
This patch-set aims to simplify the existing RVV segment load/store intrinsics to use a type that represents a tuple of vectors instead. To achieve this, first we need to relax the current limitation for an aggregate type to be a target of load/store/alloca when the aggregate type contains homogeneous scalable vector types. Then to adjust the prolog of an LLVM function during lowering to clang. Finally we re-define the RVV segment load/store intrinsics to use the tuple types. The pull request under the RVV intrinsic specification is riscv-non-isa/rvv-intrinsic-doc#198 --- This is the 1st patch of the patch-set. This patch is originated from D98169. This patch allows aggregate type (StructType) that contains homogeneous scalable vector types to be a target of load/store/alloca. The RFC of this patch was posted in LLVM Discourse. https://discourse.llvm.org/t/rfc-ir-permit-load-store-alloca-for-struct-of-the-same-scalable-vector-type/69527 The main changes in this patch are: Extend `StructLayout::StructSize` from `uint64_t` to `TypeSize` to accommodate an expression of scalable size. Allow `StructType:isSized` to also return true for homogeneous scalable vector types. Let `Type::isScalableTy` return true when `Type` is `StructType` and contains scalable vectors Extra description is added in the LLVM Language Reference Manual on the relaxation of this patch. Authored-by: Hsiangkai Wang <kai.wang@sifive.com> Co-Authored-by: eop Chen <eop.chen@sifive.com> Reviewed By: craig.topper, nikic Differential Revision: https://reviews.llvm.org/D146872
10 lines
312 B
LLVM
10 lines
312 B
LLVM
; RUN: not opt -S -passes=verify < %s 2>&1 | FileCheck %s
|
|
|
|
%struct.test = type { <vscale x 1 x double>, <vscale x 1 x double> }
|
|
|
|
define void @gep(ptr %a) {
|
|
; CHECK: error: getelementptr cannot target structure that contains scalable vector type
|
|
%a.addr = getelementptr %struct.test, ptr %a, i32 0
|
|
ret void
|
|
}
|