llvm-project/llvm/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp
xur-llvm c9a8e15494
[ICP] Add a few tunings to indirect-call-promotion (#149892)
[ICP] Add a few tunings to indirect-call-promtion

Indirect-call promotion (ICP) has been adjusted with the following
tunings:
(1) Candidate functions can be now ICP'd even if only a declaration is
     present.
(2) All non-cold candidate functions are now considered by ICP.
      Previously, only hot targets were considered.
(3) If one target cannot be ICP'd, proceed with the remaining targets
     instead of exiting the callsite.
    
This update hides all tunings under internal options and disables them
by default. They'll be enabled in a later update. There'll also be
another update to address the "not found" issue with indirect targets.
2025-07-24 09:55:28 -07:00

1119 lines
45 KiB
C++

//===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the transformation that promotes indirect calls to
// conditional direct calls when the indirect-call value profile metadata is
// available.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
#include "llvm/Analysis/IndirectCallVisitor.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/Value.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Transforms/Utils/Instrumentation.h"
#include <cassert>
#include <cstdint>
#include <set>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "pgo-icall-prom"
STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
extern cl::opt<unsigned> MaxNumVTableAnnotations;
namespace llvm {
extern cl::opt<bool> EnableVTableProfileUse;
}
// Command line option to disable indirect-call promotion with the default as
// false. This is for debug purpose.
static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
cl::desc("Disable indirect call promotion"));
// Set the cutoff value for the promotion. If the value is other than 0, we
// stop the transformation once the total number of promotions equals the cutoff
// value.
// For debug use only.
static cl::opt<unsigned>
ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden,
cl::desc("Max number of promotions for this compilation"));
// If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
// For debug use only.
static cl::opt<unsigned>
ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden,
cl::desc("Skip Callsite up to this number for this compilation"));
// ICP the candidate function even when only a declaration is present.
static cl::opt<bool> ICPAllowDecls(
"icp-allow-decls", cl::init(false), cl::Hidden,
cl::desc("Promote the target candidate even when the defintion "
" is not available"));
// ICP hot candidate functions only. When setting to false, non-cold functions
// (warm functions) can also be promoted.
static cl::opt<bool>
ICPAllowHotOnly("icp-allow-hot-only", cl::init(true), cl::Hidden,
cl::desc("Promote the target candidate only if it is a "
"hot function. Otherwise, warm functions can "
"also be promoted"));
// If one target cannot be ICP'd, proceed with the remaining targets instead
// of exiting the callsite.
static cl::opt<bool> ICPAllowCandidateSkip(
"icp-allow-candidate-skip", cl::init(false), cl::Hidden,
cl::desc("Continue with the remaining targets instead of exiting "
"when failing in a candidate"));
// Set if the pass is called in LTO optimization. The difference for LTO mode
// is the pass won't prefix the source module name to the internal linkage
// symbols.
static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion in LTO "
"mode"));
// Set if the pass is called in SamplePGO mode. The difference for SamplePGO
// mode is it will add prof metadatato the created direct call.
static cl::opt<bool>
ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion in SamplePGO mode"));
// If the option is set to true, only call instructions will be considered for
// transformation -- invoke instructions will be ignored.
static cl::opt<bool>
ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion for call instructions "
"only"));
// If the option is set to true, only invoke instructions will be considered for
// transformation -- call instructions will be ignored.
static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
cl::Hidden,
cl::desc("Run indirect-call promotion for "
"invoke instruction only"));
// Dump the function level IR if the transformation happened in this
// function. For debug use only.
static cl::opt<bool>
ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
cl::desc("Dump IR after transformation happens"));
// Indirect call promotion pass will fall back to function-based comparison if
// vtable-count / function-count is smaller than this threshold.
static cl::opt<float> ICPVTablePercentageThreshold(
"icp-vtable-percentage-threshold", cl::init(0.995), cl::Hidden,
cl::desc("The percentage threshold of vtable-count / function-count for "
"cost-benefit analysis."));
// Although comparing vtables can save a vtable load, we may need to compare
// vtable pointer with multiple vtable address points due to class inheritance.
// Comparing with multiple vtables inserts additional instructions on hot code
// path, and doing so for an earlier candidate delays the comparisons for later
// candidates. For the last candidate, only the fallback path is affected.
