
We can derive and upgrade alignment for loads/stores using other well-aligned loads/stores. This optimization does a single forward pass through each basic block and uses loads/stores (the alignment and the offset) to derive the best possible alignment for a base pointer, caching the result. If it encounters another load/store based on that pointer, it tries to upgrade the alignment. The optimization must be a forward pass within a basic block because control flow and exception throwing can impact alignment guarantees. --------- Co-authored-by: Nikita Popov <github@npopov.com>
125 lines
4.7 KiB
C++
125 lines
4.7 KiB
C++
//===- InferAlignment.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Infer alignment for load, stores and other memory operations based on
|
|
// trailing zero known bits information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/InferAlignment.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static bool tryToImproveAlign(
|
|
const DataLayout &DL, Instruction *I,
|
|
function_ref<Align(Value *PtrOp, Align OldAlign, Align PrefAlign)> Fn) {
|
|
|
|
if (auto *PtrOp = getLoadStorePointerOperand(I)) {
|
|
Align OldAlign = getLoadStoreAlignment(I);
|
|
Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(I));
|
|
|
|
Align NewAlign = Fn(PtrOp, OldAlign, PrefAlign);
|
|
if (NewAlign > OldAlign) {
|
|
setLoadStoreAlignment(I, NewAlign);
|
|
return true;
|
|
}
|
|
}
|
|
// TODO: Also handle memory intrinsics.
|
|
return false;
|
|
}
|
|
|
|
bool inferAlignment(Function &F, AssumptionCache &AC, DominatorTree &DT) {
|
|
const DataLayout &DL = F.getDataLayout();
|
|
bool Changed = false;
|
|
|
|
// Enforce preferred type alignment if possible. We do this as a separate
|
|
// pass first, because it may improve the alignments we infer below.
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &I : BB) {
|
|
Changed |= tryToImproveAlign(
|
|
DL, &I, [&](Value *PtrOp, Align OldAlign, Align PrefAlign) {
|
|
if (PrefAlign > OldAlign)
|
|
return std::max(OldAlign,
|
|
tryEnforceAlignment(PtrOp, PrefAlign, DL));
|
|
return OldAlign;
|
|
});
|
|
}
|
|
}
|
|
|
|
// Compute alignment from known bits.
|
|
auto InferFromKnownBits = [&](Instruction &I, Value *PtrOp) {
|
|
KnownBits Known = computeKnownBits(PtrOp, DL, &AC, &I, &DT);
|
|
unsigned TrailZ =
|
|
std::min(Known.countMinTrailingZeros(), +Value::MaxAlignmentExponent);
|
|
return Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
|
|
};
|
|
|
|
// Propagate alignment between loads and stores that originate from the
|
|
// same base pointer.
|
|
DenseMap<Value *, Align> BestBasePointerAligns;
|
|
auto InferFromBasePointer = [&](Value *PtrOp, Align LoadStoreAlign) {
|
|
APInt OffsetFromBase(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
|
|
PtrOp = PtrOp->stripAndAccumulateConstantOffsets(DL, OffsetFromBase, true);
|
|
// Derive the base pointer alignment from the load/store alignment
|
|
// and the offset from the base pointer.
|
|
Align BasePointerAlign =
|
|
commonAlignment(LoadStoreAlign, OffsetFromBase.getLimitedValue());
|
|
|
|
auto [It, Inserted] =
|
|
BestBasePointerAligns.try_emplace(PtrOp, BasePointerAlign);
|
|
if (!Inserted) {
|
|
// If the stored base pointer alignment is better than the
|
|
// base pointer alignment we derived, we may be able to use it
|
|
// to improve the load/store alignment. If not, store the
|
|
// improved base pointer alignment for future iterations.
|
|
if (It->second > BasePointerAlign) {
|
|
Align BetterLoadStoreAlign =
|
|
commonAlignment(It->second, OffsetFromBase.getLimitedValue());
|
|
return BetterLoadStoreAlign;
|
|
}
|
|
It->second = BasePointerAlign;
|
|
}
|
|
return LoadStoreAlign;
|
|
};
|
|
|
|
for (BasicBlock &BB : F) {
|
|
// We need to reset the map for each block because alignment information
|
|
// can only be propagated from instruction A to B if A dominates B.
|
|
// This is because control flow (and exception throwing) could be dependent
|
|
// on the address (and its alignment) at runtime. Some sort of dominator
|
|
// tree approach could be better, but doing a simple forward pass through a
|
|
// single basic block is correct too.
|
|
BestBasePointerAligns.clear();
|
|
|
|
for (Instruction &I : BB) {
|
|
Changed |= tryToImproveAlign(
|
|
DL, &I, [&](Value *PtrOp, Align OldAlign, Align PrefAlign) {
|
|
return std::max(InferFromKnownBits(I, PtrOp),
|
|
InferFromBasePointer(PtrOp, OldAlign));
|
|
});
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses InferAlignmentPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
inferAlignment(F, AC, DT);
|
|
// Changes to alignment shouldn't invalidated analyses.
|
|
return PreservedAnalyses::all();
|
|
}
|