Oleksandr "Alex" Zinenko 2798b72ae7
[mlir] introduce debug transform dialect extension (#77595)
Introduce a new extension for simple print-debugging of the transform
dialect scripts. The initial version of this extension consists of two
ops that are printing the payload objects associated with transform
dialect values. Similar ops were already available in the test extenion
and several downstream projects, and were extensively used for testing.
2024-01-12 13:24:02 +01:00

49 lines
2.2 KiB
MLIR

// RUN: mlir-opt %s --transform-interpreter --verify-diagnostics --split-input-file
module attributes { transform.with_named_sequence } {
transform.named_sequence @match_sparse_structured(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op {
%0 = transform.match.structured %arg0 : (!transform.any_op) -> !transform.any_op {
^bb0(%struct: !transform.any_op):
%sp_kernel = transform.sparse_tensor.match.sparse_inout %struct
: (!transform.any_op) -> !transform.any_op
transform.match.structured.yield %sp_kernel : !transform.any_op
}
transform.yield %0 : !transform.any_op
}
transform.named_sequence @print_sparse_structured(%arg0: !transform.any_op {transform.readonly}) {
transform.debug.emit_remark_at %arg0, "sparse_kernel" : !transform.any_op
transform.yield
}
// Entry point. Match any structured sparse operation and emit at remark.
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) {
transform.foreach_match in %arg0
@match_sparse_structured -> @print_sparse_structured
: (!transform.any_op) -> !transform.any_op
transform.yield
}
}
#CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}>
func.func @payload(%lhs: tensor<10x20xf16>,
%sp_lhs: tensor<10x20xf16, #CSR>,
%rhs: tensor<20x15xf32>) -> tensor<10x15xf64>{
%cst = arith.constant 0.0 : f64
%empty = tensor.empty() : tensor<10x15xf64>
%fill = linalg.fill ins(%cst : f64) outs(%empty : tensor<10x15xf64>) -> tensor<10x15xf64>
%result = linalg.matmul ins(%lhs, %rhs: tensor<10x20xf16>, tensor<20x15xf32>)
outs(%fill: tensor<10x15xf64>) -> tensor<10x15xf64>
// expected-remark @below {{sparse_kernel}}
%sp_in = linalg.matmul ins(%sp_lhs, %rhs: tensor<10x20xf16, #CSR>, tensor<20x15xf32>)
outs(%fill: tensor<10x15xf64>) -> tensor<10x15xf64>
%sp_empty = tensor.empty() : tensor<10x15xf64, #CSR>
// expected-remark @below {{sparse_kernel}}
%sp_out = linalg.matmul ins(%lhs, %rhs: tensor<10x20xf16>, tensor<20x15xf32>)
outs(%sp_empty: tensor<10x15xf64, #CSR>) -> tensor<10x15xf64, #CSR>
return %result : tensor<10x15xf64>
}