// We allow multiple vtable comparison for the last function candidate and use
// the option below to cap the number of vtables.
static cl::opt<int> ICPMaxNumVTableLastCandidate(
"icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden,
cl::desc("The maximum number of vtable for the last candidate."));
static cl::list<std::string> ICPIgnoredBaseTypes(
"icp-ignored-base-types", cl::Hidden,
cl::desc(
"A list of mangled vtable type info names. Classes specified by the "
"type info names and their derived ones will not be vtable-ICP'ed. "
"Useful when the profiled types and actual types in the optimized "
"binary could be different due to profiling limitations. Type info "
"names are those string literals used in LLVM type metadata"));
namespace {
// The key is a vtable global variable, and the value is a map.
// In the inner map, the key represents address point offsets and the value is a
// constant for this address point.
using VTableAddressPointOffsetValMap =
SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>;
// A struct to collect type information for a virtual call site.
struct VirtualCallSiteInfo {
// The offset from the address point to virtual function in the vtable.
uint64_t FunctionOffset;
// The instruction that computes the address point of vtable.
Instruction *VPtr;
// The compatible type used in LLVM type intrinsics.
StringRef CompatibleTypeStr;
};
// The key is a virtual call, and value is its type information.
using VirtualCallSiteTypeInfoMap =
SmallDenseMap<const CallBase *, VirtualCallSiteInfo>;
// The key is vtable GUID, and value is its value profile count.
using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>;
// Return the address point offset of the given compatible type.
//
// Type metadata of a vtable specifies the types that can contain a pointer to
// this vtable, for example, `Base*` can be a pointer to an derived type
// but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
static std::optional<uint64_t>
getAddressPointOffset(const GlobalVariable &VTableVar,
StringRef CompatibleType) {
SmallVector<MDNode *> Types;
VTableVar.getMetadata(LLVMContext::MD_type, Types);
for (MDNode *Type : Types)
if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get());
TypeId && TypeId->getString() == CompatibleType)
return cast<ConstantInt>(
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
->getZExtValue();
return std::nullopt;
}
// Return a constant representing the vtable's address point specified by the
// offset.
static Constant *getVTableAddressPointOffset(GlobalVariable *VTable,
uint32_t AddressPointOffset) {
Module &M = *VTable->getParent();
LLVMContext &Context = M.getContext();
assert(AddressPointOffset <
M.getDataLayout().getTypeAllocSize(VTable->getValueType()) &&
"Out-of-bound access");
return ConstantExpr::getInBoundsGetElementPtr(
Type::getInt8Ty(Context), VTable,
llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset));
}
// Return the basic block in which Use `U` is used via its `UserInst`.
static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) {
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
return PN->getIncomingBlock(U);
return UserInst->getParent();
}
// `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
// and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
// is the sole predecessor of `DestBB` and `DestBB` is dominated by
// `Inst->getParent()`.
static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) {
// 'BB' is used only by assert.
[[maybe_unused]] BasicBlock *BB = Inst->getParent();
assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 &&
DestBB->getUniquePredecessor() == BB &&
"Guaranteed by ICP transformation");
BasicBlock *UserBB = nullptr;
for (Use &Use : Inst->uses()) {
User *User = Use.getUser();
// Do checked cast since IR verifier guarantees that the user of an
// instruction must be an instruction. See `Verifier::visitInstruction`.
Instruction *UserInst = cast<Instruction>(User);
// We can sink debug or pseudo instructions together with Inst.
if (UserInst->isDebugOrPseudoInst())
continue;
UserBB = getUserBasicBlock(Use, UserInst);
// Do not sink if Inst is used in a basic block that is not DestBB.
// TODO: Sink to the common dominator of all user blocks.
if (UserBB != DestBB)
return false;
}
return UserBB != nullptr;
}
// For the virtual call dispatch sequence, try to sink vtable load instructions
// to the cold indirect call fallback.
