
|
|
m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on
|
|
// the synthetic children being
|
|
// up-to-date (e.g. ${svar%#})
|
|
|
|
if (TargetSP target_sp = GetExecutionContextRef().GetTargetSP()) {
|
|
SummaryStatisticsSP stats_sp =
|
|
target_sp->GetSummaryStatisticsCache()
|
|
.GetSummaryStatisticsForProvider(*summary_ptr);
|
|
|
|
// Construct RAII types to time and collect data on summary creation.
|
|
SummaryStatistics::SummaryInvocation invocation(stats_sp);
|
|
summary_ptr->FormatObject(this, destination, actual_options);
|
|
} else
|
|
summary_ptr->FormatObject(this, destination, actual_options);
|
|
}
|
|
m_flags.m_is_getting_summary = false;
|
|
return !destination.empty();
|
|
}
|
|
|
|
const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) {
|
|
if (UpdateValueIfNeeded(true) && m_summary_str.empty()) {
|
|
TypeSummaryOptions summary_options;
|
|
summary_options.SetLanguage(lang);
|
|
GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str,
|
|
summary_options);
|
|
}
|
|
if (m_summary_str.empty())
|
|
return nullptr;
|
|
return m_summary_str.c_str();
|
|
}
|
|
|
|
bool ValueObject::GetSummaryAsCString(std::string &destination,
|
|
const TypeSummaryOptions &options) {
|
|
return GetSummaryAsCString(GetSummaryFormat().get(), destination, options);
|
|
}
|
|
|
|
bool ValueObject::IsCStringContainer(bool check_pointer) {
|
|
CompilerType pointee_or_element_compiler_type;
|
|
const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type));
|
|
bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
|
|
pointee_or_element_compiler_type.IsCharType());
|
|
if (!is_char_arr_ptr)
|
|
return false;
|
|
if (!check_pointer)
|
|
return true;
|
|
if (type_flags.Test(eTypeIsArray))
|
|
return true;
|
|
addr_t cstr_address = GetPointerValue().address;
|
|
return (cstr_address != LLDB_INVALID_ADDRESS);
|
|
}
|
|
|
|
size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx,
|
|
uint32_t item_count) {
|
|
CompilerType pointee_or_element_compiler_type;
|
|
const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type);
|
|
const bool is_pointer_type = type_info & eTypeIsPointer;
|
|
const bool is_array_type = type_info & eTypeIsArray;
|
|
if (!(is_pointer_type || is_array_type))
|
|
return 0;
|
|
|
|
if (item_count == 0)
|
|
return 0;
|
|
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
|
|
std::optional<uint64_t> item_type_size =
|
|
llvm::expectedToOptional(pointee_or_element_compiler_type.GetByteSize(
|
|
exe_ctx.GetBestExecutionContextScope()));
|
|
if (!item_type_size)
|
|
return 0;
|
|
const uint64_t bytes = item_count * *item_type_size;
|
|
const uint64_t offset = item_idx * *item_type_size;
|
|
|
|
if (item_idx == 0 && item_count == 1) // simply a deref
|
|
{
|
|
if (is_pointer_type) {
|
|
Status error;
|
|
ValueObjectSP pointee_sp = Dereference(error);
|
|
if (error.Fail() || pointee_sp.get() == nullptr)
|
|
return 0;
|
|
return pointee_sp->GetData(data, error);
|
|
} else {
|
|
ValueObjectSP child_sp = GetChildAtIndex(0);
|
|
if (child_sp.get() == nullptr)
|
|
return 0;
|
|
Status error;
|
|
return child_sp->GetData(data, error);
|
|
}
|
|
return true;
|
|
} else /* (items > 1) */
|
|
{
|
|
Status error;
|
|
lldb_private::DataBufferHeap *heap_buf_ptr = nullptr;
|
|
lldb::DataBufferSP data_sp(heap_buf_ptr =
|
|
new lldb_private::DataBufferHeap());
|
|
|
|
auto [addr, addr_type] =
|
|
is_pointer_type ? GetPointerValue() : GetAddressOf(true);
|
|
|
|
switch (addr_type) {
|
|
case eAddressTypeFile: {
|
|
ModuleSP module_sp(GetModule());
|
|
if (module_sp) {
|
|
addr = addr + offset;
|
|
Address so_addr;
|
|
module_sp->ResolveFileAddress(addr, so_addr);
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
Target *target = exe_ctx.GetTargetPtr();
|
|
if (target) {
|
|
heap_buf_ptr->SetByteSize(bytes);
|
|
size_t bytes_read = target->ReadMemory(
|
|
so_addr, heap_buf_ptr->GetBytes(), bytes, error, true);
|
|
if (error.Success()) {
|
|
data.SetData(data_sp);
|
|
return bytes_read;
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
case eAddressTypeLoad: {
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
if (Target *target = exe_ctx.GetTargetPtr()) {
|
|
heap_buf_ptr->SetByteSize(bytes);
|
|
Address target_addr;
|
|
target_addr.SetLoadAddress(addr + offset, target);
|
|
size_t bytes_read =
|
|
target->ReadMemory(target_addr, heap_buf_ptr->GetBytes(), bytes,
|
|
error, /*force_live_memory=*/true);
|
|
if (error.Success() || bytes_read > 0) {
|
|
data.SetData(data_sp);
|
|
return bytes_read;
|
|
}
|
|
}
|
|
} break;
|
|
case eAddressTypeHost: {
|
|
auto max_bytes =
|
|
GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope());
|
|
if (max_bytes && *max_bytes > offset) {
|
|
size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes);
|
|
addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
|
|
if (addr == 0 || addr == LLDB_INVALID_ADDRESS)
|
|
break;
|
|
heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read);
|
|
data.SetData(data_sp);
|
|
return bytes_read;
|
|
}
|
|
} break;
|
|
case eAddressTypeInvalid:
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint64_t ValueObject::GetData(DataExtractor &data, Status &error) {
|
|
UpdateValueIfNeeded(false);
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
|
|
if (error.Fail()) {
|
|
if (m_data.GetByteSize()) {
|
|
data = m_data;
|
|
error.Clear();
|
|
return data.GetByteSize();
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
data.SetAddressByteSize(m_data.GetAddressByteSize());
|
|
data.SetByteOrder(m_data.GetByteOrder());
|
|
return data.GetByteSize();
|
|
}
|
|
|
|
bool ValueObject::SetData(DataExtractor &data, Status &error) {
|
|
error.Clear();
|
|
// Make sure our value is up to date first so that our location and location
|
|
// type is valid.
|
|
if (!UpdateValueIfNeeded(false)) {
|
|
error = Status::FromErrorString("unable to read value");
|
|
return false;
|
|
}
|
|
|
|
uint64_t count = 0;
|
|
const Encoding encoding = GetCompilerType().GetEncoding(count);
|
|
|
|
const size_t byte_size = llvm::expectedToOptional(GetByteSize()).value_or(0);
|
|
|
|
Value::ValueType value_type = m_value.GetValueType();
|
|
|
|
switch (value_type) {
|
|
case Value::ValueType::Invalid:
|
|
error = Status::FromErrorString("invalid location");
|
|
return false;
|
|
case Value::ValueType::Scalar: {
|
|
Status set_error =
|
|
m_value.GetScalar().SetValueFromData(data, encoding, byte_size);
|
|
|
|
if (!set_error.Success()) {
|
|
error = Status::FromErrorStringWithFormat(
|
|
"unable to set scalar value: %s", set_error.AsCString());
|
|
return false;
|
|
}
|
|
} break;
|
|
case Value::ValueType::LoadAddress: {
|
|
// If it is a load address, then the scalar value is the storage location
|
|
// of the data, and we have to shove this value down to that load location.
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
Process *process = exe_ctx.GetProcessPtr();
|
|
if (process) {
|
|
addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
|
|
size_t bytes_written = process->WriteMemory(
|
|
target_addr, data.GetDataStart(), byte_size, error);
|
|
if (!error.Success())
|
|
return false;
|
|
if (bytes_written != byte_size) {
|
|
error = Status::FromErrorString("unable to write value to memory");
|
|
return false;
|
|
}
|
|
}
|
|
} break;
|
|
case Value::ValueType::HostAddress: {
|
|
// If it is a host address, then we stuff the scalar as a DataBuffer into
|
|
// the Value's data.
|
|
DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
|
|
m_data.SetData(buffer_sp, 0);
|
|
data.CopyByteOrderedData(0, byte_size,
|
|
const_cast<uint8_t *>(m_data.GetDataStart()),
|
|
byte_size, m_data.GetByteOrder());
|
|
m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
|
|
} break;
|
|
case Value::ValueType::FileAddress:
|
|
break;
|
|
}
|
|
|
|
// If we have reached this point, then we have successfully changed the
|
|
// value.
|
|
SetNeedsUpdate();
|
|
return true;
|
|
}
|
|
|
|
llvm::ArrayRef<uint8_t> ValueObject::GetLocalBuffer() const {
|
|
if (m_value.GetValueType() != Value::ValueType::HostAddress)
|
|
return {};
|
|
auto start = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
|
|
if (start == LLDB_INVALID_ADDRESS)
|
|
return {};
|
|
// Does our pointer point to this value object's m_data buffer?
|
|
if ((uint64_t)m_data.GetDataStart() == start)
|
|
return m_data.GetData();
|
|
// Does our pointer point to the value's buffer?
|
|
if ((uint64_t)m_value.GetBuffer().GetBytes() == start)
|
|
return m_value.GetBuffer().GetData();
|
|
// Our pointer points to something else. We can't know what the size is.
|
|
return {};
|
|
}
|
|
|
|
static bool CopyStringDataToBufferSP(const StreamString &source,
|
|
lldb::WritableDataBufferSP &destination) {
|
|
llvm::StringRef src = source.GetString();
|
|
src = src.rtrim('\0');
|
|
destination = std::make_shared<DataBufferHeap>(src.size(), 0);
|
|
memcpy(destination->GetBytes(), src.data(), src.size());
|
|
return true;
|
|
}
|
|
|
|
std::pair<size_t, bool>
|
|
ValueObject::ReadPointedString(lldb::WritableDataBufferSP &buffer_sp,
|
|
Status &error, bool honor_array) {
|
|
bool was_capped = false;
|
|
StreamString s;
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
Target *target = exe_ctx.GetTargetPtr();
|
|
|
|
if (!target) {
|
|
s << "<no target to read from>";
|
|
error = Status::FromErrorString("no target to read from");
|
|
CopyStringDataToBufferSP(s, buffer_sp);
|
|
return {0, was_capped};
|
|
}
|
|
|
|
const auto max_length = target->GetMaximumSizeOfStringSummary();
|
|
|
|
size_t bytes_read = 0;
|
|
size_t total_bytes_read = 0;
|
|
|
|
CompilerType compiler_type = GetCompilerType();
|
|
CompilerType elem_or_pointee_compiler_type;
|
|
const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type));
|
|
if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
|
|
elem_or_pointee_compiler_type.IsCharType()) {
|
|
AddrAndType cstr_address;
|
|
|
|
size_t cstr_len = 0;
|
|
bool capped_data = false;
|
|
const bool is_array = type_flags.Test(eTypeIsArray);
|
|
if (is_array) {
|
|
// We have an array
|
|
uint64_t array_size = 0;
|
|
if (compiler_type.IsArrayType(nullptr, &array_size)) {
|
|
cstr_len = array_size;
|
|
if (cstr_len > max_length) {
|
|
capped_data = true;
|
|
cstr_len = max_length;
|
|
}
|
|
}
|
|
cstr_address = GetAddressOf(true);
|
|
} else {
|
|
// We have a pointer
|
|
cstr_address = GetPointerValue();
|
|
}
|
|
|
|
if (cstr_address.address == 0 ||
|
|
cstr_address.address == LLDB_INVALID_ADDRESS) {
|
|
if (cstr_address.type == eAddressTypeHost && is_array) {
|
|
const char *cstr = GetDataExtractor().PeekCStr(0);
|
|
if (cstr == nullptr) {
|
|
s << "<invalid address>";
|
|
error = Status::FromErrorString("invalid address");
|
|
CopyStringDataToBufferSP(s, buffer_sp);
|
|
return {0, was_capped};
|
|
}
|
|
s << llvm::StringRef(cstr, cstr_len);
|
|
CopyStringDataToBufferSP(s, buffer_sp);
|
|
return {cstr_len, was_capped};
|
|
} else {
|
|
s << "<invalid address>";
|
|
error = Status::FromErrorString("invalid address");
|
|
CopyStringDataToBufferSP(s, buffer_sp);
|
|
return {0, was_capped};
|
|
}
|
|
}
|
|
|
|
Address cstr_so_addr(cstr_address.address);
|
|
DataExtractor data;
|
|
if (cstr_len > 0 && honor_array) {
|
|
// I am using GetPointeeData() here to abstract the fact that some
|
|
// ValueObjects are actually frozen pointers in the host but the pointed-
|
|
// to data lives in the debuggee, and GetPointeeData() automatically
|
|
// takes care of this
|
|
GetPointeeData(data, 0, cstr_len);
|
|
|
|
if ((bytes_read = data.GetByteSize()) > 0) {
|
|
total_bytes_read = bytes_read;
|
|
for (size_t offset = 0; offset < bytes_read; offset++)
|
|
s.Printf("%c", *data.PeekData(offset, 1));
|
|
if (capped_data)
|
|
was_capped = true;
|
|
}
|
|
} else {
|
|
cstr_len = max_length;
|
|
const size_t k_max_buf_size = 64;
|
|
|
|
size_t offset = 0;
|
|
|
|
int cstr_len_displayed = -1;
|
|
bool capped_cstr = false;
|
|
// I am using GetPointeeData() here to abstract the fact that some
|
|
// ValueObjects are actually frozen pointers in the host but the pointed-
|
|
// to data lives in the debuggee, and GetPointeeData() automatically
|
|
// takes care of this
|
|
while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) {
|
|
total_bytes_read += bytes_read;
|
|
const char *cstr = data.PeekCStr(0);
|
|
size_t len = strnlen(cstr, k_max_buf_size);
|
|
if (cstr_len_displayed < 0)
|
|
cstr_len_displayed = len;
|
|
|
|
if (len == 0)
|
|
break;
|
|
cstr_len_displayed += len;
|
|
if (len > bytes_read)
|
|
len = bytes_read;
|
|
if (len > cstr_len)
|
|
len = cstr_len;
|
|
|
|
for (size_t offset = 0; offset < bytes_read; offset++)
|
|
s.Printf("%c", *data.PeekData(offset, 1));
|
|
|
|
if (len < k_max_buf_size)
|
|
break;
|
|
|
|
if (len >= cstr_len) {
|
|
capped_cstr = true;
|
|
break;
|
|
}
|
|
|
|
cstr_len -= len;
|
|
offset += len;
|
|
}
|
|
|
|
if (cstr_len_displayed >= 0) {
|
|
if (capped_cstr)
|
|
was_capped = true;
|
|
}
|
|
}
|
|
} else {
|
|
error = Status::FromErrorString("not a string object");
|
|
s << "<not a string object>";
|
|
}
|
|
CopyStringDataToBufferSP(s, buffer_sp);
|
|
return {total_bytes_read, was_capped};
|
|
}
|
|
|
|
llvm::Expected<std::string> ValueObject::GetObjectDescription() {
|
|
if (!UpdateValueIfNeeded(true))
|
|
return llvm::createStringError("could not update value");
|
|
|
|
// Return cached value.
