llvm-project/llvm/lib/Transforms/Scalar/InferAlignment.cpp
Drew Kersnar 90e8c8e718
[InferAlignment] Propagate alignment between loads/stores of the same base pointer (#145733)
We can derive and upgrade alignment for loads/stores using other
well-aligned loads/stores. This optimization does a single forward pass through
each basic block and uses loads/stores (the alignment and the offset) to
derive the best possible alignment for a base pointer, caching the
result. If it encounters another load/store based on that pointer, it
tries to upgrade the alignment. The optimization must be a forward pass within a basic
block because control flow and exception throwing can impact alignment guarantees.

---------

Co-authored-by: Nikita Popov <github@npopov.com>
2025-08-08 12:05:29 -05:00

125 lines
4.7 KiB
C++

//===- InferAlignment.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Infer alignment for load, stores and other memory operations based on
// trailing zero known bits information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/InferAlignment.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
static bool tryToImproveAlign(
const DataLayout &DL, Instruction *I,
function_ref<Align(Value *PtrOp, Align OldAlign, Align PrefAlign)> Fn) {
if (auto *PtrOp = getLoadStorePointerOperand(I)) {
Align OldAlign = getLoadStoreAlignment(I);
Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(I));
Align NewAlign = Fn(PtrOp, OldAlign, PrefAlign);
if (NewAlign > OldAlign) {
setLoadStoreAlignment(I, NewAlign);
return true;
}
}
// TODO: Also handle memory intrinsics.
return false;
}
bool inferAlignment(Function &F, AssumptionCache &AC, DominatorTree &DT) {
const DataLayout &DL = F.getDataLayout();
bool Changed = false;
// Enforce preferred type alignment if possible. We do this as a separate
// pass first, because it may improve the alignments we infer below.
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
Changed |= tryToImproveAlign(
DL, &I, [&](Value *PtrOp, Align OldAlign, Align PrefAlign) {
if (PrefAlign > OldAlign)
return std::max(OldAlign,
tryEnforceAlignment(PtrOp, PrefAlign, DL));
return OldAlign;
});
}
}
// Compute alignment from known bits.
auto InferFromKnownBits = [&](Instruction &I, Value *PtrOp) {
KnownBits Known = computeKnownBits(PtrOp, DL, &AC, &I, &DT);
unsigned TrailZ =
std::min(Known.countMinTrailingZeros(), +Value::MaxAlignmentExponent);
return Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
};
// Propagate alignment between loads and stores that originate from the
// same base pointer.
DenseMap<Value *, Align> BestBasePointerAligns;
auto InferFromBasePointer = [&](Value *PtrOp, Align LoadStoreAlign) {
APInt OffsetFromBase(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
PtrOp = PtrOp->stripAndAccumulateConstantOffsets(DL, OffsetFromBase, true);
// Derive the base pointer alignment from the load/store alignment
// and the offset from the base pointer.
Align BasePointerAlign =
commonAlignment(LoadStoreAlign, OffsetFromBase.getLimitedValue());
auto [It, Inserted] =
BestBasePointerAligns.try_emplace(PtrOp, BasePointerAlign);
if (!Inserted) {
// If the stored base pointer alignment is better than the
// base pointer alignment we derived, we may be able to use it
// to improve the load/store alignment. If not, store the
// improved base pointer alignment for future iterations.
if (It->second > BasePointerAlign) {
Align BetterLoadStoreAlign =
commonAlignment(It->second, OffsetFromBase.getLimitedValue());
return BetterLoadStoreAlign;
}
It->second = BasePointerAlign;
}
return LoadStoreAlign;
};
for (BasicBlock &BB : F) {
// We need to reset the map for each block because alignment information
// can only be propagated from instruction A to B if A dominates B.
// This is because control flow (and exception throwing) could be dependent
// on the address (and its alignment) at runtime. Some sort of dominator
// tree approach could be better, but doing a simple forward pass through a
// single basic block is correct too.
BestBasePointerAligns.clear();
for (Instruction &I : BB) {
Changed |= tryToImproveAlign(
DL, &I, [&](Value *PtrOp, Align OldAlign, Align PrefAlign) {
return std::max(InferFromKnownBits(I, PtrOp),
InferFromBasePointer(PtrOp, OldAlign));
});
}
}
return Changed;
}
PreservedAnalyses InferAlignmentPass::run(Function &F,
FunctionAnalysisManager &AM) {
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
inferAlignment(F, AC, DT);
// Changes to alignment shouldn't invalidated analyses.
return PreservedAnalyses::all();
}