// FIXME: Move the sink eligibility check below to a utility function in
// Transforms/Utils/ directory.
static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
if (!isDestBBSuitableForSink(I, DestBlock))
return false;
// Do not move control-flow-involving, volatile loads, vaarg, alloca
// instructions, etc.
if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
isa<AllocaInst>(I))
return false;
// Do not sink convergent call instructions.
if (const auto *C = dyn_cast<CallBase>(I))
if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
return false;
// Do not move an instruction that may write to memory.
if (I->mayWriteToMemory())
return false;
// We can only sink load instructions if there is nothing between the load and
// the end of block that could change the value.
if (I->mayReadFromMemory()) {
// We already know that SrcBlock is the unique predecessor of DestBlock.
for (BasicBlock::iterator Scan = std::next(I->getIterator()),
E = I->getParent()->end();
Scan != E; ++Scan) {
// Note analysis analysis can tell whether two pointers can point to the
// same object in memory or not thereby find further opportunities to
// sink.
if (Scan->mayWriteToMemory())
return false;
}
}
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
I->moveBefore(*DestBlock, InsertPos);
// TODO: Sink debug intrinsic users of I to 'DestBlock'.
// 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
// 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
// the core logic to do this.
return true;
}
// Try to sink instructions after VPtr to the indirect call fallback.
// Return the number of sunk IR instructions.
static int tryToSinkInstructions(BasicBlock *OriginalBB,
BasicBlock *IndirectCallBB) {
int SinkCount = 0;
// Do not sink across a critical edge for simplicity.
if (IndirectCallBB->getUniquePredecessor() != OriginalBB)
return SinkCount;
// Sink all eligible instructions in OriginalBB in reverse order.
for (Instruction &I :
llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB))))
if (tryToSinkInstruction(&I, IndirectCallBB))
SinkCount++;
return SinkCount;
}
// Promote indirect calls to conditional direct calls, keeping track of
// thresholds.
class IndirectCallPromoter {
private:
Function &F;
Module &M;
// Symtab that maps indirect call profile values to function names and
// defines.
InstrProfSymtab *const Symtab;
const bool SamplePGO;
// A map from a virtual call to its type information.
const VirtualCallSiteTypeInfoMap &VirtualCSInfo;
VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal;
OptimizationRemarkEmitter &ORE;
const DenseSet<StringRef> &IgnoredBaseTypes;
// A struct that records the direct target and it's call count.
struct PromotionCandidate {
Function *const TargetFunction;
const uint64_t Count;
const uint32_t Index;
// The following fields only exists for promotion candidates with vtable
// information.
//
// Due to class inheritance, one virtual call candidate can come from
// multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
// counts for 'TargetFunction'. `AddressPoints` stores the vtable address
// points for comparison.
VTableGUIDCountsMap VTableGUIDAndCounts;
SmallVector<Constant *> AddressPoints;
PromotionCandidate(Function *F, uint64_t C, uint32_t I)
: TargetFunction(F), Count(C), Index(I) {}
};
// Check if the indirect-call call site should be promoted. Return the number
// of promotions. Inst is the candidate indirect call, ValueDataRef
// contains the array of value profile data for profiled targets,
// TotalCount is the total profiled count of call executions, and
// NumCandidates is the number of candidate entries in ValueDataRef.
std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
uint64_t TotalCount, uint32_t NumCandidates);
// Promote a list of targets for one indirect-call callsite by comparing
// indirect callee with functions. Return true if there are IR
// transformations and false otherwise.
bool tryToPromoteWithFuncCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount, MutableArrayRef<InstrProfValueData> ICallProfDataRef,
uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts);
// Promote a list of targets for one indirect call by comparing vtables with
// functions. Return true if there are IR transformations and false
// otherwise.
bool tryToPromoteWithVTableCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalFuncCount, uint32_t NumCandidates,
MutableArrayRef<InstrProfValueData> ICallProfDataRef,
VTableGUIDCountsMap &VTableGUIDCounts);
// Return true if it's profitable to compare vtables for the callsite.
bool isProfitableToCompareVTables(const CallBase &CB,
ArrayRef<PromotionCandidate> Candidates);
// Return true if the vtable corresponding to VTableGUID should be skipped
// for vtable-based comparison.
bool shouldSkipVTable(uint64_t VTableGUID);
// Given an indirect callsite and the list of function candidates, compute
// the following vtable information in output parameters and return vtable
// pointer if type profiles exist.
// - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
// metadata attached on the vtable pointer.
// - For each function candidate, finds out the vtables from which it gets
// called and stores the <vtable-guid, count> in promotion candidate.