|
|
if (!m_object_desc_str.empty())
|
|
return m_object_desc_str;
|
|
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
Process *process = exe_ctx.GetProcessPtr();
|
|
if (!process)
|
|
return llvm::createStringError("no process");
|
|
|
|
// Returns the object description produced by one language runtime.
|
|
auto get_object_description =
|
|
[&](LanguageType language) -> llvm::Expected<std::string> {
|
|
if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) {
|
|
StreamString s;
|
|
if (llvm::Error error = runtime->GetObjectDescription(s, *this))
|
|
return error;
|
|
m_object_desc_str = s.GetString();
|
|
return m_object_desc_str;
|
|
}
|
|
return llvm::createStringError("no native language runtime");
|
|
};
|
|
|
|
// Try the native language runtime first.
|
|
LanguageType native_language = GetObjectRuntimeLanguage();
|
|
llvm::Expected<std::string> desc = get_object_description(native_language);
|
|
if (desc)
|
|
return desc;
|
|
|
|
// Try the Objective-C language runtime. This fallback is necessary
|
|
// for Objective-C++ and mixed Objective-C / C++ programs.
|
|
if (Language::LanguageIsCFamily(native_language)) {
|
|
// We're going to try again, so let's drop the first error.
|
|
llvm::consumeError(desc.takeError());
|
|
return get_object_description(eLanguageTypeObjC);
|
|
}
|
|
return desc;
|
|
}
|
|
|
|
bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format,
|
|
std::string &destination) {
|
|
if (UpdateValueIfNeeded(false))
|
|
return format.FormatObject(this, destination);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
bool ValueObject::GetValueAsCString(lldb::Format format,
|
|
std::string &destination) {
|
|
return GetValueAsCString(TypeFormatImpl_Format(format), destination);
|
|
}
|
|
|
|
const char *ValueObject::GetValueAsCString() {
|
|
if (UpdateValueIfNeeded(true)) {
|
|
lldb::TypeFormatImplSP format_sp;
|
|
lldb::Format my_format = GetFormat();
|
|
if (my_format == lldb::eFormatDefault) {
|
|
if (m_type_format_sp)
|
|
format_sp = m_type_format_sp;
|
|
else {
|
|
if (m_flags.m_is_bitfield_for_scalar)
|
|
my_format = eFormatUnsigned;
|
|
else {
|
|
if (m_value.GetContextType() == Value::ContextType::RegisterInfo) {
|
|
const RegisterInfo *reg_info = m_value.GetRegisterInfo();
|
|
if (reg_info)
|
|
my_format = reg_info->format;
|
|
} else {
|
|
my_format = GetValue().GetCompilerType().GetFormat();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (my_format != m_last_format || m_value_str.empty()) {
|
|
m_last_format = my_format;
|
|
if (!format_sp)
|
|
format_sp = std::make_shared<TypeFormatImpl_Format>(my_format);
|
|
if (GetValueAsCString(*format_sp.get(), m_value_str)) {
|
|
if (!m_flags.m_value_did_change && m_flags.m_old_value_valid) {
|
|
// The value was gotten successfully, so we consider the value as
|
|
// changed if the value string differs
|
|
SetValueDidChange(m_old_value_str != m_value_str);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (m_value_str.empty())
|
|
return nullptr;
|
|
return m_value_str.c_str();
|
|
}
|
|
|
|
// if > 8bytes, 0 is returned. this method should mostly be used to read
|
|
// address values out of pointers
|
|
uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) {
|
|
// If our byte size is zero this is an aggregate type that has children
|
|
if (CanProvideValue()) {
|
|
Scalar scalar;
|
|
if (ResolveValue(scalar)) {
|
|
if (success)
|
|
*success = true;
|
|
scalar.MakeUnsigned();
|
|
return scalar.ULongLong(fail_value);
|
|
}
|
|
// fallthrough, otherwise...
|
|
}
|
|
|
|
if (success)
|
|
*success = false;
|
|
return fail_value;
|
|
}
|
|
|
|
int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) {
|
|
// If our byte size is zero this is an aggregate type that has children
|
|
if (CanProvideValue()) {
|
|
Scalar scalar;
|
|
if (ResolveValue(scalar)) {
|
|
if (success)
|
|
*success = true;
|
|
scalar.MakeSigned();
|
|
return scalar.SLongLong(fail_value);
|
|
}
|
|
// fallthrough, otherwise...
|
|
}
|
|
|
|
if (success)
|
|
*success = false;
|
|
return fail_value;
|
|
}
|
|
|
|
llvm::Expected<llvm::APSInt> ValueObject::GetValueAsAPSInt() {
|
|
// Make sure the type can be converted to an APSInt.
|
|
if (!GetCompilerType().IsInteger() &&
|
|
!GetCompilerType().IsScopedEnumerationType() &&
|
|
!GetCompilerType().IsEnumerationType() &&
|
|
!GetCompilerType().IsPointerType() &&
|
|
!GetCompilerType().IsNullPtrType() &&
|
|
!GetCompilerType().IsReferenceType() && !GetCompilerType().IsBoolean())
|
|
return llvm::make_error<llvm::StringError>(
|
|
"type cannot be converted to APSInt", llvm::inconvertibleErrorCode());
|
|
|
|
if (CanProvideValue()) {
|
|
Scalar scalar;
|
|
if (ResolveValue(scalar))
|
|
return scalar.GetAPSInt();
|
|
}
|
|
|
|
return llvm::make_error<llvm::StringError>(
|
|
"error occurred; unable to convert to APSInt",
|
|
llvm::inconvertibleErrorCode());
|
|
}
|
|
|
|
llvm::Expected<llvm::APFloat> ValueObject::GetValueAsAPFloat() {
|
|
if (!GetCompilerType().IsFloat())
|
|
return llvm::make_error<llvm::StringError>(
|
|
"type cannot be converted to APFloat", llvm::inconvertibleErrorCode());
|
|
|
|
if (CanProvideValue()) {
|
|
Scalar scalar;
|
|
if (ResolveValue(scalar))
|
|
return scalar.GetAPFloat();
|
|
}
|
|
|
|
return llvm::make_error<llvm::StringError>(
|
|
"error occurred; unable to convert to APFloat",
|
|
llvm::inconvertibleErrorCode());
|
|
}
|
|
|
|
llvm::Expected<bool> ValueObject::GetValueAsBool() {
|
|
CompilerType val_type = GetCompilerType();
|
|
if (val_type.IsInteger() || val_type.IsUnscopedEnumerationType() ||
|
|
val_type.IsPointerType()) {
|
|
auto value_or_err = GetValueAsAPSInt();
|
|
if (value_or_err)
|
|
return value_or_err->getBoolValue();
|
|
}
|
|
if (val_type.IsFloat()) {
|
|
auto value_or_err = GetValueAsAPFloat();
|
|
if (value_or_err)
|
|
return value_or_err->isNonZero();
|
|
}
|
|
if (val_type.IsArrayType())
|
|
return GetAddressOf().address != 0;
|
|
|
|
return llvm::make_error<llvm::StringError>("type cannot be converted to bool",
|
|
llvm::inconvertibleErrorCode());
|
|
}
|
|
|
|
void ValueObject::SetValueFromInteger(const llvm::APInt &value, Status &error) {
|
|
// Verify the current object is an integer object
|
|
CompilerType val_type = GetCompilerType();
|
|
if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() &&
|
|
!val_type.IsFloat() && !val_type.IsPointerType() &&
|
|
!val_type.IsScalarType()) {
|
|
error =
|
|
Status::FromErrorString("current value object is not an integer objet");
|
|
return;
|
|
}
|
|
|
|
// Verify the current object is not actually associated with any program
|
|
// variable.
|
|
if (GetVariable()) {
|
|
error = Status::FromErrorString(
|
|
"current value object is not a temporary object");
|
|
return;
|
|
}
|
|
|
|
// Verify the proposed new value is the right size.
|
|
lldb::TargetSP target = GetTargetSP();
|
|
uint64_t byte_size = 0;
|
|
if (auto temp =
|
|
llvm::expectedToOptional(GetCompilerType().GetByteSize(target.get())))
|
|
byte_size = temp.value();
|
|
if (value.getBitWidth() != byte_size * CHAR_BIT) {
|
|
error = Status::FromErrorString(
|
|
"illegal argument: new value should be of the same size");
|
|
return;
|
|
}
|
|
|
|
lldb::DataExtractorSP data_sp;
|
|
data_sp->SetData(value.getRawData(), byte_size,
|
|
target->GetArchitecture().GetByteOrder());
|
|
data_sp->SetAddressByteSize(
|
|
static_cast<uint8_t>(target->GetArchitecture().GetAddressByteSize()));
|
|
SetData(*data_sp, error);
|
|
}
|
|
|
|
void ValueObject::SetValueFromInteger(lldb::ValueObjectSP new_val_sp,
|
|
Status &error) {
|
|
// Verify the current object is an integer object
|
|
CompilerType val_type = GetCompilerType();
|
|
if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() &&
|
|
!val_type.IsFloat() && !val_type.IsPointerType() &&
|
|
!val_type.IsScalarType()) {
|
|
error =
|
|
Status::FromErrorString("current value object is not an integer objet");
|
|
return;
|
|
}
|
|
|
|
// Verify the current object is not actually associated with any program
|
|
// variable.
|
|
if (GetVariable()) {
|
|
error = Status::FromErrorString(
|
|
"current value object is not a temporary object");
|
|
return;
|
|
}
|
|
|
|
// Verify the proposed new value is the right type.
|
|
CompilerType new_val_type = new_val_sp->GetCompilerType();
|
|
if (!new_val_type.IsInteger() && !new_val_type.IsFloat() &&
|
|
!new_val_type.IsPointerType()) {
|
|
error = Status::FromErrorString(
|
|
"illegal argument: new value should be of the same size");
|
|
return;
|
|
}
|
|
|
|
if (new_val_type.IsInteger()) {
|
|
auto value_or_err = new_val_sp->GetValueAsAPSInt();
|
|
if (value_or_err)
|
|
SetValueFromInteger(*value_or_err, error);
|
|
else
|
|
error = Status::FromErrorString("error getting APSInt from new_val_sp");
|
|
} else if (new_val_type.IsFloat()) {
|
|
auto value_or_err = new_val_sp->GetValueAsAPFloat();
|
|
if (value_or_err)
|
|
SetValueFromInteger(value_or_err->bitcastToAPInt(), error);
|
|
else
|
|
error = Status::FromErrorString("error getting APFloat from new_val_sp");
|
|
} else if (new_val_type.IsPointerType()) {
|
|
bool success = true;
|
|
uint64_t int_val = new_val_sp->GetValueAsUnsigned(0, &success);
|
|
if (success) {
|
|
lldb::TargetSP target = GetTargetSP();
|
|
uint64_t num_bits = 0;
|
|
if (auto temp = llvm::expectedToOptional(
|
|
new_val_sp->GetCompilerType().GetBitSize(target.get())))
|
|
num_bits = temp.value();
|
|
SetValueFromInteger(llvm::APInt(num_bits, int_val), error);
|
|
} else
|
|
error = Status::FromErrorString("error converting new_val_sp to integer");
|
|
}
|
|
}
|
|
|
|
// if any more "special cases" are added to
|
|
// ValueObject::DumpPrintableRepresentation() please keep this call up to date
|
|
// by returning true for your new special cases. We will eventually move to
|
|
// checking this call result before trying to display special cases
|
|
bool ValueObject::HasSpecialPrintableRepresentation(
|
|
ValueObjectRepresentationStyle val_obj_display, Format custom_format) {
|
|
Flags flags(GetTypeInfo());
|
|
if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
|
|
val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
|
|
if (IsCStringContainer(true) &&
|
|
(custom_format == eFormatCString || custom_format == eFormatCharArray ||
|
|
custom_format == eFormatChar || custom_format == eFormatVectorOfChar))
|
|
return true;
|
|
|
|
if (flags.Test(eTypeIsArray)) {
|
|
if ((custom_format == eFormatBytes) ||
|
|
(custom_format == eFormatBytesWithASCII))
|
|
return true;
|
|
|
|
if ((custom_format == eFormatVectorOfChar) ||
|
|
(custom_format == eFormatVectorOfFloat32) ||
|
|
(custom_format == eFormatVectorOfFloat64) ||
|
|
(custom_format == eFormatVectorOfSInt16) ||
|
|
(custom_format == eFormatVectorOfSInt32) ||
|
|
(custom_format == eFormatVectorOfSInt64) ||
|
|
(custom_format == eFormatVectorOfSInt8) ||
|
|
(custom_format == eFormatVectorOfUInt128) ||
|
|
(custom_format == eFormatVectorOfUInt16) ||
|
|
(custom_format == eFormatVectorOfUInt32) ||
|
|
(custom_format == eFormatVectorOfUInt64) ||
|
|
(custom_format == eFormatVectorOfUInt8))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ValueObject::DumpPrintableRepresentation(
|
|
Stream &s, ValueObjectRepresentationStyle val_obj_display,
|
|
Format custom_format, PrintableRepresentationSpecialCases special,
|
|
bool do_dump_error) {
|
|
|
|
// If the ValueObject has an error, we might end up dumping the type, which
|
|
// is useful, but if we don't even have a type, then don't examine the object
|
|
// further as that's not meaningful, only the error is.
