
Introduce a new extension for simple print-debugging of the transform dialect scripts. The initial version of this extension consists of two ops that are printing the payload objects associated with transform dialect values. Similar ops were already available in the test extenion and several downstream projects, and were extensively used for testing.
49 lines
2.2 KiB
MLIR
49 lines
2.2 KiB
MLIR
// RUN: mlir-opt %s --transform-interpreter --verify-diagnostics --split-input-file
|
|
|
|
module attributes { transform.with_named_sequence } {
|
|
transform.named_sequence @match_sparse_structured(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op {
|
|
%0 = transform.match.structured %arg0 : (!transform.any_op) -> !transform.any_op {
|
|
^bb0(%struct: !transform.any_op):
|
|
%sp_kernel = transform.sparse_tensor.match.sparse_inout %struct
|
|
: (!transform.any_op) -> !transform.any_op
|
|
transform.match.structured.yield %sp_kernel : !transform.any_op
|
|
}
|
|
transform.yield %0 : !transform.any_op
|
|
}
|
|
|
|
transform.named_sequence @print_sparse_structured(%arg0: !transform.any_op {transform.readonly}) {
|
|
transform.debug.emit_remark_at %arg0, "sparse_kernel" : !transform.any_op
|
|
transform.yield
|
|
}
|
|
|
|
// Entry point. Match any structured sparse operation and emit at remark.
|
|
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) {
|
|
transform.foreach_match in %arg0
|
|
@match_sparse_structured -> @print_sparse_structured
|
|
: (!transform.any_op) -> !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|
|
|
|
#CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}>
|
|
|
|
func.func @payload(%lhs: tensor<10x20xf16>,
|
|
%sp_lhs: tensor<10x20xf16, #CSR>,
|
|
%rhs: tensor<20x15xf32>) -> tensor<10x15xf64>{
|
|
%cst = arith.constant 0.0 : f64
|
|
%empty = tensor.empty() : tensor<10x15xf64>
|
|
%fill = linalg.fill ins(%cst : f64) outs(%empty : tensor<10x15xf64>) -> tensor<10x15xf64>
|
|
|
|
%result = linalg.matmul ins(%lhs, %rhs: tensor<10x20xf16>, tensor<20x15xf32>)
|
|
outs(%fill: tensor<10x15xf64>) -> tensor<10x15xf64>
|
|
// expected-remark @below {{sparse_kernel}}
|
|
%sp_in = linalg.matmul ins(%sp_lhs, %rhs: tensor<10x20xf16, #CSR>, tensor<20x15xf32>)
|
|
outs(%fill: tensor<10x15xf64>) -> tensor<10x15xf64>
|
|
|
|
%sp_empty = tensor.empty() : tensor<10x15xf64, #CSR>
|
|
// expected-remark @below {{sparse_kernel}}
|
|
%sp_out = linalg.matmul ins(%lhs, %rhs: tensor<10x20xf16>, tensor<20x15xf32>)
|
|
outs(%sp_empty: tensor<10x15xf64, #CSR>) -> tensor<10x15xf64, #CSR>
|
|
return %result : tensor<10x15xf64>
|
|
}
|