Instruction *computeVTableInfos(const CallBase *CB,
VTableGUIDCountsMap &VTableGUIDCounts,
std::vector<PromotionCandidate> &Candidates);
Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV,
uint64_t AddressPointOffset);
void updateFuncValueProfiles(CallBase &CB,
MutableArrayRef<InstrProfValueData> VDs,
uint64_t Sum, uint32_t MaxMDCount);
void updateVPtrValueProfiles(Instruction *VPtr,
VTableGUIDCountsMap &VTableGUIDCounts);
bool isValidTarget(uint64_t, Function *, const CallBase &, uint64_t);
public:
IndirectCallPromoter(
Function &Func, Module &M, InstrProfSymtab *Symtab, bool SamplePGO,
const VirtualCallSiteTypeInfoMap &VirtualCSInfo,
VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal,
const DenseSet<StringRef> &IgnoredBaseTypes,
OptimizationRemarkEmitter &ORE)
: F(Func), M(M), Symtab(Symtab), SamplePGO(SamplePGO),
VirtualCSInfo(VirtualCSInfo),
VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE),
IgnoredBaseTypes(IgnoredBaseTypes) {}
IndirectCallPromoter(const IndirectCallPromoter &) = delete;
IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete;
bool processFunction(ProfileSummaryInfo *PSI);
};
} // end anonymous namespace
bool IndirectCallPromoter::isValidTarget(uint64_t Target,
Function *TargetFunction,
const CallBase &CB, uint64_t Count) {
// Don't promote if the symbol is not defined in the module. This avoids
// creating a reference to a symbol that doesn't exist in the module
// This can happen when we compile with a sample profile collected from
// one binary but used for another, which may have profiled targets that
// aren't used in the new binary. We might have a declaration initially in
// the case where the symbol is globally dead in the binary and removed by
// ThinLTO.
using namespace ore;
if (TargetFunction == nullptr) {
LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB)
<< "Cannot promote indirect call: target with md5sum "
<< NV("target md5sum", Target)
<< " not found (count=" << NV("Count", Count) << ")";
});
return false;
}
if (!ICPAllowDecls && TargetFunction->isDeclaration()) {
LLVM_DEBUG(dbgs() << " Not promote: target definition is not available\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NoTargetDef", &CB)
<< "Do not promote indirect call: target with md5sum "
<< NV("target md5sum", Target)
<< " definition not available (count=" << ore::NV("Count", Count)
<< ")";
});
return false;
}
const char *Reason = nullptr;
if (!isLegalToPromote(CB, TargetFunction, &Reason)) {
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB)
<< "Cannot promote indirect call to "
<< NV("TargetFunction", TargetFunction)
<< " (count=" << NV("Count", Count) << "): " << Reason;
});
return false;
}
return true;
}
// Indirect-call promotion heuristic. The direct targets are sorted based on
// the count. Stop at the first target that is not promoted.
std::vector<IndirectCallPromoter::PromotionCandidate>
IndirectCallPromoter::getPromotionCandidatesForCallSite(
const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
uint64_t TotalCount, uint32_t NumCandidates) {
std::vector<PromotionCandidate> Ret;
LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB
<< " Num_targets: " << ValueDataRef.size()
<< " Num_candidates: " << NumCandidates << "\n");
NumOfPGOICallsites++;
if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
LLVM_DEBUG(dbgs() << " Skip: User options.\n");
return Ret;
}
for (uint32_t I = 0; I < NumCandidates; I++) {
uint64_t Count = ValueDataRef[I].Count;
assert(Count <= TotalCount);
(void)TotalCount;
uint64_t Target = ValueDataRef[I].Value;
LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
<< " Target_func: " << Target << "\n");
if (ICPInvokeOnly && isa<CallInst>(CB)) {
LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
<< " Not promote: User options";
});
break;
}
if (ICPCallOnly && isa<InvokeInst>(CB)) {
LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
<< " Not promote: User options";
});
break;
}
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB)
<< " Not promote: Cutoff reached";
});
break;
}
Function *TargetFunction = Symtab->getFunction(Target);
if (!isValidTarget(Target, TargetFunction, CB, Count)) {
if (ICPAllowCandidateSkip)
continue;
else
break;
}
Ret.push_back(PromotionCandidate(TargetFunction, Count, I));
TotalCount -= Count;
}
return Ret;
}
Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar(
GlobalVariable *GV, uint64_t AddressPointOffset) {
auto [Iter, Inserted] =
VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr);
if (Inserted)
Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset);
return Iter->second;
}
Instruction *IndirectCallPromoter::computeVTableInfos(
const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap,
std::vector<PromotionCandidate> &Candidates) {
if (!EnableVTableProfileUse)
return nullptr;
// Take the following code sequence as an example, here is how the code works
// @vtable1 = {[n x ptr] [... ptr @func1]}
// @vtable2 = {[m x ptr] [... ptr @func2]}
//
// %vptr = load ptr, ptr %d, !prof !0
// %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
// tail call void @llvm.assume(i1 %0)
// %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
// %1 = load ptr, ptr %vfn
// call void %1(ptr %d), !prof !1
//
// !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
// !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
//
// Step 1. Find out the %vptr instruction for indirect call and use its !prof
// to populate `GUIDCountsMap`.