|
|
if (m_error.Fail() && !GetCompilerType().IsValid()) {
|
|
if (do_dump_error)
|
|
s.Printf("<%s>", m_error.AsCString());
|
|
return false;
|
|
}
|
|
|
|
Flags flags(GetTypeInfo());
|
|
|
|
bool allow_special =
|
|
(special == ValueObject::PrintableRepresentationSpecialCases::eAllow);
|
|
const bool only_special = false;
|
|
|
|
if (allow_special) {
|
|
if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
|
|
val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
|
|
// when being asked to get a printable display an array or pointer type
|
|
// directly, try to "do the right thing"
|
|
|
|
if (IsCStringContainer(true) &&
|
|
(custom_format == eFormatCString ||
|
|
custom_format == eFormatCharArray || custom_format == eFormatChar ||
|
|
custom_format ==
|
|
eFormatVectorOfChar)) // print char[] & char* directly
|
|
{
|
|
Status error;
|
|
lldb::WritableDataBufferSP buffer_sp;
|
|
std::pair<size_t, bool> read_string =
|
|
ReadPointedString(buffer_sp, error,
|
|
(custom_format == eFormatVectorOfChar) ||
|
|
(custom_format == eFormatCharArray));
|
|
lldb_private::formatters::StringPrinter::
|
|
ReadBufferAndDumpToStreamOptions options(*this);
|
|
options.SetData(DataExtractor(
|
|
buffer_sp, lldb::eByteOrderInvalid,
|
|
8)); // none of this matters for a string - pass some defaults
|
|
options.SetStream(&s);
|
|
options.SetPrefixToken(nullptr);
|
|
options.SetQuote('"');
|
|
options.SetSourceSize(buffer_sp->GetByteSize());
|
|
options.SetIsTruncated(read_string.second);
|
|
options.SetBinaryZeroIsTerminator(custom_format != eFormatVectorOfChar);
|
|
formatters::StringPrinter::ReadBufferAndDumpToStream<
|
|
lldb_private::formatters::StringPrinter::StringElementType::ASCII>(
|
|
options);
|
|
return !error.Fail();
|
|
}
|
|
|
|
if (custom_format == eFormatEnum)
|
|
return false;
|
|
|
|
// this only works for arrays, because I have no way to know when the
|
|
// pointed memory ends, and no special \0 end of data marker
|
|
if (flags.Test(eTypeIsArray)) {
|
|
if ((custom_format == eFormatBytes) ||
|
|
(custom_format == eFormatBytesWithASCII)) {
|
|
const size_t count = GetNumChildrenIgnoringErrors();
|
|
|
|
s << '[';
|
|
for (size_t low = 0; low < count; low++) {
|
|
|
|
if (low)
|
|
s << ',';
|
|
|
|
ValueObjectSP child = GetChildAtIndex(low);
|
|
if (!child.get()) {
|
|
s << "<invalid child>";
|
|
continue;
|
|
}
|
|
child->DumpPrintableRepresentation(
|
|
s, ValueObject::eValueObjectRepresentationStyleValue,
|
|
custom_format);
|
|
}
|
|
|
|
s << ']';
|
|
|
|
return true;
|
|
}
|
|
|
|
if ((custom_format == eFormatVectorOfChar) ||
|
|
(custom_format == eFormatVectorOfFloat32) ||
|
|
(custom_format == eFormatVectorOfFloat64) ||
|
|
(custom_format == eFormatVectorOfSInt16) ||
|
|
(custom_format == eFormatVectorOfSInt32) ||
|
|
(custom_format == eFormatVectorOfSInt64) ||
|
|
(custom_format == eFormatVectorOfSInt8) ||
|
|
(custom_format == eFormatVectorOfUInt128) ||
|
|
(custom_format == eFormatVectorOfUInt16) ||
|
|
(custom_format == eFormatVectorOfUInt32) ||
|
|
(custom_format == eFormatVectorOfUInt64) ||
|
|
(custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes
|
|
// with ASCII or any vector
|
|
// format should be printed
|
|
// directly
|
|
{
|
|
const size_t count = GetNumChildrenIgnoringErrors();
|
|
|
|
Format format = FormatManager::GetSingleItemFormat(custom_format);
|
|
|
|
s << '[';
|
|
for (size_t low = 0; low < count; low++) {
|
|
|
|
if (low)
|
|
s << ',';
|
|
|
|
ValueObjectSP child = GetChildAtIndex(low);
|
|
if (!child.get()) {
|
|
s << "<invalid child>";
|
|
continue;
|
|
}
|
|
child->DumpPrintableRepresentation(
|
|
s, ValueObject::eValueObjectRepresentationStyleValue, format);
|
|
}
|
|
|
|
s << ']';
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if ((custom_format == eFormatBoolean) ||
|
|
(custom_format == eFormatBinary) || (custom_format == eFormatChar) ||
|
|
(custom_format == eFormatCharPrintable) ||
|
|
(custom_format == eFormatComplexFloat) ||
|
|
(custom_format == eFormatDecimal) || (custom_format == eFormatHex) ||
|
|
(custom_format == eFormatHexUppercase) ||
|
|
(custom_format == eFormatFloat) ||
|
|
(custom_format == eFormatFloat128) ||
|
|
(custom_format == eFormatOctal) || (custom_format == eFormatOSType) ||
|
|
(custom_format == eFormatUnicode16) ||
|
|
(custom_format == eFormatUnicode32) ||
|
|
(custom_format == eFormatUnsigned) ||
|
|
(custom_format == eFormatPointer) ||
|
|
(custom_format == eFormatComplexInteger) ||
|
|
(custom_format == eFormatComplex) ||
|
|
(custom_format == eFormatDefault)) // use the [] operator
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (only_special)
|
|
return false;
|
|
|
|
bool var_success = false;
|
|
|
|
{
|
|
llvm::StringRef str;
|
|
|
|
// this is a local stream that we are using to ensure that the data pointed
|
|
// to by cstr survives long enough for us to copy it to its destination -
|
|
// it is necessary to have this temporary storage area for cases where our
|
|
// desired output is not backed by some other longer-term storage
|
|
StreamString strm;
|
|
|
|
if (custom_format != eFormatInvalid)
|
|
SetFormat(custom_format);
|
|
|
|
switch (val_obj_display) {
|
|
case eValueObjectRepresentationStyleValue:
|
|
str = GetValueAsCString();
|
|
break;
|
|
|
|
case eValueObjectRepresentationStyleSummary:
|
|
str = GetSummaryAsCString();
|
|
break;
|
|
|
|
case eValueObjectRepresentationStyleLanguageSpecific: {
|
|
llvm::Expected<std::string> desc = GetObjectDescription();
|
|
if (!desc) {
|
|
strm << "error: " << toString(desc.takeError());
|
|
str = strm.GetString();
|
|
} else {
|
|
strm << *desc;
|
|
str = strm.GetString();
|
|
}
|
|
} break;
|
|
|
|
case eValueObjectRepresentationStyleLocation:
|
|
str = GetLocationAsCString();
|
|
break;
|
|
|
|
case eValueObjectRepresentationStyleChildrenCount: {
|
|
if (auto err = GetNumChildren()) {
|
|
strm.Printf("%" PRIu32, *err);
|
|
str = strm.GetString();
|
|
} else {
|
|
strm << "error: " << toString(err.takeError());
|
|
str = strm.GetString();
|
|
}
|
|
break;
|
|
}
|
|
|
|
case eValueObjectRepresentationStyleType:
|
|
str = GetTypeName().GetStringRef();
|
|
break;
|
|
|
|
case eValueObjectRepresentationStyleName:
|
|
str = GetName().GetStringRef();
|
|
break;
|
|
|
|
case eValueObjectRepresentationStyleExpressionPath:
|
|
GetExpressionPath(strm);
|
|
str = strm.GetString();
|
|
break;
|
|
}
|
|
|
|
// If the requested display style produced no output, try falling back to
|
|
// alternative presentations.
|
|
if (str.empty()) {
|
|
if (val_obj_display == eValueObjectRepresentationStyleValue)
|
|
str = GetSummaryAsCString();
|
|
else if (val_obj_display == eValueObjectRepresentationStyleSummary) {
|
|
if (!CanProvideValue()) {
|
|
strm.Printf("%s @ %s", GetTypeName().AsCString(),
|
|
GetLocationAsCString());
|
|
str = strm.GetString();
|
|
} else
|
|
str = GetValueAsCString();
|
|
}
|
|
}
|
|
|
|
if (!str.empty())
|
|
s << str;
|
|
else {
|
|
// We checked for errors at the start, but do it again here in case
|
|
// realizing the value for dumping produced an error.
|
|
if (m_error.Fail()) {
|
|
if (do_dump_error)
|
|
s.Printf("<%s>", m_error.AsCString());
|
|
else
|
|
return false;
|
|
} else if (val_obj_display == eValueObjectRepresentationStyleSummary)
|
|
s.PutCString("<no summary available>");
|
|
else if (val_obj_display == eValueObjectRepresentationStyleValue)
|
|
s.PutCString("<no value available>");
|
|
else if (val_obj_display ==
|
|
eValueObjectRepresentationStyleLanguageSpecific)
|
|
s.PutCString("<not a valid Objective-C object>"); // edit this if we
|
|
// have other runtimes
|
|
// that support a
|
|
// description
|
|
else
|
|
s.PutCString("<no printable representation>");
|
|
}
|
|
|
|
// we should only return false here if we could not do *anything* even if
|
|
// we have an error message as output, that's a success from our callers'
|
|
// perspective, so return true
|
|
var_success = true;
|
|
|
|
if (custom_format != eFormatInvalid)
|
|
SetFormat(eFormatDefault);
|
|
}
|
|
|
|
return var_success;
|
|
}
|
|
|
|
ValueObject::AddrAndType
|
|
ValueObject::GetAddressOf(bool scalar_is_load_address) {
|
|
// Can't take address of a bitfield
|
|
if (IsBitfield())
|
|
return {};
|
|
|
|
if (!UpdateValueIfNeeded(false))
|
|
return {};
|
|
|
|
switch (m_value.GetValueType()) {
|
|
case Value::ValueType::Invalid:
|
|
return {};
|
|
case Value::ValueType::Scalar:
|
|
if (scalar_is_load_address) {
|
|
return {m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS),
|
|
eAddressTypeLoad};
|
|
}
|
|
return {};
|
|
|
|
case Value::ValueType::LoadAddress:
|
|
case Value::ValueType::FileAddress:
|
|
return {m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS),
|
|
m_value.GetValueAddressType()};
|
|
case Value::ValueType::HostAddress:
|
|
return {LLDB_INVALID_ADDRESS, m_value.GetValueAddressType()};
|
|
}
|
|
llvm_unreachable("Unhandled value type!");
|
|
}
|
|
|
|
ValueObject::AddrAndType ValueObject::GetPointerValue() {
|
|
if (!UpdateValueIfNeeded(false))
|
|
return {};
|
|
|
|
switch (m_value.GetValueType()) {
|
|
case Value::ValueType::Invalid:
|
|
return {};
|
|
case Value::ValueType::Scalar:
|
|
return {m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS),
|
|
GetAddressTypeOfChildren()};
|
|
|
|
case Value::ValueType::HostAddress:
|
|
case Value::ValueType::LoadAddress:
|
|
case Value::ValueType::FileAddress: {
|
|
lldb::offset_t data_offset = 0;
|
|
return {m_data.GetAddress(&data_offset), GetAddressTypeOfChildren()};
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unhandled value type!");
|
|
}
|
|
|
|
static const char *ConvertBoolean(lldb::LanguageType language_type,
|
|
const char *value_str) {
|
|
if (Language *language = Language::FindPlugin(language_type))
|
|
if (auto boolean = language->GetBooleanFromString(value_str))
|
|
return *boolean ? "1" : "0";
|
|
|
|
return llvm::StringSwitch<const char *>(value_str)
|
|
.Case("true", "1")
|
|
.Case("false", "0")
|
|
.Default(value_str);
|
|
}
|
|
|
|
bool ValueObject::SetValueFromCString(const char *value_str, Status &error) {
|
|
error.Clear();
|
|
// Make sure our value is up to date first so that our location and location
|
|
// type is valid.
|
|
if (!UpdateValueIfNeeded(false)) {
|
|
error = Status::FromErrorString("unable to read value");
|
|
return false;
|
|
}
|
|
|
|
uint64_t count = 0;
|
|
const Encoding encoding = GetCompilerType().GetEncoding(count);
|
|
|
|
const size_t byte_size = llvm::expectedToOptional(GetByteSize()).value_or(0);
|
|
|
|
Value::ValueType value_type = m_value.GetValueType();
|
|
|
|
if (value_type == Value::ValueType::Scalar) {
|
|
// If the value is already a scalar, then let the scalar change itself:
|
|
m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size);
|
|
} else if (byte_size <= 16) {
|
|
if (GetCompilerType().IsBoolean())
|
|
value_str = ConvertBoolean(GetObjectRuntimeLanguage(), value_str);
|
|
|
|
// If the value fits in a scalar, then make a new scalar and again let the
|
|
// scalar code do the conversion, then figure out where to put the new
|
|
// value.
|
|
Scalar new_scalar;
|
|
error = new_scalar.SetValueFromCString(value_str, encoding, byte_size);
|
|
if (error.Success()) {
|
|
switch (value_type) {
|
|
case Value::ValueType::LoadAddress: {
|
|
// If it is a load address, then the scalar value is the storage
|
|
// location of the data, and we have to shove this value down to that
|
|
// load location.
