Jason Molenda df28c81f5a [lldb][debugserver] Fix an off-by-one error in watchpoint identification (#134314)
debugserver takes the address of a watchpoint exception and calculates
which watchpoint was responsible for it. There was an off-by-one error
in the range calculation which causes two watchpoints on consecutive
ranges to not correctly identify hits to the second watchpoint. The
result is that lldb wouldn't show the second watchpoint as ever being
hit.

Re-landing this test with a modification to only require two
watchpoints in the test, instead of four.  If four watchpoints can
be set, it will test them.

rdar://145107575
2025-04-07 13:50:31 -07:00

217 lines
7.1 KiB
C++

//===-- DNBBreakpoint.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/29/07.
//
//===----------------------------------------------------------------------===//
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "MachProcess.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#pragma mark-- DNBBreakpoint
DNBBreakpoint::DNBBreakpoint(nub_addr_t addr, nub_size_t byte_size,
bool hardware)
: m_retain_count(1), m_byte_size(static_cast<uint32_t>(byte_size)),
m_opcode(), m_addr(addr), m_enabled(0), m_hw_preferred(hardware),
m_is_watchpoint(0), m_watch_read(0), m_watch_write(0),
m_hw_index(INVALID_NUB_HW_INDEX) {}
DNBBreakpoint::~DNBBreakpoint() = default;
void DNBBreakpoint::Dump() const {
if (IsBreakpoint()) {
DNBLog("DNBBreakpoint addr = 0x%llx state = %s type = %s breakpoint "
"hw_index = %i",
(uint64_t)m_addr, m_enabled ? "enabled " : "disabled",
IsHardware() ? "hardware" : "software", GetHardwareIndex());
} else {
DNBLog("DNBBreakpoint addr = 0x%llx size = %llu state = %s type = %s "
"watchpoint (%s%s) hw_index = %i",
(uint64_t)m_addr, (uint64_t)m_byte_size,
m_enabled ? "enabled " : "disabled",
IsHardware() ? "hardware" : "software", m_watch_read ? "r" : "",
m_watch_write ? "w" : "", GetHardwareIndex());
}
}
#pragma mark-- DNBBreakpointList
DNBBreakpointList::DNBBreakpointList() = default;
DNBBreakpointList::~DNBBreakpointList() = default;
DNBBreakpoint *DNBBreakpointList::Add(nub_addr_t addr, nub_size_t length,
bool hardware) {
m_breakpoints.insert(
std::make_pair(addr, DNBBreakpoint(addr, length, hardware)));
iterator pos = m_breakpoints.find(addr);
return &pos->second;
}
bool DNBBreakpointList::Remove(nub_addr_t addr) {
iterator pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end()) {
m_breakpoints.erase(pos);
return true;
}
return false;
}
DNBBreakpoint *DNBBreakpointList::FindByAddress(nub_addr_t addr) {
iterator pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end())
return &pos->second;
return NULL;
}
const DNBBreakpoint *DNBBreakpointList::FindByAddress(nub_addr_t addr) const {
const_iterator pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end())
return &pos->second;
return NULL;
}
const DNBBreakpoint *
DNBBreakpointList::FindByHardwareIndex(uint32_t idx) const {
for (const auto &pos : m_breakpoints)
if (pos.second.GetHardwareIndex() == idx)
return &pos.second;
return nullptr;
}
const DNBBreakpoint *
DNBBreakpointList::FindNearestWatchpoint(nub_addr_t addr) const {
// Exact match
for (const auto &pos : m_breakpoints) {
if (pos.second.IsEnabled()) {
nub_addr_t start_addr = pos.second.Address();
nub_addr_t end_addr = start_addr + pos.second.ByteSize();
if (addr >= start_addr && addr < end_addr)
return &pos.second;
}
}
// Find watchpoint nearest to this address
// before or after the watched region of memory
const DNBBreakpoint *closest = nullptr;
uint32_t best_match = UINT32_MAX;
for (const auto &pos : m_breakpoints) {
if (pos.second.IsEnabled()) {
nub_addr_t start_addr = pos.second.Address();
nub_addr_t end_addr = start_addr + pos.second.ByteSize();
uint32_t delta = addr < start_addr ? start_addr - addr : addr - end_addr;
if (delta < best_match) {
closest = &pos.second;
best_match = delta;
}
}
}
return closest;
}
// Finds the next breakpoint at an address greater than or equal to "addr"
size_t DNBBreakpointList::FindBreakpointsThatOverlapRange(
nub_addr_t addr, nub_addr_t size, std::vector<DNBBreakpoint *> &bps) {
bps.clear();
iterator end = m_breakpoints.end();
// Find the first breakpoint with an address >= to "addr"
iterator pos = m_breakpoints.lower_bound(addr);
if (pos != end) {
if (pos != m_breakpoints.begin()) {
// Watch out for a breakpoint at an address less than "addr" that might
// still overlap
iterator prev_pos = pos;
--prev_pos;
if (prev_pos->second.IntersectsRange(addr, size, NULL, NULL, NULL))
bps.push_back(&pos->second);
}
while (pos != end) {
// When we hit a breakpoint whose start address is greater than "addr +
// size" we are done.
// Do the math in a way that doesn't risk unsigned overflow with bad
// input.
if ((pos->second.Address() - addr) >= size)
break;
// Check if this breakpoint overlaps, and if it does, add it to the list
if (pos->second.IntersectsRange(addr, size, NULL, NULL, NULL)) {
bps.push_back(&pos->second);
++pos;
}
}
}
return bps.size();
}
void DNBBreakpointList::Dump() const {
const_iterator pos;
const_iterator end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
pos->second.Dump();
}
void DNBBreakpointList::DisableAll() {
iterator pos, end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
pos->second.SetEnabled(false);
}
void DNBBreakpointList::RemoveTrapsFromBuffer(nub_addr_t addr, nub_size_t size,
void *p) const {
uint8_t *buf = (uint8_t *)p;
const_iterator end = m_breakpoints.end();
const_iterator pos = m_breakpoints.lower_bound(addr);
while (pos != end && (pos->first < (addr + size))) {
nub_addr_t intersect_addr;
nub_size_t intersect_size;
nub_size_t opcode_offset;
const DNBBreakpoint &bp = pos->second;
if (bp.IntersectsRange(addr, size, &intersect_addr, &intersect_size,
&opcode_offset)) {
assert(addr <= intersect_addr && intersect_addr < addr + size);
assert(addr < intersect_addr + intersect_size &&
intersect_addr + intersect_size <= addr + size);
assert(opcode_offset + intersect_size <= bp.ByteSize());
nub_size_t buf_offset = intersect_addr - addr;
::memcpy(buf + buf_offset, bp.SavedOpcodeBytes() + opcode_offset,
intersect_size);
}
++pos;
}
}
void DNBBreakpointList::DisableAllBreakpoints(MachProcess *process) {
iterator pos, end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
process->DisableBreakpoint(pos->second.Address(), false);
}
void DNBBreakpointList::DisableAllWatchpoints(MachProcess *process) {
iterator pos, end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
process->DisableWatchpoint(pos->second.Address(), false);
}
void DNBBreakpointList::RemoveDisabled() {
iterator pos = m_breakpoints.begin();
while (pos != m_breakpoints.end()) {
if (!pos->second.IsEnabled())
pos = m_breakpoints.erase(pos);
else
++pos;
}
}