// Step 2. For each vtable-guid, look up its definition from symtab. LTO can
// make vtable definitions visible across modules.
// Step 3. Compute the byte offset of the virtual call, by adding vtable
// address point offset and function's offset relative to vtable address
// point. For each function candidate, this step tells us the vtable from
// which it comes from, and the vtable address point to compare %vptr with.
// Only virtual calls have virtual call site info.
auto Iter = VirtualCSInfo.find(CB);
if (Iter == VirtualCSInfo.end())
return nullptr;
LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
<< NumOfPGOICallsites << "\n");
const auto &VirtualCallInfo = Iter->second;
Instruction *VPtr = VirtualCallInfo.VPtr;
SmallDenseMap<Function *, int, 4> CalleeIndexMap;
for (size_t I = 0; I < Candidates.size(); I++)
CalleeIndexMap[Candidates[I].TargetFunction] = I;
uint64_t TotalVTableCount = 0;
auto VTableValueDataArray =
getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget,
MaxNumVTableAnnotations, TotalVTableCount);
if (VTableValueDataArray.empty())
return VPtr;
// Compute the functions and counts from by each vtable.
for (const auto &V : VTableValueDataArray) {
uint64_t VTableVal = V.Value;
GUIDCountsMap[VTableVal] = V.Count;
GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal);
if (!VTableVar) {
LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal
<< "; maybe the vtable isn't imported\n");
continue;
}
std::optional<uint64_t> MaybeAddressPointOffset =
getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr);
if (!MaybeAddressPointOffset)
continue;
const uint64_t AddressPointOffset = *MaybeAddressPointOffset;
Function *Callee = nullptr;
std::tie(Callee, std::ignore) = getFunctionAtVTableOffset(
VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M);
if (!Callee)
continue;
auto CalleeIndexIter = CalleeIndexMap.find(Callee);
if (CalleeIndexIter == CalleeIndexMap.end())
continue;
auto &Candidate = Candidates[CalleeIndexIter->second];
// There shouldn't be duplicate GUIDs in one !prof metadata (except
// duplicated zeros), so assign counters directly won't cause overwrite or
// counter loss.
Candidate.VTableGUIDAndCounts[VTableVal] = V.Count;
Candidate.AddressPoints.push_back(
getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset));
}
return VPtr;
}
// Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
// Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight,
uint64_t FalseWeight) {
MDBuilder MDB(Context);
uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight));
return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale),
scaleBranchCount(FalseWeight, Scale));
}
CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee,
uint64_t Count, uint64_t TotalCount,
bool AttachProfToDirectCall,
OptimizationRemarkEmitter *ORE) {
CallBase &NewInst = promoteCallWithIfThenElse(
CB, DirectCallee,
createBranchWeights(CB.getContext(), Count, TotalCount - Count));
if (AttachProfToDirectCall)
setBranchWeights(NewInst, {static_cast<uint32_t>(Count)},
/*IsExpected=*/false);
using namespace ore;
if (ORE)
ORE->emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB)
<< "Promote indirect call to " << NV("DirectCallee", DirectCallee)
<< " with count " << NV("Count", Count) << " out of "
<< NV("TotalCount", TotalCount);
});
return NewInst;
}
// Promote indirect-call to conditional direct-call for one callsite.
bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount, MutableArrayRef<InstrProfValueData> ICallProfDataRef,
uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) {
uint32_t NumPromoted = 0;
for (const auto &C : Candidates) {
uint64_t FuncCount = C.Count;
pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount,
SamplePGO, &ORE);
assert(TotalCount >= FuncCount);
TotalCount -= FuncCount;
NumOfPGOICallPromotion++;
NumPromoted++;
// Update the count and this entry will be erased later.