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
Process *process = exe_ctx.GetProcessPtr();
|
|
if (process) {
|
|
addr_t target_addr =
|
|
m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
|
|
size_t bytes_written = process->WriteScalarToMemory(
|
|
target_addr, new_scalar, byte_size, error);
|
|
if (!error.Success())
|
|
return false;
|
|
if (bytes_written != byte_size) {
|
|
error = Status::FromErrorString("unable to write value to memory");
|
|
return false;
|
|
}
|
|
}
|
|
} break;
|
|
case Value::ValueType::HostAddress: {
|
|
// If it is a host address, then we stuff the scalar as a DataBuffer
|
|
// into the Value's data.
|
|
DataExtractor new_data;
|
|
new_data.SetByteOrder(m_data.GetByteOrder());
|
|
|
|
DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
|
|
m_data.SetData(buffer_sp, 0);
|
|
bool success = new_scalar.GetData(new_data);
|
|
if (success) {
|
|
new_data.CopyByteOrderedData(
|
|
0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()),
|
|
byte_size, m_data.GetByteOrder());
|
|
}
|
|
m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
|
|
|
|
} break;
|
|
case Value::ValueType::Invalid:
|
|
error = Status::FromErrorString("invalid location");
|
|
return false;
|
|
case Value::ValueType::FileAddress:
|
|
case Value::ValueType::Scalar:
|
|
break;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
// We don't support setting things bigger than a scalar at present.
|
|
error = Status::FromErrorString("unable to write aggregate data type");
|
|
return false;
|
|
}
|
|
|
|
// If we have reached this point, then we have successfully changed the
|
|
// value.
|
|
SetNeedsUpdate();
|
|
return true;
|
|
}
|
|
|
|
bool ValueObject::GetDeclaration(Declaration &decl) {
|
|
decl.Clear();
|
|
return false;
|
|
}
|
|
|
|
void ValueObject::AddSyntheticChild(ConstString key, ValueObject *valobj) {
|
|
m_synthetic_children[key] = valobj;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const {
|
|
ValueObjectSP synthetic_child_sp;
|
|
std::map<ConstString, ValueObject *>::const_iterator pos =
|
|
m_synthetic_children.find(key);
|
|
if (pos != m_synthetic_children.end())
|
|
synthetic_child_sp = pos->second->GetSP();
|
|
return synthetic_child_sp;
|
|
}
|
|
|
|
bool ValueObject::IsPossibleDynamicType() {
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
Process *process = exe_ctx.GetProcessPtr();
|
|
if (process)
|
|
return process->IsPossibleDynamicValue(*this);
|
|
else
|
|
return GetCompilerType().IsPossibleDynamicType(nullptr, true, true);
|
|
}
|
|
|
|
bool ValueObject::IsRuntimeSupportValue() {
|
|
Process *process(GetProcessSP().get());
|
|
if (!process)
|
|
return false;
|
|
|
|
// We trust that the compiler did the right thing and marked runtime support
|
|
// values as artificial.
|
|
if (!GetVariable() || !GetVariable()->IsArtificial())
|
|
return false;
|
|
|
|
if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage()))
|
|
if (runtime->IsAllowedRuntimeValue(GetName()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ValueObject::IsNilReference() {
|
|
if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
|
|
return language->IsNilReference(*this);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ValueObject::IsUninitializedReference() {
|
|
if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
|
|
return language->IsUninitializedReference(*this);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// This allows you to create an array member using and index that doesn't not
|
|
// fall in the normal bounds of the array. Many times structure can be defined
|
|
// as: struct Collection {
|
|
// uint32_t item_count;
|
|
// Item item_array[0];
|
|
// };
|
|
// The size of the "item_array" is 1, but many times in practice there are more
|
|
// items in "item_array".
|
|
|
|
ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index,
|
|
bool can_create) {
|
|
ValueObjectSP synthetic_child_sp;
|
|
if (IsPointerType() || IsArrayType()) {
|
|
std::string index_str = llvm::formatv("[{0}]", index);
|
|
ConstString index_const_str(index_str);
|
|
// Check if we have already created a synthetic array member in this valid
|
|
// object. If we have we will re-use it.
|
|
synthetic_child_sp = GetSyntheticChild(index_const_str);
|
|
if (!synthetic_child_sp) {
|
|
ValueObject *synthetic_child;
|
|
// We haven't made a synthetic array member for INDEX yet, so lets make
|
|
// one and cache it for any future reference.
|
|
synthetic_child = CreateSyntheticArrayMember(index);
|
|
|
|
// Cache the value if we got one back...
|
|
if (synthetic_child) {
|
|
AddSyntheticChild(index_const_str, synthetic_child);
|
|
synthetic_child_sp = synthetic_child->GetSP();
|
|
synthetic_child_sp->SetName(ConstString(index_str));
|
|
synthetic_child_sp->m_flags.m_is_array_item_for_pointer = true;
|
|
}
|
|
}
|
|
}
|
|
return synthetic_child_sp;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to,
|
|
bool can_create) {
|
|
ValueObjectSP synthetic_child_sp;
|
|
if (IsScalarType()) {
|
|
std::string index_str = llvm::formatv("[{0}-{1}]", from, to);
|
|
ConstString index_const_str(index_str);
|
|
// Check if we have already created a synthetic array member in this valid
|
|
// object. If we have we will re-use it.
|
|
synthetic_child_sp = GetSyntheticChild(index_const_str);
|
|
if (!synthetic_child_sp) {
|
|
uint32_t bit_field_size = to - from + 1;
|
|
uint32_t bit_field_offset = from;
|
|
if (GetDataExtractor().GetByteOrder() == eByteOrderBig)
|
|
bit_field_offset =
|
|
llvm::expectedToOptional(GetByteSize()).value_or(0) * 8 -
|
|
bit_field_size - bit_field_offset;
|
|
// We haven't made a synthetic array member for INDEX yet, so lets make
|
|
// one and cache it for any future reference.
|
|
ValueObjectChild *synthetic_child = new ValueObjectChild(
|
|
*this, GetCompilerType(), index_const_str,
|
|
llvm::expectedToOptional(GetByteSize()).value_or(0), 0,
|
|
bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid,
|
|
0);
|
|
|
|
// Cache the value if we got one back...
|
|
if (synthetic_child) {
|
|
AddSyntheticChild(index_const_str, synthetic_child);
|
|
synthetic_child_sp = synthetic_child->GetSP();
|
|
synthetic_child_sp->SetName(ConstString(index_str));
|
|
synthetic_child_sp->m_flags.m_is_bitfield_for_scalar = true;
|
|
}
|
|
}
|
|
}
|
|
return synthetic_child_sp;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetSyntheticChildAtOffset(
|
|
uint32_t offset, const CompilerType &type, bool can_create,
|
|
ConstString name_const_str) {
|
|
|
|
ValueObjectSP synthetic_child_sp;
|
|
|
|
if (name_const_str.IsEmpty()) {
|
|
name_const_str.SetString("@" + std::to_string(offset));
|
|
}
|
|
|
|
// Check if we have already created a synthetic array member in this valid
|
|
// object. If we have we will re-use it.
|
|
synthetic_child_sp = GetSyntheticChild(name_const_str);
|
|
|
|
if (synthetic_child_sp.get())
|
|
return synthetic_child_sp;
|
|
|
|
if (!can_create)
|
|
return {};
|
|
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
std::optional<uint64_t> size = llvm::expectedToOptional(
|
|
type.GetByteSize(exe_ctx.GetBestExecutionContextScope()));
|
|
if (!size)
|
|
return {};
|
|
ValueObjectChild *synthetic_child =
|
|
new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
|
|
false, false, eAddressTypeInvalid, 0);
|
|
if (synthetic_child) {
|
|
AddSyntheticChild(name_const_str, synthetic_child);
|
|
synthetic_child_sp = synthetic_child->GetSP();
|
|
synthetic_child_sp->SetName(name_const_str);
|
|
synthetic_child_sp->m_flags.m_is_child_at_offset = true;
|
|
}
|
|
return synthetic_child_sp;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset,
|
|
const CompilerType &type,
|
|
bool can_create,
|
|
ConstString name_const_str) {
|
|
ValueObjectSP synthetic_child_sp;
|
|
|
|
if (name_const_str.IsEmpty()) {
|
|
char name_str[128];
|
|
snprintf(name_str, sizeof(name_str), "base%s@%i",
|
|
type.GetTypeName().AsCString("<unknown>"), offset);
|
|
name_const_str.SetCString(name_str);
|
|
}
|
|
|
|
// Check if we have already created a synthetic array member in this valid
|
|
// object. If we have we will re-use it.
|
|
synthetic_child_sp = GetSyntheticChild(name_const_str);
|
|
|
|
if (synthetic_child_sp.get())
|
|
return synthetic_child_sp;
|
|
|
|
if (!can_create)
|
|
return {};
|
|
|
|
const bool is_base_class = true;
|
|
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
std::optional<uint64_t> size = llvm::expectedToOptional(
|
|
type.GetByteSize(exe_ctx.GetBestExecutionContextScope()));
|
|
if (!size)
|
|
return {};
|
|
ValueObjectChild *synthetic_child =
|
|
new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
|
|
is_base_class, false, eAddressTypeInvalid, 0);
|
|
if (synthetic_child) {
|
|
AddSyntheticChild(name_const_str, synthetic_child);
|
|
synthetic_child_sp = synthetic_child->GetSP();
|
|
synthetic_child_sp->SetName(name_const_str);
|
|
}
|
|
return synthetic_child_sp;
|
|
}
|
|
|
|
// your expression path needs to have a leading . or -> (unless it somehow
|
|
// "looks like" an array, in which case it has a leading [ symbol). while the [
|
|
// is meaningful and should be shown to the user, . and -> are just parser
|
|
// design, but by no means added information for the user.. strip them off
|
|
static const char *SkipLeadingExpressionPathSeparators(const char *expression) {
|
|
if (!expression || !expression[0])
|
|
return expression;
|
|
if (expression[0] == '.')
|
|
return expression + 1;
|
|
if (expression[0] == '-' && expression[1] == '>')
|
|
return expression + 2;
|
|
return expression;
|
|
}
|
|
|
|
ValueObjectSP
|
|
ValueObject::GetSyntheticExpressionPathChild(const char *expression,
|
|
bool can_create) {
|
|
ValueObjectSP synthetic_child_sp;
|
|
ConstString name_const_string(expression);
|
|
// Check if we have already created a synthetic array member in this valid
|
|
// object. If we have we will re-use it.
|
|
synthetic_child_sp = GetSyntheticChild(name_const_string);
|
|
if (!synthetic_child_sp) {
|
|
// We haven't made a synthetic array member for expression yet, so lets
|
|
// make one and cache it for any future reference.
|
|
synthetic_child_sp = GetValueForExpressionPath(
|
|
expression, nullptr, nullptr,
|
|
GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(
|
|
GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
|
|
None));
|
|
|
|
// Cache the value if we got one back...
|
|
if (synthetic_child_sp.get()) {
|
|
// FIXME: this causes a "real" child to end up with its name changed to
|
|
// the contents of expression
|
|
AddSyntheticChild(name_const_string, synthetic_child_sp.get());
|
|
synthetic_child_sp->SetName(
|
|
ConstString(SkipLeadingExpressionPathSeparators(expression)));
|
|
}
|
|
}
|
|
return synthetic_child_sp;
|
|
}
|
|
|
|
void ValueObject::CalculateSyntheticValue() {
|
|
TargetSP target_sp(GetTargetSP());
|
|
if (target_sp && !target_sp->GetEnableSyntheticValue()) {
|
|
m_synthetic_value = nullptr;
|
|
return;
|
|
}
|
|
|
|
lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp);
|
|
|
|
if (!UpdateFormatsIfNeeded() && m_synthetic_value)
|
|
return;
|
|
|
|
if (m_synthetic_children_sp.get() == nullptr)
|
|
return;
|
|
|
|
if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value)
|
|
return;
|
|
|
|
m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp);
|
|
}
|
|
|
|
void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) {
|
|
if (use_dynamic == eNoDynamicValues)
|
|
return;
|
|
|
|
if (!m_dynamic_value && !IsDynamic()) {
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
Process *process = exe_ctx.GetProcessPtr();
|
|
if (process && process->IsPossibleDynamicValue(*this)) {
|
|
ClearDynamicTypeInformation();
|
|
m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic);
|
|
}
|
|
}
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) {
|
|
if (use_dynamic == eNoDynamicValues)
|
|
return ValueObjectSP();
|
|
|
|
if (!IsDynamic() && m_dynamic_value == nullptr) {
|
|
CalculateDynamicValue(use_dynamic);
|
|
}
|
|
if (m_dynamic_value && m_dynamic_value->GetError().Success())
|
|
return m_dynamic_value->GetSP();
|
|
else
|
|
return ValueObjectSP();
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetSyntheticValue() {
|
|
CalculateSyntheticValue();
|
|
|
|
if (m_synthetic_value)
|
|
return m_synthetic_value->GetSP();
|
|
else
|
|
return ValueObjectSP();
|
|
}
|
|
|
|
bool ValueObject::HasSyntheticValue() {
|
|
UpdateFormatsIfNeeded();
|
|
|
|
if (m_synthetic_children_sp.get() == nullptr)
|
|
return false;
|
|
|
|
CalculateSyntheticValue();
|
|
|
|
return m_synthetic_value != nullptr;
|
|
}
|
|
|
|
ValueObject *ValueObject::GetNonBaseClassParent() {
|
|
if (GetParent()) {
|
|
if (GetParent()->IsBaseClass())
|
|
return GetParent()->GetNonBaseClassParent();
|
|
else
|
|
return GetParent();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool ValueObject::IsBaseClass(uint32_t &depth) {
|
|
if (!IsBaseClass()) {
|
|
depth = 0;
|
|
return false;
|
|
}
|
|
if (GetParent()) {
|
|
GetParent()->IsBaseClass(depth);
|
|
depth = depth + 1;
|
|
return true;
|
|
}
|
|
// TODO: a base of no parent? weird..
|
|
depth = 1;
|
|
return true;
|
|
}
|
|
|
|
void ValueObject::GetExpressionPath(Stream &s,
|
|
GetExpressionPathFormat epformat) {
|
|
// synthetic children do not actually "exist" as part of the hierarchy, and
|
|
// sometimes they are consed up in ways that don't make sense from an
|
|
// underlying language/API standpoint. So, use a special code path here to
|
|
// return something that can hopefully be used in expression
|
|
if (m_flags.m_is_synthetic_children_generated) {
|
|
UpdateValueIfNeeded();
|
|
|
|
if (m_value.GetValueType() == Value::ValueType::LoadAddress) {
|
|
if (IsPointerOrReferenceType()) {
|
|
s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"),
|
|
GetValueAsUnsigned(0));
|
|
return;
|
|
} else {
|
|
uint64_t load_addr =
|
|
m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
|
|
if (load_addr != LLDB_INVALID_ADDRESS) {
|
|
s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"),
|
|
load_addr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CanProvideValue()) {
|
|
s.Printf("((%s)%s)", GetTypeName().AsCString("void"),
|
|
GetValueAsCString());
|
|
return;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
const bool is_deref_of_parent = IsDereferenceOfParent();
|
|
|
|
if (is_deref_of_parent &&
|
|
epformat == eGetExpressionPathFormatDereferencePointers) {
|
|
// this is the original format of GetExpressionPath() producing code like
|
|
// *(a_ptr).memberName, which is entirely fine, until you put this into
|
|
// StackFrame::GetValueForVariableExpressionPath() which prefers to see
|
|
// a_ptr->memberName. the eHonorPointers mode is meant to produce strings
|
|
// in this latter format
|
|
s.PutCString("*(");
|
|
}
|
|
|
|
ValueObject *parent = GetParent();
|
|
|
|
if (parent)
|
|
parent->GetExpressionPath(s, epformat);
|
|
|
|
// if we are a deref_of_parent just because we are synthetic array members
|
|
// made up to allow ptr[%d] syntax to work in variable printing, then add our
|
|
// name ([%d]) to the expression path
|
|
if (m_flags.m_is_array_item_for_pointer &&
|
|
epformat == eGetExpressionPathFormatHonorPointers)
|
|
s.PutCString(m_name.GetStringRef());
|
|
|
|
if (!IsBaseClass()) {
|
|
if (!is_deref_of_parent) {
|
|
ValueObject *non_base_class_parent = GetNonBaseClassParent();
|
|
if (non_base_class_parent &&
|
|
!non_base_class_parent->GetName().IsEmpty()) {
|
|
CompilerType non_base_class_parent_compiler_type =
|
|
non_base_class_parent->GetCompilerType();
|
|
if (non_base_class_parent_compiler_type) {
|
|
if (parent && parent->IsDereferenceOfParent() &&
|
|
epformat == eGetExpressionPathFormatHonorPointers) {
|
|
s.PutCString("->");
|
|
} else {
|
|
const uint32_t non_base_class_parent_type_info =
|
|
non_base_class_parent_compiler_type.GetTypeInfo();
|
|
|
|
if (non_base_class_parent_type_info & eTypeIsPointer) {
|
|
s.PutCString("->");
|
|
} else if ((non_base_class_parent_type_info & eTypeHasChildren) &&
|
|
!(non_base_class_parent_type_info & eTypeIsArray)) {
|
|
s.PutChar('.');
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const char *name = GetName().GetCString();
|
|
if (name)
|
|
s.PutCString(name);
|
|
}
|
|
}
|
|
|
|
if (is_deref_of_parent &&
|
|
epformat == eGetExpressionPathFormatDereferencePointers) {
|
|
s.PutChar(')');
|
|
}
|
|
}
|
|
|
|
// Return the alternate value (synthetic if the input object is non-synthetic
|
|
// and otherwise) this is permitted by the expression path options.
