llvm-project/llvm/lib/Transforms/Utils/UnifyLoopExits.cpp
Johannes Doerfert 992b451f08
[Utils][UnifyLoopExits] Avoid costly updates if nothing changed (#129179)
If the ControlFlowHub did not perform any change to the control flow,
there is no need to repair SSA, update the loop structure, and verify a
bunch of things. This is not completely NFC though, repairSSA introduced
PHI nodes with a single entry that are now missing.

My code went from 400+ seconds to 1 second, since no loop required the
exits to be unified, but there were many "complex" loops.
2025-02-28 10:14:31 -08:00

243 lines
9.1 KiB
C++

//===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// For each natural loop with multiple exit blocks, this pass creates a new
// block N such that all exiting blocks now branch to N, and then control flow
// is redistributed to all the original exit blocks.
//
// Limitation: This assumes that all terminators in the CFG are direct branches
// (the "br" instruction). The presence of any other control flow
// such as indirectbr, switch or callbr will cause an assert.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/UnifyLoopExits.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ControlFlowUtils.h"
#define DEBUG_TYPE "unify-loop-exits"
using namespace llvm;
static cl::opt<unsigned> MaxBooleansInControlFlowHub(
"max-booleans-in-control-flow-hub", cl::init(32), cl::Hidden,
cl::desc("Set the maximum number of outgoing blocks for using a boolean "
"value to record the exiting block in the ControlFlowHub."));
namespace {
struct UnifyLoopExitsLegacyPass : public FunctionPass {
static char ID;
UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
bool runOnFunction(Function &F) override;
};
} // namespace
char UnifyLoopExitsLegacyPass::ID = 0;
FunctionPass *llvm::createUnifyLoopExitsPass() {
return new UnifyLoopExitsLegacyPass();
}
INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
"Fixup each natural loop to have a single exit block",
false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
"Fixup each natural loop to have a single exit block",
false /* Only looks at CFG */, false /* Analysis Pass */)
// The current transform introduces new control flow paths which may break the
// SSA requirement that every def must dominate all its uses. For example,
// consider a value D defined inside the loop that is used by some instruction
// U outside the loop. It follows that D dominates U, since the original
// program has valid SSA form. After merging the exits, all paths from D to U
// now flow through the unified exit block. In addition, there may be other
// paths that do not pass through D, but now reach the unified exit
// block. Thus, D no longer dominates U.
//
// Restore the dominance by creating a phi for each such D at the new unified
// loop exit. But when doing this, ignore any uses U that are in the new unified
// loop exit, since those were introduced specially when the block was created.
//
// The use of SSAUpdater seems like overkill for this operation. The location
// for creating the new PHI is well-known, and also the set of incoming blocks
// to the new PHI.
static void restoreSSA(const DominatorTree &DT, const Loop *L,
SmallVectorImpl<BasicBlock *> &Incoming,
BasicBlock *LoopExitBlock) {
using InstVector = SmallVector<Instruction *, 8>;
using IIMap = MapVector<Instruction *, InstVector>;
IIMap ExternalUsers;
for (auto *BB : L->blocks()) {
for (auto &I : *BB) {
for (auto &U : I.uses()) {
auto UserInst = cast<Instruction>(U.getUser());
auto UserBlock = UserInst->getParent();
if (UserBlock == LoopExitBlock)
continue;
if (L->contains(UserBlock))
continue;
LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
<< BB->getName() << ")"
<< ": " << UserInst->getName() << "("
<< UserBlock->getName() << ")"
<< "\n");
ExternalUsers[&I].push_back(UserInst);
}
}
}
for (const auto &II : ExternalUsers) {
// For each Def used outside the loop, create NewPhi in
// LoopExitBlock. NewPhi receives Def only along exiting blocks that
// dominate it, while the remaining values are undefined since those paths
// didn't exist in the original CFG.
auto Def = II.first;
LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
auto NewPhi =
PHINode::Create(Def->getType(), Incoming.size(),
Def->getName() + ".moved", LoopExitBlock->begin());
for (auto *In : Incoming) {
LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
if (Def->getParent() == In || DT.dominates(Def, In)) {
LLVM_DEBUG(dbgs() << "dominated\n");
NewPhi->addIncoming(Def, In);
} else {
LLVM_DEBUG(dbgs() << "not dominated\n");
NewPhi->addIncoming(PoisonValue::get(Def->getType()), In);
}
}
LLVM_DEBUG(dbgs() << "external users:");
for (auto *U : II.second) {
LLVM_DEBUG(dbgs() << " " << U->getName());
U->replaceUsesOfWith(Def, NewPhi);
}
LLVM_DEBUG(dbgs() << "\n");
}
}
static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
// To unify the loop exits, we need a list of the exiting blocks as
// well as exit blocks. The functions for locating these lists both
// traverse the entire loop body. It is more efficient to first
// locate the exiting blocks and then examine their successors to
// locate the exit blocks.
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
// Redirect exiting edges through a control flow hub.
ControlFlowHub CHub;
for (auto *BB : ExitingBlocks) {
auto *Branch = cast<BranchInst>(BB->getTerminator());
BasicBlock *Succ0 = Branch->getSuccessor(0);
Succ0 = L->contains(Succ0) ? nullptr : Succ0;
BasicBlock *Succ1 =
Branch->isUnconditional() ? nullptr : Branch->getSuccessor(1);
Succ1 = L->contains(Succ1) ? nullptr : Succ1;
CHub.addBranch(BB, Succ0, Succ1);
LLVM_DEBUG(dbgs() << "Added exiting branch: " << BB->getName() << " -> {"
<< (Succ0 ? Succ0->getName() : "<none>") << ", "
<< (Succ1 ? Succ1->getName() : "<none>") << "}\n");
}
SmallVector<BasicBlock *, 8> GuardBlocks;
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
BasicBlock *LoopExitBlock;
bool ChangedCFG;
std::tie(LoopExitBlock, ChangedCFG) = CHub.finalize(
&DTU, GuardBlocks, "loop.exit", MaxBooleansInControlFlowHub.getValue());
if (!ChangedCFG)
return false;
restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
#if defined(EXPENSIVE_CHECKS)
assert(DT.verify(DominatorTree::VerificationLevel::Full));
#else
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif // EXPENSIVE_CHECKS
L->verifyLoop();
// The guard blocks were created outside the loop, so they need to become
// members of the parent loop.
if (auto ParentLoop = L->getParentLoop()) {
for (auto *G : GuardBlocks) {
ParentLoop->addBasicBlockToLoop(G, LI);
}
ParentLoop->verifyLoop();
}
#if defined(EXPENSIVE_CHECKS)
LI.verify(DT);
#endif // EXPENSIVE_CHECKS
return true;
}
static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
bool Changed = false;
auto Loops = LI.getLoopsInPreorder();
for (auto *L : Loops) {
LLVM_DEBUG(dbgs() << "Processing loop:\n"; L->print(dbgs()));
Changed |= unifyLoopExits(DT, LI, L);
}
return Changed;
}
bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
<< "\n");
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator.");
return runImpl(LI, DT);
}
namespace llvm {
PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
FunctionAnalysisManager &AM) {
LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
<< "\n");
auto &LI = AM.getResult<LoopAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!runImpl(LI, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<LoopAnalysis>();
PA.preserve<DominatorTreeAnalysis>();
return PA;
}
} // namespace llvm