ICallProfDataRef[C.Index].Count = 0;
if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty())
continue;
// After a virtual call candidate gets promoted, update the vtable's counts
// proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
// a vtable from which the virtual call is loaded. Compute the sum and use
// 128-bit APInt to improve accuracy.
uint64_t SumVTableCount = 0;
for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts)
SumVTableCount += VTableCount;
for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) {
APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/);
APFuncCount *= VTableCount;
VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue();
}
}
if (NumPromoted == 0)
return false;
assert(NumPromoted <= ICallProfDataRef.size() &&
"Number of promoted functions should not be greater than the number "
"of values in profile metadata");
updateFuncValueProfiles(CB, ICallProfDataRef, TotalCount, NumCandidates);
updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
return true;
}
void IndirectCallPromoter::updateFuncValueProfiles(
CallBase &CB, MutableArrayRef<InstrProfValueData> CallVDs,
uint64_t TotalCount, uint32_t MaxMDCount) {
// First clear the existing !prof.
CB.setMetadata(LLVMContext::MD_prof, nullptr);
// Sort value profiles by count in descending order.
llvm::stable_sort(CallVDs, [](const InstrProfValueData &LHS,
const InstrProfValueData &RHS) {
return LHS.Count > RHS.Count;
});
// Drop the <target-value, count> pair if count is zero.
ArrayRef<InstrProfValueData> VDs(
CallVDs.begin(),
llvm::upper_bound(CallVDs, 0U,
[](uint64_t Count, const InstrProfValueData &ProfData) {
return ProfData.Count <= Count;
}));
// Annotate the remaining value profiles if counter is not zero.
if (TotalCount != 0)
annotateValueSite(M, CB, VDs, TotalCount, IPVK_IndirectCallTarget,
MaxMDCount);
}
void IndirectCallPromoter::updateVPtrValueProfiles(
Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) {
if (!EnableVTableProfileUse || VPtr == nullptr ||
!VPtr->getMetadata(LLVMContext::MD_prof))
return;
VPtr->setMetadata(LLVMContext::MD_prof, nullptr);
std::vector<InstrProfValueData> VTableValueProfiles;
uint64_t TotalVTableCount = 0;
for (auto [GUID, Count] : VTableGUIDCounts) {
if (Count == 0)
continue;
VTableValueProfiles.push_back({GUID, Count});
TotalVTableCount += Count;
}
llvm::sort(VTableValueProfiles,
[](const InstrProfValueData &LHS, const InstrProfValueData &RHS) {
return LHS.Count > RHS.Count;
});
annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount,
IPVK_VTableTarget, VTableValueProfiles.size());
}
bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalFuncCount, uint32_t NumCandidates,
MutableArrayRef<InstrProfValueData> ICallProfDataRef,
VTableGUIDCountsMap &VTableGUIDCounts) {
SmallVector<std::pair<uint32_t, uint64_t>, 4> PromotedFuncCount;
for (const auto &Candidate : Candidates) {
for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts)
VTableGUIDCounts[GUID] -= Count;
// 'OriginalBB' is the basic block of indirect call. After each candidate
// is promoted, a new basic block is created for the indirect fallback basic
// block and indirect call `CB` is moved into this new BB.
BasicBlock *OriginalBB = CB.getParent();
promoteCallWithVTableCmp(
CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints,
createBranchWeights(CB.getContext(), Candidate.Count,
TotalFuncCount - Candidate.Count));
int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent());
ORE.emit([&]() {
OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB);
const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
Remark << "Promote indirect call to "
<< ore::NV("DirectCallee", Candidate.TargetFunction)
<< " with count " << ore::NV("Count", Candidate.Count)
<< " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink "
<< ore::NV("SinkCount", SinkCount)
<< " instruction(s) and compare "
<< ore::NV("VTable", VTableGUIDAndCounts.size())
<< " vtable(s): {";
// Sort GUIDs so remark message is deterministic.
std::set<uint64_t> GUIDSet;
for (auto [GUID, Count] : VTableGUIDAndCounts)
GUIDSet.insert(GUID);
for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) {
if (Iter != GUIDSet.begin())
Remark << ", ";
Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter));
}
Remark << "}";
return Remark;
});
PromotedFuncCount.push_back({Candidate.Index, Candidate.Count});
assert(TotalFuncCount >= Candidate.Count &&
"Within one prof metadata, total count is the sum of counts from "
"individual <target, count> pairs");
// Use std::min since 'TotalFuncCount' is the saturated sum of individual
// counts, see
// https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count);
NumOfPGOICallPromotion++;
}
if (PromotedFuncCount.empty())
return false;
// Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
// a distinct 'VPtr'.
// FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
// used to load multiple virtual functions. The vtable profiles needs to be
// updated properly in that case (e.g, for each indirect call annotate both
// type profiles and function profiles in one !prof).
for (size_t I = 0; I < PromotedFuncCount.size(); I++) {
uint32_t Index = PromotedFuncCount[I].first;
ICallProfDataRef[Index].Count -=
std::max(PromotedFuncCount[I].second, ICallProfDataRef[Index].Count);
}
updateFuncValueProfiles(CB, ICallProfDataRef, TotalFuncCount, NumCandidates);
updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
return true;
}
// Traverse all the indirect-call callsite and get the value profile
// annotation to perform indirect-call promotion.
bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) {
bool Changed = false;
ICallPromotionAnalysis ICallAnalysis;
for (auto *CB : findIndirectCalls(F)) {
uint32_t NumCandidates;
uint64_t TotalCount;
auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction(
CB, TotalCount, NumCandidates);
if (!NumCandidates)
continue;
if (PSI && PSI->hasProfileSummary()) {
// Don't promote cold candidates.
if (PSI->isColdCount(TotalCount)) {
LLVM_DEBUG(dbgs() << "Don't promote the cold candidate: TotalCount="
<< TotalCount << "\n");
continue;
}
// Only pormote hot if ICPAllowHotOnly is true.
if (ICPAllowHotOnly && !PSI->isHotCount(TotalCount)) {
LLVM_DEBUG(dbgs() << "Don't promote the non-hot candidate: TotalCount="
<< TotalCount << "\n");
continue;
}
}
auto PromotionCandidates = getPromotionCandidatesForCallSite(
*CB, ICallProfDataRef, TotalCount, NumCandidates);
VTableGUIDCountsMap VTableGUIDCounts;
Instruction *VPtr =
computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates);
if (isProfitableToCompareVTables(*CB, PromotionCandidates))
Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates,
TotalCount, NumCandidates,
ICallProfDataRef, VTableGUIDCounts);
else
Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates,
TotalCount, ICallProfDataRef,
NumCandidates, VTableGUIDCounts);
}
return Changed;
}
// TODO: Return false if the function addressing and vtable load instructions
// cannot sink to indirect fallback.
bool IndirectCallPromoter::isProfitableToCompareVTables(
const CallBase &CB, ArrayRef<PromotionCandidate> Candidates) {
if (!EnableVTableProfileUse || Candidates.empty())
return false;
LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
<< NumOfPGOICallsites << CB << "\n");
const size_t CandidateSize = Candidates.size();
for (size_t I = 0; I < CandidateSize; I++) {
auto &Candidate = Candidates[I];
auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
LLVM_DEBUG({
dbgs() << " Candidate " << I << " FunctionCount: " << Candidate.Count
<< ", VTableCounts:";
for (const auto &[GUID, Count] : VTableGUIDAndCounts)
dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName() << ", "
<< Count << "}";
dbgs() << "\n";
});
uint64_t CandidateVTableCount = 0;
for (auto &[GUID, Count] : VTableGUIDAndCounts) {
CandidateVTableCount += Count;
if (shouldSkipVTable(GUID))
return false;
}
if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) {
LLVM_DEBUG(
dbgs() << " function count " << Candidate.Count
<< " and its vtable sum count " << CandidateVTableCount
<< " have discrepancies. Bail out vtable comparison.\n");
return false;
}
// 'MaxNumVTable' limits the number of vtables to make vtable comparison
// profitable. Comparing multiple vtables for one function candidate will
// insert additional instructions on the hot path, and allowing more than
// one vtable for non last candidates may or may not elongate the dependency
// chain for the subsequent candidates. Set its value to 1 for non-last
// candidate and allow option to override it for the last candidate.