|
|
static ValueObjectSP GetAlternateValue(
|
|
ValueObject &valobj,
|
|
ValueObject::GetValueForExpressionPathOptions::SyntheticChildrenTraversal
|
|
synth_traversal) {
|
|
using SynthTraversal =
|
|
ValueObject::GetValueForExpressionPathOptions::SyntheticChildrenTraversal;
|
|
|
|
if (valobj.IsSynthetic()) {
|
|
if (synth_traversal == SynthTraversal::FromSynthetic ||
|
|
synth_traversal == SynthTraversal::Both)
|
|
return valobj.GetNonSyntheticValue();
|
|
} else {
|
|
if (synth_traversal == SynthTraversal::ToSynthetic ||
|
|
synth_traversal == SynthTraversal::Both)
|
|
return valobj.GetSyntheticValue();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Dereference the provided object or the alternate value, if permitted by the
|
|
// expression path options.
|
|
static ValueObjectSP DereferenceValueOrAlternate(
|
|
ValueObject &valobj,
|
|
ValueObject::GetValueForExpressionPathOptions::SyntheticChildrenTraversal
|
|
synth_traversal,
|
|
Status &error) {
|
|
error.Clear();
|
|
ValueObjectSP result = valobj.Dereference(error);
|
|
if (!result || error.Fail()) {
|
|
if (ValueObjectSP alt_obj = GetAlternateValue(valobj, synth_traversal)) {
|
|
error.Clear();
|
|
result = alt_obj->Dereference(error);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetValueForExpressionPath(
|
|
llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
|
|
ExpressionPathEndResultType *final_value_type,
|
|
const GetValueForExpressionPathOptions &options,
|
|
ExpressionPathAftermath *final_task_on_target) {
|
|
|
|
ExpressionPathScanEndReason dummy_reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonUnknown;
|
|
ExpressionPathEndResultType dummy_final_value_type =
|
|
ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
ExpressionPathAftermath dummy_final_task_on_target =
|
|
ValueObject::eExpressionPathAftermathNothing;
|
|
|
|
ValueObjectSP ret_val = GetValueForExpressionPath_Impl(
|
|
expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
|
|
final_value_type ? final_value_type : &dummy_final_value_type, options,
|
|
final_task_on_target ? final_task_on_target
|
|
: &dummy_final_task_on_target);
|
|
|
|
if (!final_task_on_target ||
|
|
*final_task_on_target == ValueObject::eExpressionPathAftermathNothing)
|
|
return ret_val;
|
|
|
|
if (ret_val.get() &&
|
|
((final_value_type ? *final_value_type : dummy_final_value_type) ==
|
|
eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress
|
|
// of plain objects
|
|
{
|
|
if ((final_task_on_target ? *final_task_on_target
|
|
: dummy_final_task_on_target) ==
|
|
ValueObject::eExpressionPathAftermathDereference) {
|
|
Status error;
|
|
ValueObjectSP final_value = DereferenceValueOrAlternate(
|
|
*ret_val, options.m_synthetic_children_traversal, error);
|
|
if (error.Fail() || !final_value.get()) {
|
|
if (reason_to_stop)
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
|
|
if (final_value_type)
|
|
*final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return ValueObjectSP();
|
|
} else {
|
|
if (final_task_on_target)
|
|
*final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
|
|
return final_value;
|
|
}
|
|
}
|
|
if (*final_task_on_target ==
|
|
ValueObject::eExpressionPathAftermathTakeAddress) {
|
|
Status error;
|
|
ValueObjectSP final_value = ret_val->AddressOf(error);
|
|
if (error.Fail() || !final_value.get()) {
|
|
if (reason_to_stop)
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonTakingAddressFailed;
|
|
if (final_value_type)
|
|
*final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return ValueObjectSP();
|
|
} else {
|
|
if (final_task_on_target)
|
|
*final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
|
|
return final_value;
|
|
}
|
|
}
|
|
}
|
|
return ret_val; // final_task_on_target will still have its original value, so
|
|
// you know I did not do it
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetValueForExpressionPath_Impl(
|
|
llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
|
|
ExpressionPathEndResultType *final_result,
|
|
const GetValueForExpressionPathOptions &options,
|
|
ExpressionPathAftermath *what_next) {
|
|
ValueObjectSP root = GetSP();
|
|
|
|
if (!root)
|
|
return nullptr;
|
|
|
|
llvm::StringRef remainder = expression;
|
|
|
|
while (true) {
|
|
llvm::StringRef temp_expression = remainder;
|
|
|
|
CompilerType root_compiler_type = root->GetCompilerType();
|
|
CompilerType pointee_compiler_type;
|
|
Flags pointee_compiler_type_info;
|
|
|
|
Flags root_compiler_type_info(
|
|
root_compiler_type.GetTypeInfo(&pointee_compiler_type));
|
|
if (pointee_compiler_type)
|
|
pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo());
|
|
|
|
if (temp_expression.empty()) {
|
|
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
|
|
return root;
|
|
}
|
|
|
|
switch (temp_expression.front()) {
|
|
case '-': {
|
|
temp_expression = temp_expression.drop_front();
|
|
if (options.m_check_dot_vs_arrow_syntax &&
|
|
root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
|
|
// use -> on a
|
|
// non-pointer and I
|
|
// must catch the error
|
|
{
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return ValueObjectSP();
|
|
}
|
|
if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to
|
|
// extract an ObjC IVar
|
|
// when this is forbidden
|
|
root_compiler_type_info.Test(eTypeIsPointer) &&
|
|
options.m_no_fragile_ivar) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return ValueObjectSP();
|
|
}
|
|
if (!temp_expression.starts_with(">")) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return ValueObjectSP();
|
|
}
|
|
}
|
|
[[fallthrough]];
|
|
case '.': // or fallthrough from ->
|
|
{
|
|
if (options.m_check_dot_vs_arrow_syntax &&
|
|
temp_expression.front() == '.' &&
|
|
root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
|
|
// use . on a pointer
|
|
// and I must catch the
|
|
// error
|
|
{
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
temp_expression = temp_expression.drop_front(); // skip . or >
|
|
|
|
size_t next_sep_pos = temp_expression.find_first_of("-.[", 1);
|
|
if (next_sep_pos == llvm::StringRef::npos) {
|
|
// if no other separator just expand this last layer
|
|
llvm::StringRef child_name = temp_expression;
|
|
ValueObjectSP child_valobj_sp =
|
|
root->GetChildMemberWithName(child_name);
|
|
if (!child_valobj_sp) {
|
|
if (ValueObjectSP altroot = GetAlternateValue(
|
|
*root, options.m_synthetic_children_traversal))
|
|
child_valobj_sp = altroot->GetChildMemberWithName(child_name);
|
|
}
|
|
if (child_valobj_sp) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonEndOfString;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
|
|
return child_valobj_sp;
|
|
}
|
|
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
|
|
llvm::StringRef next_separator = temp_expression.substr(next_sep_pos);
|
|
llvm::StringRef child_name = temp_expression.slice(0, next_sep_pos);
|
|
|
|
ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name);
|
|
if (!child_valobj_sp) {
|
|
if (ValueObjectSP altroot = GetAlternateValue(
|
|
*root, options.m_synthetic_children_traversal))
|
|
child_valobj_sp = altroot->GetChildMemberWithName(child_name);
|
|
}
|
|
if (child_valobj_sp) {
|
|
root = child_valobj_sp;
|
|
remainder = next_separator;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
|
|
continue;
|
|
}
|
|
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
case '[': {
|
|
if (!root_compiler_type_info.Test(eTypeIsArray) &&
|
|
!root_compiler_type_info.Test(eTypeIsPointer) &&
|
|
!root_compiler_type_info.Test(
|
|
eTypeIsVector)) // if this is not a T[] nor a T*
|
|
{
|
|
if (!root_compiler_type_info.Test(
|
|
eTypeIsScalar)) // if this is not even a scalar...
|
|
{
|
|
if (options.m_synthetic_children_traversal ==
|
|
GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
|
|
None) // ...only chance left is synthetic
|
|
{
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return ValueObjectSP();
|
|
}
|
|
} else if (!options.m_allow_bitfields_syntax) // if this is a scalar,
|
|
// check that we can
|
|
// expand bitfields
|
|
{
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return ValueObjectSP();
|
|
}
|
|
}
|
|
if (temp_expression[1] ==
|
|
']') // if this is an unbounded range it only works for arrays
|
|
{
|
|
if (!root_compiler_type_info.Test(eTypeIsArray)) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
} else // even if something follows, we cannot expand unbounded ranges,
|
|
// just let the caller do it
|
|
{
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
|
|
*final_result =
|
|
ValueObject::eExpressionPathEndResultTypeUnboundedRange;
|
|
return root;
|
|
}
|
|
}
|
|
|
|
size_t close_bracket_position = temp_expression.find(']', 1);
|
|
if (close_bracket_position ==
|
|
llvm::StringRef::npos) // if there is no ], this is a syntax error
|
|
{
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
|
|
llvm::StringRef bracket_expr =
|
|
temp_expression.slice(1, close_bracket_position);
|
|
|
|
// If this was an empty expression it would have been caught by the if
|
|
// above.
|
|
assert(!bracket_expr.empty());
|
|
|
|
if (!bracket_expr.contains('-')) {
|
|
// if no separator, this is of the form [N]. Note that this cannot be
|
|
// an unbounded range of the form [], because that case was handled
|
|
// above with an unconditional return.
