Nikita Popov 4ab87ffd1e
[SCCP] Enable PredicateInfo for non-interprocedural SCCP (#153003)
SCCP can use PredicateInfo to constrain ranges based on assume and
branch conditions. Currently, this is only enabled during IPSCCP.

This enables it for SCCP as well, which runs after functions have
already been simplified, while IPSCCP runs pre-inline. To a large
degree, CVP already handles range-based optimizations, but SCCP is more
reliable for the cases it can handle. In particular, SCCP works reliably
inside loops, which is something that CVP struggles with due to LVI
cycles.

I have made various optimizations to make PredicateInfo more efficient,
but unfortunately this still has significant compile-time cost (around
0.1-0.2%).
2025-08-19 10:59:38 +02:00

141 lines
4.9 KiB
C++

//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements sparse conditional constant propagation and merging:
//
// Specifically, this:
// * Assumes values are constant unless proven otherwise
// * Assumes BasicBlocks are dead unless proven otherwise
// * Proves values to be constant, and replaces them with constants
// * Proves conditional branches to be unconditional
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SCCPSolver.h"
using namespace llvm;
#define DEBUG_TYPE "sccp"
STATISTIC(NumInstRemoved, "Number of instructions removed");
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
STATISTIC(NumInstReplaced,
"Number of instructions replaced with (simpler) instruction");
// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
// and return true if the function was modified.
static bool runSCCP(Function &F, const DataLayout &DL,
const TargetLibraryInfo *TLI, DominatorTree &DT,
AssumptionCache &AC) {
LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
SCCPSolver Solver(
DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; },
F.getContext());
Solver.addPredicateInfo(F, DT, AC);
// While we don't do any actual inter-procedural analysis, still track
// return values so we can infer attributes.
if (canTrackReturnsInterprocedurally(&F))
Solver.addTrackedFunction(&F);
// Mark the first block of the function as being executable.
Solver.markBlockExecutable(&F.front());
// Initialize arguments based on attributes.
for (Argument &AI : F.args())
Solver.trackValueOfArgument(&AI);
// Solve for constants.
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
Solver.solve();
LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
ResolvedUndefs = Solver.resolvedUndefsIn(F);
}
bool MadeChanges = false;
// If we decided that there are basic blocks that are dead in this function,
// delete their contents now. Note that we cannot actually delete the blocks,
// as we cannot modify the CFG of the function.
SmallPtrSet<Value *, 32> InsertedValues;
SmallVector<BasicBlock *, 8> BlocksToErase;
for (BasicBlock &BB : F) {
if (!Solver.isBlockExecutable(&BB)) {
LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
++NumDeadBlocks;
BlocksToErase.push_back(&BB);
MadeChanges = true;
continue;
}
MadeChanges |= Solver.simplifyInstsInBlock(BB, InsertedValues,
NumInstRemoved, NumInstReplaced);
}
// Remove unreachable blocks and non-feasible edges.
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
for (BasicBlock *DeadBB : BlocksToErase)
NumInstRemoved += changeToUnreachable(&*DeadBB->getFirstNonPHIIt(),
/*PreserveLCSSA=*/false, &DTU);
BasicBlock *NewUnreachableBB = nullptr;
for (BasicBlock &BB : F)
MadeChanges |= Solver.removeNonFeasibleEdges(&BB, DTU, NewUnreachableBB);
for (BasicBlock *DeadBB : BlocksToErase)
if (!DeadBB->hasAddressTaken())
DTU.deleteBB(DeadBB);
Solver.removeSSACopies(F);
Solver.inferReturnAttributes();
return MadeChanges;
}
PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
const DataLayout &DL = F.getDataLayout();
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
if (!runSCCP(F, DL, &TLI, DT, AC))
return PreservedAnalyses::all();
auto PA = PreservedAnalyses();
PA.preserve<DominatorTreeAnalysis>();
return PA;
}