int MaxNumVTable = 1;
if (I == CandidateSize - 1)
MaxNumVTable = ICPMaxNumVTableLastCandidate;
if ((int)Candidate.AddressPoints.size() > MaxNumVTable) {
LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got "
<< Candidate.AddressPoints.size()
<< " vtables. Bail out for vtable comparison.\n");
return false;
}
}
return true;
}
bool IndirectCallPromoter::shouldSkipVTable(uint64_t VTableGUID) {
if (IgnoredBaseTypes.empty())
return false;
auto *VTableVar = Symtab->getGlobalVariable(VTableGUID);
assert(VTableVar && "VTableVar must exist for GUID in VTableGUIDAndCounts");
SmallVector<MDNode *, 2> Types;
VTableVar->getMetadata(LLVMContext::MD_type, Types);
for (auto *Type : Types)
if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get()))
if (IgnoredBaseTypes.contains(TypeId->getString())) {
LLVM_DEBUG(dbgs() << " vtable profiles should be ignored. Bail "
"out of vtable comparison.");
return true;
}
return false;
}
// For virtual calls in the module, collect per-callsite information which will
// be used to associate an ICP candidate with a vtable and a specific function
// in the vtable. With type intrinsics (llvm.type.test), we can find virtual
// calls in a compile-time efficient manner (by iterating its users) and more
// importantly use the compatible type later to figure out the function byte
// offset relative to the start of vtables.
static void
computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM,
VirtualCallSiteTypeInfoMap &VirtualCSInfo) {
// Right now only llvm.type.test is used to find out virtual call sites.
// With ThinLTO and whole-program-devirtualization, llvm.type.test and
// llvm.public.type.test are emitted, and llvm.public.type.test is either
// refined to llvm.type.test or dropped before indirect-call-promotion pass.
//
// FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
// Find out virtual calls by looking at users of llvm.type.checked.load in
// that case.
Function *TypeTestFunc =
Intrinsic::getDeclarationIfExists(&M, Intrinsic::type_test);
if (!TypeTestFunc || TypeTestFunc->use_empty())
return;
auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
return FAM.getResult<DominatorTreeAnalysis>(F);
};
// Iterate all type.test calls to find all indirect calls.
for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
auto *CI = dyn_cast<CallInst>(U.getUser());
if (!CI)
continue;
auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
if (!TypeMDVal)
continue;
auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
if (!CompatibleTypeId)
continue;
// Find out all devirtualizable call sites given a llvm.type.test
// intrinsic call.
SmallVector<DevirtCallSite, 1> DevirtCalls;
SmallVector<CallInst *, 1> Assumes;
auto &DT = LookupDomTree(*CI->getFunction());
findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
for (auto &DevirtCall : DevirtCalls) {
CallBase &CB = DevirtCall.CB;
// Given an indirect call, try find the instruction which loads a
// pointer to virtual table.
Instruction *VTablePtr =
PGOIndirectCallVisitor::tryGetVTableInstruction(&CB);
if (!VTablePtr)
continue;
VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr,
CompatibleTypeId->getString()};
}
}
}
// A wrapper function that does the actual work.
static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO,
bool SamplePGO, ModuleAnalysisManager &MAM) {
if (DisableICP)
return false;
InstrProfSymtab Symtab;
if (Error E = Symtab.create(M, InLTO)) {
std::string SymtabFailure = toString(std::move(E));
M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
return false;
}
bool Changed = false;
VirtualCallSiteTypeInfoMap VirtualCSInfo;
DenseSet<StringRef> IgnoredBaseTypes;
if (EnableVTableProfileUse) {
computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo);
IgnoredBaseTypes.insert_range(ICPIgnoredBaseTypes);
}
// VTableAddressPointOffsetVal stores the vtable address points. The vtable
// address point of a given <vtable, address point offset> is static (doesn't
// change after being computed once).
// IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
// entry the first time a <vtable, offset> pair is seen, as
// promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
// repeatedly on each function.
VTableAddressPointOffsetValMap VTableAddressPointOffsetVal;
for (auto &F : M) {
if (F.isDeclaration() || F.hasOptNone())
continue;
auto &FAM =
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
IndirectCallPromoter CallPromoter(F, M, &Symtab, SamplePGO, VirtualCSInfo,
VTableAddressPointOffsetVal,
IgnoredBaseTypes, ORE);
bool FuncChanged = CallPromoter.processFunction(PSI);
if (ICPDUMPAFTER && FuncChanged) {
LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
Changed |= FuncChanged;
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
break;
}
}
return Changed;
}
PreservedAnalyses PGOIndirectCallPromotion::run(Module &M,
ModuleAnalysisManager &MAM) {
ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode,
SamplePGO | ICPSamplePGOMode, MAM))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}