|
|
unsigned long index = 0;
|
|
if (bracket_expr.getAsInteger(0, index)) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
|
|
// from here on we do have a valid index
|
|
if (root_compiler_type_info.Test(eTypeIsArray)) {
|
|
ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index);
|
|
if (!child_valobj_sp)
|
|
child_valobj_sp = root->GetSyntheticArrayMember(index, true);
|
|
if (!child_valobj_sp)
|
|
if (root->HasSyntheticValue() &&
|
|
llvm::expectedToStdOptional(
|
|
root->GetSyntheticValue()->GetNumChildren())
|
|
.value_or(0) > index)
|
|
child_valobj_sp =
|
|
root->GetSyntheticValue()->GetChildAtIndex(index);
|
|
if (child_valobj_sp) {
|
|
root = child_valobj_sp;
|
|
remainder =
|
|
temp_expression.substr(close_bracket_position + 1); // skip ]
|
|
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
|
|
continue;
|
|
} else {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
} else if (root_compiler_type_info.Test(eTypeIsPointer)) {
|
|
if (*what_next ==
|
|
ValueObject::
|
|
eExpressionPathAftermathDereference && // if this is a
|
|
// ptr-to-scalar, I
|
|
// am accessing it
|
|
// by index and I
|
|
// would have
|
|
// deref'ed anyway,
|
|
// then do it now
|
|
// and use this as
|
|
// a bitfield
|
|
pointee_compiler_type_info.Test(eTypeIsScalar)) {
|
|
Status error;
|
|
root = DereferenceValueOrAlternate(
|
|
*root, options.m_synthetic_children_traversal, error);
|
|
if (error.Fail() || !root) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
} else {
|
|
*what_next = eExpressionPathAftermathNothing;
|
|
continue;
|
|
}
|
|
} else {
|
|
if (root->GetCompilerType().GetMinimumLanguage() ==
|
|
eLanguageTypeObjC &&
|
|
pointee_compiler_type_info.AllClear(eTypeIsPointer) &&
|
|
root->HasSyntheticValue() &&
|
|
(options.m_synthetic_children_traversal ==
|
|
GetValueForExpressionPathOptions::
|
|
SyntheticChildrenTraversal::ToSynthetic ||
|
|
options.m_synthetic_children_traversal ==
|
|
GetValueForExpressionPathOptions::
|
|
SyntheticChildrenTraversal::Both)) {
|
|
root = root->GetSyntheticValue()->GetChildAtIndex(index);
|
|
} else
|
|
root = root->GetSyntheticArrayMember(index, true);
|
|
if (!root) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
} else {
|
|
remainder =
|
|
temp_expression.substr(close_bracket_position + 1); // skip ]
|
|
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
|
|
continue;
|
|
}
|
|
}
|
|
} else if (root_compiler_type_info.Test(eTypeIsScalar)) {
|
|
root = root->GetSyntheticBitFieldChild(index, index, true);
|
|
if (!root) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
} else // we do not know how to expand members of bitfields, so we
|
|
// just return and let the caller do any further processing
|
|
{
|
|
*reason_to_stop = ValueObject::
|
|
eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
|
|
return root;
|
|
}
|
|
} else if (root_compiler_type_info.Test(eTypeIsVector)) {
|
|
root = root->GetChildAtIndex(index);
|
|
if (!root) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return ValueObjectSP();
|
|
} else {
|
|
remainder =
|
|
temp_expression.substr(close_bracket_position + 1); // skip ]
|
|
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
|
|
continue;
|
|
}
|
|
} else if (options.m_synthetic_children_traversal ==
|
|
GetValueForExpressionPathOptions::
|
|
SyntheticChildrenTraversal::ToSynthetic ||
|
|
options.m_synthetic_children_traversal ==
|
|
GetValueForExpressionPathOptions::
|
|
SyntheticChildrenTraversal::Both) {
|
|
if (root->HasSyntheticValue())
|
|
root = root->GetSyntheticValue();
|
|
else if (!root->IsSynthetic()) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
// if we are here, then root itself is a synthetic VO.. should be
|
|
// good to go
|
|
|
|
if (!root) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
root = root->GetChildAtIndex(index);
|
|
if (!root) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
} else {
|
|
remainder =
|
|
temp_expression.substr(close_bracket_position + 1); // skip ]
|
|
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
|
|
continue;
|
|
}
|
|
} else {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
// we have a low and a high index
|
|
llvm::StringRef sleft, sright;
|
|
unsigned long low_index, high_index;
|
|
std::tie(sleft, sright) = bracket_expr.split('-');
|
|
if (sleft.getAsInteger(0, low_index) ||
|
|
sright.getAsInteger(0, high_index)) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
|
|
if (low_index > high_index) // swap indices if required
|
|
std::swap(low_index, high_index);
|
|
|
|
if (root_compiler_type_info.Test(
|
|
eTypeIsScalar)) // expansion only works for scalars
|
|
{
|
|
root = root->GetSyntheticBitFieldChild(low_index, high_index, true);
|
|
if (!root) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
} else {
|
|
*reason_to_stop = ValueObject::
|
|
eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
|
|
return root;
|
|
}
|
|
} else if (root_compiler_type_info.Test(
|
|
eTypeIsPointer) && // if this is a ptr-to-scalar, I am
|
|
// accessing it by index and I would
|
|
// have deref'ed anyway, then do it
|
|
// now and use this as a bitfield
|
|
*what_next ==
|
|
ValueObject::eExpressionPathAftermathDereference &&
|
|
pointee_compiler_type_info.Test(eTypeIsScalar)) {
|
|
Status error;
|
|
root = DereferenceValueOrAlternate(
|
|
*root, options.m_synthetic_children_traversal, error);
|
|
if (error.Fail() || !root) {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
} else {
|
|
*what_next = ValueObject::eExpressionPathAftermathNothing;
|
|
continue;
|
|
}
|
|
} else {
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange;
|
|
return root;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default: // some non-separator is in the way
|
|
{
|
|
*reason_to_stop =
|
|
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
|
|
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::Error ValueObject::Dump(Stream &s) {
|
|
return Dump(s, DumpValueObjectOptions(*this));
|
|
}
|
|
|
|
llvm::Error ValueObject::Dump(Stream &s,
|
|
const DumpValueObjectOptions &options) {
|
|
ValueObjectPrinter printer(*this, &s, options);
|
|
return printer.PrintValueObject();
|
|
}
|
|
|
|
ValueObjectSP ValueObject::CreateConstantValue(ConstString name) {
|
|
ValueObjectSP valobj_sp;
|
|
|
|
if (UpdateValueIfNeeded(false) && m_error.Success()) {
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
|
|
DataExtractor data;
|
|
data.SetByteOrder(m_data.GetByteOrder());
|
|
data.SetAddressByteSize(m_data.GetAddressByteSize());
|
|
|
|
if (IsBitfield()) {
|
|
Value v(Scalar(GetValueAsUnsigned(UINT64_MAX)));
|
|
m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get());
|
|
} else
|
|
m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
|
|
|
|
valobj_sp = ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data,
|
|
GetAddressOf().address);
|
|
}
|
|
|
|
if (!valobj_sp) {
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
valobj_sp = ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(), m_error.Clone());
|
|
}
|
|
return valobj_sp;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable(
|
|
lldb::DynamicValueType dynValue, bool synthValue) {
|
|
ValueObjectSP result_sp;
|
|
switch (dynValue) {
|
|
case lldb::eDynamicCanRunTarget:
|
|
case lldb::eDynamicDontRunTarget: {
|
|
if (!IsDynamic())
|
|
result_sp = GetDynamicValue(dynValue);
|
|
} break;
|
|
case lldb::eNoDynamicValues: {
|
|
if (IsDynamic())
|
|
result_sp = GetStaticValue();
|
|
} break;
|
|
}
|
|
if (!result_sp)
|
|
result_sp = GetSP();
|
|
assert(result_sp);
|
|
|
|
bool is_synthetic = result_sp->IsSynthetic();
|
|
if (synthValue && !is_synthetic) {
|
|
if (auto synth_sp = result_sp->GetSyntheticValue())
|
|
return synth_sp;
|
|
}
|
|
if (!synthValue && is_synthetic) {
|
|
if (auto non_synth_sp = result_sp->GetNonSyntheticValue())
|
|
return non_synth_sp;
|
|
}
|
|
|
|
return result_sp;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::Dereference(Status &error) {
|
|
if (m_deref_valobj)
|
|
return m_deref_valobj->GetSP();
|
|
|
|
std::string deref_name_str;
|
|
uint32_t deref_byte_size = 0;
|
|
int32_t deref_byte_offset = 0;
|
|
CompilerType compiler_type = GetCompilerType();
|
|
uint64_t language_flags = 0;
|
|
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
|
|
CompilerType deref_compiler_type;
|
|
auto deref_compiler_type_or_err = compiler_type.GetDereferencedType(
|
|
&exe_ctx, deref_name_str, deref_byte_size, deref_byte_offset, this,
|
|
language_flags);
|
|
|
|
std::string deref_error;
|
|
if (deref_compiler_type_or_err) {
|
|
deref_compiler_type = *deref_compiler_type_or_err;
|
|
} else {
|
|
deref_error = llvm::toString(deref_compiler_type_or_err.takeError());
|
|
LLDB_LOG(GetLog(LLDBLog::Types), "could not find child: {0}", deref_error);
|
|
}
|
|
|
|
if (deref_compiler_type && deref_byte_size) {
|
|
ConstString deref_name;
|
|
if (!deref_name_str.empty())
|
|
deref_name.SetCString(deref_name_str.c_str());
|
|
|
|
m_deref_valobj =
|
|
new ValueObjectChild(*this, deref_compiler_type, deref_name,
|
|
deref_byte_size, deref_byte_offset, 0, 0, false,
|
|
true, eAddressTypeInvalid, language_flags);
|
|
}
|
|
|
|
// In case of incomplete deref compiler type, use the pointee type and try
|
|
// to recreate a new ValueObjectChild using it.
|
|
if (!m_deref_valobj) {
|
|
// FIXME(#59012): C++ stdlib formatters break with incomplete types (e.g.
|
|
// `std::vector<int> &`). Remove ObjC restriction once that's resolved.
|
|
if (Language::LanguageIsObjC(GetPreferredDisplayLanguage()) &&
|
|
HasSyntheticValue()) {
|
|
deref_compiler_type = compiler_type.GetPointeeType();
|
|
|
|
if (deref_compiler_type) {
|
|
ConstString deref_name;
|
|
if (!deref_name_str.empty())
|
|
deref_name.SetCString(deref_name_str.c_str());
|
|
|
|
m_deref_valobj = new ValueObjectChild(
|
|
*this, deref_compiler_type, deref_name, deref_byte_size,
|
|
deref_byte_offset, 0, 0, false, true, eAddressTypeInvalid,
|
|
language_flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!m_deref_valobj && IsSynthetic())
|
|
m_deref_valobj = GetChildMemberWithName("$$dereference$$").get();
|
|
|
|
if (m_deref_valobj) {
|
|
error.Clear();
|
|
return m_deref_valobj->GetSP();
|
|
} else {
|
|
StreamString strm;
|
|
GetExpressionPath(strm);
|
|
|
|
if (deref_error.empty())
|
|
error = Status::FromErrorStringWithFormat(
|
|
"dereference failed: (%s) %s",
|
|
GetTypeName().AsCString("<invalid type>"), strm.GetData());
|
|
else
|
|
error = Status::FromErrorStringWithFormat(
|
|
"dereference failed: %s: (%s) %s", deref_error.c_str(),
|
|
GetTypeName().AsCString("<invalid type>"), strm.GetData());
|
|
return ValueObjectSP();
|
|
}
|
|
}
|
|
|
|
ValueObjectSP ValueObject::AddressOf(Status &error) {
|
|
if (m_addr_of_valobj_sp)
|
|
return m_addr_of_valobj_sp;
|
|
|
|
auto [addr, address_type] = GetAddressOf(/*scalar_is_load_address=*/false);
|
|
error.Clear();
|
|
if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) {
|
|
switch (address_type) {
|
|
case eAddressTypeInvalid: {
|
|
StreamString expr_path_strm;
|
|
GetExpressionPath(expr_path_strm);
|
|
error = Status::FromErrorStringWithFormat("'%s' is not in memory",
|
|
expr_path_strm.GetData());
|
|
} break;
|
|
|
|
case eAddressTypeFile:
|
|
case eAddressTypeLoad: {
|
|
CompilerType compiler_type = GetCompilerType();
|
|
if (compiler_type) {
|
|
std::string name(1, '&');
|
|
name.append(m_name.AsCString(""));
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
|
|
lldb::DataBufferSP buffer(
|
|
new lldb_private::DataBufferHeap(&addr, sizeof(lldb::addr_t)));
|
|
m_addr_of_valobj_sp = ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
compiler_type.GetPointerType(), ConstString(name.c_str()), buffer,
|
|
endian::InlHostByteOrder(), exe_ctx.GetAddressByteSize());
|
|
}
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
StreamString expr_path_strm;
|
|
GetExpressionPath(expr_path_strm);
|
|
error = Status::FromErrorStringWithFormat(
|
|
"'%s' doesn't have a valid address", expr_path_strm.GetData());
|
|
}
|
|
|
|
return m_addr_of_valobj_sp;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::DoCast(const CompilerType &compiler_type) {
|
|
return ValueObjectCast::Create(*this, GetName(), compiler_type);
|
|
}
|
|
|
|
ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) {
|
|
// Only allow casts if the original type is equal or larger than the cast
|
|
// type, unless we know this is a load address. Getting the size wrong for
|
|
// a host side storage could leak lldb memory, so we absolutely want to
|
|
// prevent that. We may not always get the right value, for instance if we
|
|
// have an expression result value that's copied into a storage location in
|
|
// the target may not have copied enough memory. I'm not trying to fix that
|
|
// here, I'm just making Cast from a smaller to a larger possible in all the
|
|
// cases where that doesn't risk making a Value out of random lldb memory.
|
|
// You have to check the ValueObject's Value for the address types, since
|
|
// ValueObjects that use live addresses will tell you they fetch data from the
|
|
// live address, but once they are made, they actually don't.
|
|
// FIXME: Can we make ValueObject's with a live address fetch "more data" from
|
|
// the live address if it is still valid?
|
|
|
|
Status error;
|
|
CompilerType my_type = GetCompilerType();
|
|
|
|
ExecutionContextScope *exe_scope =
|
|
ExecutionContext(GetExecutionContextRef()).GetBestExecutionContextScope();
|
|
if (llvm::expectedToOptional(compiler_type.GetByteSize(exe_scope))
|
|
.value_or(0) <=
|
|
llvm::expectedToOptional(GetCompilerType().GetByteSize(exe_scope))
|
|
.value_or(0) ||
|
|
m_value.GetValueType() == Value::ValueType::LoadAddress)
|
|
return DoCast(compiler_type);
|
|
|
|
error = Status::FromErrorString(
|
|
"Can only cast to a type that is equal to or smaller "
|
|
"than the orignal type.");
|
|
|
|
return ValueObjectConstResult::Create(
|
|
ExecutionContext(GetExecutionContextRef()).GetBestExecutionContextScope(),
|
|
std::move(error));
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) {
|
|
return ValueObjectCast::Create(*this, new_name, GetCompilerType());
|
|
}
|
|
|
|
ValueObjectSP ValueObject::CastPointerType(const char *name,
|
|
CompilerType &compiler_type) {
|
|
ValueObjectSP valobj_sp;
|
|
addr_t ptr_value = GetPointerValue().address;
|
|
|
|
if (ptr_value != LLDB_INVALID_ADDRESS) {
|
|
Address ptr_addr(ptr_value);
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
valobj_sp = ValueObjectMemory::Create(
|
|
exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type);
|
|
}
|
|
return valobj_sp;
|
|
}
|
|
|
|
ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) {
|
|
ValueObjectSP valobj_sp;
|
|
addr_t ptr_value = GetPointerValue().address;
|
|
|
|
if (ptr_value != LLDB_INVALID_ADDRESS) {
|
|
Address ptr_addr(ptr_value);
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
valobj_sp = ValueObjectMemory::Create(
|
|
exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp);
|
|
}
|
|
return valobj_sp;
|
|
}
|
|
|
|
lldb::addr_t ValueObject::GetLoadAddress() {
|
|
if (auto target_sp = GetTargetSP()) {
|
|
const bool scalar_is_load_address = true;
|
|
auto [addr_value, addr_type] = GetAddressOf(scalar_is_load_address);
|
|
if (addr_type == eAddressTypeFile) {
|
|
lldb::ModuleSP module_sp(GetModule());
|
|
if (!module_sp)
|
|
addr_value = LLDB_INVALID_ADDRESS;
|
|
else {
|
|
Address tmp_addr;
|
|
module_sp->ResolveFileAddress(addr_value, tmp_addr);
|
|
addr_value = tmp_addr.GetLoadAddress(target_sp.get());
|
|
}
|
|
} else if (addr_type == eAddressTypeHost ||
|
|
addr_type == eAddressTypeInvalid)
|
|
addr_value = LLDB_INVALID_ADDRESS;
|
|
return addr_value;
|
|
}
|
|
return LLDB_INVALID_ADDRESS;
|
|
}
|
|
|
|
llvm::Expected<lldb::ValueObjectSP> ValueObject::CastDerivedToBaseType(
|
|
CompilerType type, const llvm::ArrayRef<uint32_t> &base_type_indices) {
|
|
// Make sure the starting type and the target type are both valid for this
|
|
// type of cast; otherwise return the shared pointer to the original
|
|
// (unchanged) ValueObject.
|
|
if (!type.IsPointerType() && !type.IsReferenceType())
|
|
return llvm::make_error<llvm::StringError>(
|
|
"Invalid target type: should be a pointer or a reference",
|
|
llvm::inconvertibleErrorCode());
|
|
|
|
CompilerType start_type = GetCompilerType();
|
|
if (start_type.IsReferenceType())
|
|
start_type = start_type.GetNonReferenceType();
|
|
|
|
auto target_record_type =
|
|
type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType();
|
|
auto start_record_type =
|
|
start_type.IsPointerType() ? start_type.GetPointeeType() : start_type;
|
|
|
|
if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType())
|
|
return llvm::make_error<llvm::StringError>(
|
|
"Underlying start & target types should be record types",
|
|
llvm::inconvertibleErrorCode());
|
|
|
|
if (target_record_type.CompareTypes(start_record_type))
|
|
return llvm::make_error<llvm::StringError>(
|
|
"Underlying start & target types should be different",
|
|
llvm::inconvertibleErrorCode());
|
|
|
|
if (base_type_indices.empty())
|
|
return llvm::make_error<llvm::StringError>(
|
|
"Children sequence must be non-empty", llvm::inconvertibleErrorCode());
|
|
|
|
// Both the starting & target types are valid for the cast, and the list of
|
|
// base class indices is non-empty, so we can proceed with the cast.
|
|
|
|
lldb::TargetSP target = GetTargetSP();
|
|
// The `value` can be a pointer, but GetChildAtIndex works for pointers too.
|
|
lldb::ValueObjectSP inner_value = GetSP();
|
|
|
|
for (const uint32_t i : base_type_indices)
|
|
// Create synthetic value if needed.
|
|
inner_value =
|
|
inner_value->GetChildAtIndex(i, /*can_create_synthetic*/ true);
|
|
|
|
// At this point type of `inner_value` should be the dereferenced target
|
|
// type.
|
|
CompilerType inner_value_type = inner_value->GetCompilerType();
|
|
if (type.IsPointerType()) {
|
|
if (!inner_value_type.CompareTypes(type.GetPointeeType()))
|
|
return llvm::make_error<llvm::StringError>(
|
|
"casted value doesn't match the desired type",
|
|
llvm::inconvertibleErrorCode());
|
|
|
|
uintptr_t addr = inner_value->GetLoadAddress();
|
|
llvm::StringRef name = "";
|
|
ExecutionContext exe_ctx(target.get(), false);
|
|
return ValueObject::CreateValueObjectFromAddress(name, addr, exe_ctx, type,
|
|
/* do deref */ false);
|
|
}
|
|
|
|
// At this point the target type should be a reference.
|
|
if (!inner_value_type.CompareTypes(type.GetNonReferenceType()))
|
|
return llvm::make_error<llvm::StringError>(
|
|
"casted value doesn't match the desired type",
|
|
llvm::inconvertibleErrorCode());
|
|
|
|
return lldb::ValueObjectSP(inner_value->Cast(type.GetNonReferenceType()));
|
|
}
|
|
|
|
llvm::Expected<lldb::ValueObjectSP>
|
|
ValueObject::CastBaseToDerivedType(CompilerType type, uint64_t offset) {
|
|
// Make sure the starting type and the target type are both valid for this
|
|
// type of cast; otherwise return the shared pointer to the original
|
|
// (unchanged) ValueObject.
|
|
if (!type.IsPointerType() && !type.IsReferenceType())
|
|
return llvm::make_error<llvm::StringError>(
|
|
"Invalid target type: should be a pointer or a reference",
|
|
llvm::inconvertibleErrorCode());
|
|
|
|
CompilerType start_type = GetCompilerType();
|
|
if (start_type.IsReferenceType())
|
|
start_type = start_type.GetNonReferenceType();
|
|
|
|
auto target_record_type =
|
|
type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType();
|
|
auto start_record_type =
|
|
start_type.IsPointerType() ? start_type.GetPointeeType() : start_type;
|
|
|
|
if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType())
|
|
return llvm::make_error<llvm::StringError>(
|
|
"Underlying start & target types should be record types",
|
|
llvm::inconvertibleErrorCode());
|
|
|
|
if (target_record_type.CompareTypes(start_record_type))
|
|
return llvm::make_error<llvm::StringError>(
|
|
"Underlying start & target types should be different",
|
|
llvm::inconvertibleErrorCode());
|
|
|
|
CompilerType virtual_base;
|
|
if (target_record_type.IsVirtualBase(start_record_type, &virtual_base)) {
|
|
if (!virtual_base.IsValid())
|
|
return llvm::make_error<llvm::StringError>(
|
|
"virtual base should be valid", llvm::inconvertibleErrorCode());
|
|
return llvm::make_error<llvm::StringError>(
|
|
llvm::Twine("cannot cast " + start_type.TypeDescription() + " to " +
|
|
type.TypeDescription() + " via virtual base " +
|
|
virtual_base.TypeDescription()),
|
|
llvm::inconvertibleErrorCode());
|
|
}
|
|
|
|
// Both the starting & target types are valid for the cast, so we can
|
|
// proceed with the cast.
|
|
|
|
lldb::TargetSP target = GetTargetSP();
|
|
auto pointer_type =
|
|
type.IsPointerType() ? type : type.GetNonReferenceType().GetPointerType();
|
|
|
|
uintptr_t addr =
|
|
type.IsPointerType() ? GetValueAsUnsigned(0) : GetLoadAddress();
|
|
|
|
llvm::StringRef name = "";
|
|
ExecutionContext exe_ctx(target.get(), false);
|
|
lldb::ValueObjectSP value = ValueObject::CreateValueObjectFromAddress(
|
|
name, addr - offset, exe_ctx, pointer_type, /* do_deref */ false);
|
|
|
|
if (type.IsPointerType())
|
|
return value;
|
|
|
|
// At this point the target type is a reference. Since `value` is a pointer,
|
|
// it has to be dereferenced.
|
|
Status error;
|
|
return value->Dereference(error);
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::CastToBasicType(CompilerType type) {
|
|
bool is_scalar = GetCompilerType().IsScalarType();
|
|
bool is_enum = GetCompilerType().IsEnumerationType();
|
|
bool is_pointer =
|
|
GetCompilerType().IsPointerType() || GetCompilerType().IsNullPtrType();
|
|
bool is_float = GetCompilerType().IsFloat();
|
|
bool is_integer = GetCompilerType().IsInteger();
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
|
|
if (!type.IsScalarType())
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorString("target type must be a scalar"));
|
|
|
|
if (!is_scalar && !is_enum && !is_pointer)
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorString("argument must be a scalar, enum, or pointer"));
|
|
|
|
lldb::TargetSP target = GetTargetSP();
|
|
uint64_t type_byte_size = 0;
|
|
uint64_t val_byte_size = 0;
|
|
if (auto temp = llvm::expectedToOptional(type.GetByteSize(target.get())))
|
|
type_byte_size = temp.value();
|
|
if (auto temp =
|
|
llvm::expectedToOptional(GetCompilerType().GetByteSize(target.get())))
|
|
val_byte_size = temp.value();
|
|
|
|
if (is_pointer) {
|
|
if (!type.IsInteger() && !type.IsBoolean())
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorString("target type must be an integer or boolean"));
|
|
if (!type.IsBoolean() && type_byte_size < val_byte_size)
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorString(
|
|
"target type cannot be smaller than the pointer type"));
|
|
}
|
|
|
|
if (type.IsBoolean()) {
|
|
if (!is_scalar || is_integer)
|
|
return ValueObject::CreateValueObjectFromBool(
|
|
target, GetValueAsUnsigned(0) != 0, "result");
|
|
else if (is_scalar && is_float) {
|
|
auto float_value_or_err = GetValueAsAPFloat();
|
|
if (float_value_or_err)
|
|
return ValueObject::CreateValueObjectFromBool(
|
|
target, !float_value_or_err->isZero(), "result");
|
|
else
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorStringWithFormat(
|
|
"cannot get value as APFloat: %s",
|
|
llvm::toString(float_value_or_err.takeError()).c_str()));
|
|
}
|
|
}
|
|
|
|
if (type.IsInteger()) {
|
|
if (!is_scalar || is_integer) {
|
|
auto int_value_or_err = GetValueAsAPSInt();
|
|
if (int_value_or_err) {
|
|
// Get the value as APSInt and extend or truncate it to the requested
|
|
// size.
|
|
llvm::APSInt ext =
|
|
int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT);
|
|
return ValueObject::CreateValueObjectFromAPInt(target, ext, type,
|
|
"result");
|
|
} else
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorStringWithFormat(
|
|
"cannot get value as APSInt: %s",
|
|
llvm::toString(int_value_or_err.takeError()).c_str()));
|
|
} else if (is_scalar && is_float) {
|
|
llvm::APSInt integer(type_byte_size * CHAR_BIT, !type.IsSigned());
|
|
bool is_exact;
|
|
auto float_value_or_err = GetValueAsAPFloat();
|
|
if (float_value_or_err) {
|
|
llvm::APFloatBase::opStatus status =
|
|
float_value_or_err->convertToInteger(
|
|
integer, llvm::APFloat::rmTowardZero, &is_exact);
|
|
|
|
// Casting floating point values that are out of bounds of the target
|
|
// type is undefined behaviour.
|
|
if (status & llvm::APFloatBase::opInvalidOp)
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorStringWithFormat(
|
|
"invalid type cast detected: %s",
|
|
llvm::toString(float_value_or_err.takeError()).c_str()));
|
|
return ValueObject::CreateValueObjectFromAPInt(target, integer, type,
|
|
"result");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (type.IsFloat()) {
|
|
if (!is_scalar) {
|
|
auto int_value_or_err = GetValueAsAPSInt();
|
|
if (int_value_or_err) {
|
|
llvm::APSInt ext =
|
|
int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT);
|
|
Scalar scalar_int(ext);
|
|
llvm::APFloat f =
|
|
scalar_int.CreateAPFloatFromAPSInt(type.GetBasicTypeEnumeration());
|
|
return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
|
|
"result");
|
|
} else {
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorStringWithFormat(
|
|
"cannot get value as APSInt: %s",
|
|
llvm::toString(int_value_or_err.takeError()).c_str()));
|
|
}
|
|
} else {
|
|
if (is_integer) {
|
|
auto int_value_or_err = GetValueAsAPSInt();
|
|
if (int_value_or_err) {
|
|
Scalar scalar_int(*int_value_or_err);
|
|
llvm::APFloat f = scalar_int.CreateAPFloatFromAPSInt(
|
|
type.GetBasicTypeEnumeration());
|
|
return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
|
|
"result");
|
|
} else {
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorStringWithFormat(
|
|
"cannot get value as APSInt: %s",
|
|
llvm::toString(int_value_or_err.takeError()).c_str()));
|
|
}
|
|
}
|
|
if (is_float) {
|
|
auto float_value_or_err = GetValueAsAPFloat();
|
|
if (float_value_or_err) {
|
|
Scalar scalar_float(*float_value_or_err);
|
|
llvm::APFloat f = scalar_float.CreateAPFloatFromAPFloat(
|
|
type.GetBasicTypeEnumeration());
|
|
return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
|
|
"result");
|
|
} else {
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorStringWithFormat(
|
|
"cannot get value as APFloat: %s",
|
|
llvm::toString(float_value_or_err.takeError()).c_str()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorString("Unable to perform requested cast"));
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::CastToEnumType(CompilerType type) {
|
|
bool is_enum = GetCompilerType().IsEnumerationType();
|
|
bool is_integer = GetCompilerType().IsInteger();
|
|
bool is_float = GetCompilerType().IsFloat();
|
|
ExecutionContext exe_ctx(GetExecutionContextRef());
|
|
|
|
if (!is_enum && !is_integer && !is_float)
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorString(
|
|
"argument must be an integer, a float, or an enum"));
|
|
|
|
if (!type.IsEnumerationType())
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorString("target type must be an enum"));
|
|
|
|
lldb::TargetSP target = GetTargetSP();
|
|
uint64_t byte_size = 0;
|
|
if (auto temp = llvm::expectedToOptional(type.GetByteSize(target.get())))
|
|
byte_size = temp.value();
|
|
|
|
if (is_float) {
|
|
llvm::APSInt integer(byte_size * CHAR_BIT, !type.IsSigned());
|
|
bool is_exact;
|
|
auto value_or_err = GetValueAsAPFloat();
|
|
if (value_or_err) {
|
|
llvm::APFloatBase::opStatus status = value_or_err->convertToInteger(
|
|
integer, llvm::APFloat::rmTowardZero, &is_exact);
|
|
|
|
// Casting floating point values that are out of bounds of the target
|
|
// type is undefined behaviour.
|
|
if (status & llvm::APFloatBase::opInvalidOp)
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorStringWithFormat(
|
|
"invalid type cast detected: %s",
|
|
llvm::toString(value_or_err.takeError()).c_str()));
|
|
return ValueObject::CreateValueObjectFromAPInt(target, integer, type,
|
|
"result");
|
|
} else
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorString("cannot get value as APFloat"));
|
|
} else {
|
|
// Get the value as APSInt and extend or truncate it to the requested size.
|
|
auto value_or_err = GetValueAsAPSInt();
|
|
if (value_or_err) {
|
|
llvm::APSInt ext = value_or_err->extOrTrunc(byte_size * CHAR_BIT);
|
|
return ValueObject::CreateValueObjectFromAPInt(target, ext, type,
|
|
"result");
|
|
} else
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorStringWithFormat(
|
|
"cannot get value as APSInt: %s",
|
|
llvm::toString(value_or_err.takeError()).c_str()));
|
|
}
|
|
return ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(),
|
|
Status::FromErrorString("Cannot perform requested cast"));
|
|
}
|
|
|
|
ValueObject::EvaluationPoint::EvaluationPoint() : m_mod_id(), m_exe_ctx_ref() {}
|
|
|
|
ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope,
|
|
bool use_selected)
|
|
: m_mod_id(), m_exe_ctx_ref() {
|
|
ExecutionContext exe_ctx(exe_scope);
|
|
TargetSP target_sp(exe_ctx.GetTargetSP());
|
|
if (target_sp) {
|
|
m_exe_ctx_ref.SetTargetSP(target_sp);
|
|
ProcessSP process_sp(exe_ctx.GetProcessSP());
|
|
if (!process_sp)
|
|
process_sp = target_sp->GetProcessSP();
|
|
|
|
if (process_sp) {
|
|
m_mod_id = process_sp->GetModID();
|
|
m_exe_ctx_ref.SetProcessSP(process_sp);
|
|
|
|
ThreadSP thread_sp(exe_ctx.GetThreadSP());
|
|
|
|
if (!thread_sp) {
|
|
if (use_selected)
|
|
thread_sp = process_sp->GetThreadList().GetSelectedThread();
|
|
}
|
|
|
|
if (thread_sp) {
|
|
m_exe_ctx_ref.SetThreadSP(thread_sp);
|
|
|
|
StackFrameSP frame_sp(exe_ctx.GetFrameSP());
|
|
if (!frame_sp) {
|
|
if (use_selected)
|
|
frame_sp = thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame);
|
|
}
|
|
if (frame_sp)
|
|
m_exe_ctx_ref.SetFrameSP(frame_sp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ValueObject::EvaluationPoint::EvaluationPoint(
|
|
const ValueObject::EvaluationPoint &rhs)
|
|
: m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref) {}
|
|
|
|
ValueObject::EvaluationPoint::~EvaluationPoint() = default;
|
|
|
|
// This function checks the EvaluationPoint against the current process state.
|
|
// If the current state matches the evaluation point, or the evaluation point
|
|
// is already invalid, then we return false, meaning "no change". If the
|
|
// current state is different, we update our state, and return true meaning
|
|
// "yes, change". If we did see a change, we also set m_needs_update to true,
|
|
// so future calls to NeedsUpdate will return true. exe_scope will be set to
|
|
// the current execution context scope.
|
|
|
|
bool ValueObject::EvaluationPoint::SyncWithProcessState(
|
|
bool accept_invalid_exe_ctx) {
|
|
// Start with the target, if it is NULL, then we're obviously not going to
|
|
// get any further:
|
|
const bool thread_and_frame_only_if_stopped = true;
|
|
ExecutionContext exe_ctx(
|
|
m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped));
|
|
|
|
if (exe_ctx.GetTargetPtr() == nullptr)
|
|
return false;
|
|
|
|
// If we don't have a process nothing can change.
|
|
Process *process = exe_ctx.GetProcessPtr();
|
|
if (process == nullptr)
|
|
return false;
|
|
|
|
// If our stop id is the current stop ID, nothing has changed:
|
|
ProcessModID current_mod_id = process->GetModID();
|
|
|
|
// If the current stop id is 0, either we haven't run yet, or the process
|
|
// state has been cleared. In either case, we aren't going to be able to sync
|
|
// with the process state.
|
|
if (current_mod_id.GetStopID() == 0)
|
|
return false;
|
|
|
|
bool changed = false;
|
|
const bool was_valid = m_mod_id.IsValid();
|
|
if (was_valid) {
|
|
if (m_mod_id == current_mod_id) {
|
|
// Everything is already up to date in this object, no need to update the
|
|
// execution context scope.
|
|
changed = false;
|
|
} else {
|
|
m_mod_id = current_mod_id;
|
|
m_needs_update = true;
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
// Now re-look up the thread and frame in case the underlying objects have
|
|
// gone away & been recreated. That way we'll be sure to return a valid
|
|
// exe_scope. If we used to have a thread or a frame but can't find it
|
|
// anymore, then mark ourselves as invalid.
|
|
|
|
if (!accept_invalid_exe_ctx) {
|
|
if (m_exe_ctx_ref.HasThreadRef()) {
|
|
ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP());
|
|
if (thread_sp) {
|
|
if (m_exe_ctx_ref.HasFrameRef()) {
|
|
StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP());
|
|
if (!frame_sp) {
|
|
// We used to have a frame, but now it is gone
|
|
SetInvalid();
|
|
changed = was_valid;
|
|
}
|
|
}
|
|
} else {
|
|
// We used to have a thread, but now it is gone
|
|
SetInvalid();
|
|
changed = was_valid;
|
|
}
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
void ValueObject::EvaluationPoint::SetUpdated() {
|
|
ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP());
|
|
if (process_sp)
|
|
m_mod_id = process_sp->GetModID();
|
|
m_needs_update = false;
|
|
}
|
|
|
|
void ValueObject::ClearUserVisibleData(uint32_t clear_mask) {
|
|
if ((clear_mask & eClearUserVisibleDataItemsValue) ==
|
|
eClearUserVisibleDataItemsValue)
|
|
m_value_str.clear();
|
|
|
|
if ((clear_mask & eClearUserVisibleDataItemsLocation) ==
|
|
eClearUserVisibleDataItemsLocation)
|
|
m_location_str.clear();
|
|
|
|
if ((clear_mask & eClearUserVisibleDataItemsSummary) ==
|
|
eClearUserVisibleDataItemsSummary)
|
|
m_summary_str.clear();
|
|
|
|
if ((clear_mask & eClearUserVisibleDataItemsDescription) ==
|
|
eClearUserVisibleDataItemsDescription)
|
|
m_object_desc_str.clear();
|
|
|
|
if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) ==
|
|
eClearUserVisibleDataItemsSyntheticChildren) {
|
|
if (m_synthetic_value)
|
|
m_synthetic_value = nullptr;
|
|
}
|
|
}
|
|
|
|
SymbolContextScope *ValueObject::GetSymbolContextScope() {
|
|
if (m_parent) {
|
|
if (!m_parent->IsPointerOrReferenceType())
|
|
return m_parent->GetSymbolContextScope();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
lldb::ValueObjectSP
|
|
ValueObject::CreateValueObjectFromExpression(llvm::StringRef name,
|
|
llvm::StringRef expression,
|
|
const ExecutionContext &exe_ctx) {
|
|
return CreateValueObjectFromExpression(name, expression, exe_ctx,
|
|
EvaluateExpressionOptions());
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression(
|
|
llvm::StringRef name, llvm::StringRef expression,
|
|
const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) {
|
|
lldb::ValueObjectSP retval_sp;
|
|
lldb::TargetSP target_sp(exe_ctx.GetTargetSP());
|
|
if (!target_sp)
|
|
return retval_sp;
|
|
if (expression.empty())
|
|
return retval_sp;
|
|
target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(),
|
|
retval_sp, options);
|
|
if (retval_sp && !name.empty())
|
|
retval_sp->SetName(ConstString(name));
|
|
return retval_sp;
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress(
|
|
llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx,
|
|
CompilerType type, bool do_deref) {
|
|
if (type) {
|
|
CompilerType pointer_type(type.GetPointerType());
|
|
if (!do_deref)
|
|
pointer_type = type;
|
|
if (pointer_type) {
|
|
lldb::DataBufferSP buffer(
|
|
new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t)));
|
|
lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(), pointer_type,
|
|
ConstString(name), buffer, exe_ctx.GetByteOrder(),
|
|
exe_ctx.GetAddressByteSize()));
|
|
if (ptr_result_valobj_sp) {
|
|
if (do_deref)
|
|
ptr_result_valobj_sp->GetValue().SetValueType(
|
|
Value::ValueType::LoadAddress);
|
|
Status err;
|
|
if (do_deref)
|
|
ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err);
|
|
if (ptr_result_valobj_sp && !name.empty())
|
|
ptr_result_valobj_sp->SetName(ConstString(name));
|
|
}
|
|
return ptr_result_valobj_sp;
|
|
}
|
|
}
|
|
return lldb::ValueObjectSP();
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::CreateValueObjectFromData(
|
|
llvm::StringRef name, const DataExtractor &data,
|
|
const ExecutionContext &exe_ctx, CompilerType type) {
|
|
lldb::ValueObjectSP new_value_sp;
|
|
new_value_sp = ValueObjectConstResult::Create(
|
|
exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data,
|
|
LLDB_INVALID_ADDRESS);
|
|
new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad);
|
|
if (new_value_sp && !name.empty())
|
|
new_value_sp->SetName(ConstString(name));
|
|
return new_value_sp;
|
|
}
|
|
|
|
lldb::ValueObjectSP
|
|
ValueObject::CreateValueObjectFromAPInt(lldb::TargetSP target,
|
|
const llvm::APInt &v, CompilerType type,
|
|
llvm::StringRef name) {
|
|
ExecutionContext exe_ctx(target.get(), false);
|
|
uint64_t byte_size = 0;
|
|
if (auto temp = llvm::expectedToOptional(type.GetByteSize(target.get())))
|
|
byte_size = temp.value();
|
|
lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
|
|
reinterpret_cast<const void *>(v.getRawData()), byte_size,
|
|
exe_ctx.GetByteOrder(), exe_ctx.GetAddressByteSize());
|
|
return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type);
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::CreateValueObjectFromAPFloat(
|
|
lldb::TargetSP target, const llvm::APFloat &v, CompilerType type,
|
|
llvm::StringRef name) {
|
|
return CreateValueObjectFromAPInt(target, v.bitcastToAPInt(), type, name);
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::CreateValueObjectFromScalar(
|
|
lldb::TargetSP target, Scalar &s, CompilerType type, llvm::StringRef name) {
|
|
ExecutionContext exe_ctx(target.get(), false);
|
|
return ValueObjectConstResult::Create(exe_ctx.GetBestExecutionContextScope(),
|
|
type, s, ConstString(name));
|
|
}
|
|
|
|
lldb::ValueObjectSP
|
|
ValueObject::CreateValueObjectFromBool(lldb::TargetSP target, bool value,
|
|
llvm::StringRef name) {
|
|
CompilerType target_type;
|
|
if (target) {
|
|
for (auto type_system_sp : target->GetScratchTypeSystems())
|
|
if (auto compiler_type =
|
|
type_system_sp->GetBasicTypeFromAST(lldb::eBasicTypeBool)) {
|
|
target_type = compiler_type;
|
|
break;
|
|
}
|
|
}
|
|
ExecutionContext exe_ctx(target.get(), false);
|
|
uint64_t byte_size = 0;
|
|
if (auto temp =
|
|
llvm::expectedToOptional(target_type.GetByteSize(target.get())))
|
|
byte_size = temp.value();
|
|
lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
|
|
reinterpret_cast<const void *>(&value), byte_size, exe_ctx.GetByteOrder(),
|
|
exe_ctx.GetAddressByteSize());
|
|
return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx,
|
|
target_type);
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::CreateValueObjectFromNullptr(
|
|
lldb::TargetSP target, CompilerType type, llvm::StringRef name) {
|
|
if (!type.IsNullPtrType()) {
|
|
lldb::ValueObjectSP ret_val;
|
|
return ret_val;
|
|
}
|
|
uintptr_t zero = 0;
|
|
ExecutionContext exe_ctx(target.get(), false);
|
|
uint64_t byte_size = 0;
|
|
if (auto temp = llvm::expectedToOptional(type.GetByteSize(target.get())))
|
|
byte_size = temp.value();
|
|
lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
|
|
reinterpret_cast<const void *>(zero), byte_size, exe_ctx.GetByteOrder(),
|
|
exe_ctx.GetAddressByteSize());
|
|
return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type);
|
|
}
|
|
|
|
ModuleSP ValueObject::GetModule() {
|
|
ValueObject *root(GetRoot());
|
|
if (root != this)
|
|
return root->GetModule();
|
|
return lldb::ModuleSP();
|
|
}
|
|
|
|
ValueObject *ValueObject::GetRoot() {
|
|
if (m_root)
|
|
return m_root;
|
|
return (m_root = FollowParentChain([](ValueObject *vo) -> bool {
|
|
return (vo->m_parent != nullptr);
|
|
}));
|
|
}
|
|
|
|
ValueObject *
|
|
ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) {
|
|
ValueObject *vo = this;
|
|
while (vo) {
|
|
if (!f(vo))
|
|
break;
|
|
vo = vo->m_parent;
|
|
}
|
|
return vo;
|
|
}
|
|
|
|
AddressType ValueObject::GetAddressTypeOfChildren() {
|
|
if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) {
|
|
ValueObject *root(GetRoot());
|
|
if (root != this)
|
|
return root->GetAddressTypeOfChildren();
|
|
}
|
|
return m_address_type_of_ptr_or_ref_children;
|
|
}
|
|
|
|
lldb::DynamicValueType ValueObject::GetDynamicValueType() {
|
|
ValueObject *with_dv_info = this;
|
|
while (with_dv_info) {
|
|
if (with_dv_info->HasDynamicValueTypeInfo())
|
|
return with_dv_info->GetDynamicValueTypeImpl();
|
|
with_dv_info = with_dv_info->m_parent;
|
|
}
|
|
return lldb::eNoDynamicValues;
|
|
}
|
|
|
|
lldb::Format ValueObject::GetFormat() const {
|
|
const ValueObject *with_fmt_info = this;
|
|
while (with_fmt_info) {
|
|
if (with_fmt_info->m_format != lldb::eFormatDefault)
|
|
return with_fmt_info->m_format;
|
|
with_fmt_info = with_fmt_info->m_parent;
|
|
}
|
|
return m_format;
|
|
}
|
|
|
|
lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() {
|
|
lldb::LanguageType type = m_preferred_display_language;
|
|
if (m_preferred_display_language == lldb::eLanguageTypeUnknown) {
|
|
if (GetRoot()) {
|
|
if (GetRoot() == this) {
|
|
if (StackFrameSP frame_sp = GetFrameSP()) {
|
|
const SymbolContext &sc(
|
|
frame_sp->GetSymbolContext(eSymbolContextCompUnit));
|
|
if (CompileUnit *cu = sc.comp_unit)
|
|
type = cu->GetLanguage();
|
|
}
|
|
} else {
|
|
type = GetRoot()->GetPreferredDisplayLanguage();
|
|
}
|
|
}
|
|
}
|
|
return (m_preferred_display_language = type); // only compute it once
|
|
}
|
|
|
|
void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) {
|
|
if (m_preferred_display_language == lldb::eLanguageTypeUnknown)
|
|
SetPreferredDisplayLanguage(lt);
|
|
}
|
|
|
|
bool ValueObject::CanProvideValue() {
|
|
// we need to support invalid types as providers of values because some bare-
|
|
// board debugging scenarios have no notion of types, but still manage to
|
|
// have raw numeric values for things like registers. sigh.
|
|
CompilerType type = GetCompilerType();
|
|
return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue));
|
|
}
|
|
|
|
ValueObjectSP ValueObject::Persist() {
|
|
if (!UpdateValueIfNeeded())
|
|
return nullptr;
|
|
|
|
TargetSP target_sp(GetTargetSP());
|
|
if (!target_sp)
|
|
return nullptr;
|
|
|
|
PersistentExpressionState *persistent_state =
|
|
target_sp->GetPersistentExpressionStateForLanguage(
|
|
GetPreferredDisplayLanguage());
|
|
|
|
if (!persistent_state)
|
|
return nullptr;
|
|
|
|
ConstString name = persistent_state->GetNextPersistentVariableName();
|
|
|
|
ValueObjectSP const_result_sp =
|
|
ValueObjectConstResult::Create(target_sp.get(), GetValue(), name);
|
|
|
|
ExpressionVariableSP persistent_var_sp =
|
|
persistent_state->CreatePersistentVariable(const_result_sp);
|
|
persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp;
|
|
persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference;
|
|
|
|
return persistent_var_sp->GetValueObject();
|
|
}
|
|
|
|
lldb::ValueObjectSP ValueObject::GetVTable() {
|
|
return ValueObjectVTable::Create(*this);
|
|
}
|