llvm-project/mlir/unittests/IR/MemrefLayoutTest.cpp
Momchil Velikov 4af96a9d83
[MLIR] Determine contiguousness of memrefs with dynamic dimensions (#142421)
This patch enhances `MemRefType::areTrailingDimsContiguous` to also
handle memrefs with dynamic dimensions.

The implementation itself is based on a new member function
`MemRefType::getMaxCollapsableTrailingDims` that return the maximum
number of trailing dimensions that can be collapsed - trivially all
dimensions for memrefs with identity layout, or by examining the memref
strides stopping at discontiguous or statically unknown strides.
2025-06-23 09:28:33 +01:00

112 lines
3.7 KiB
C++

//===- LayoutTest.cpp - unit tests related to memref layout ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "gtest/gtest.h"
using namespace mlir;
using namespace mlir::memref;
//
// Test the correctness of `memref::getNumContiguousTrailingDims`
//
TEST(MemRefLayout, numContigDim) {
MLIRContext ctx;
OpBuilder b(&ctx);
const int64_t _ = ShapedType::kDynamic;
const FloatType f32 = b.getF32Type();
auto strided = [&ctx](ArrayRef<int64_t> s) {
return StridedLayoutAttr::get(&ctx, 0, s);
};
// Special case for identity maps and no explicit `strided` attribute - the
// memref is entirely contiguous even if the strides cannot be determined
// statically.
// memref<?x?x?xf32>
auto m0 = MemRefType::get({_, _, _}, f32);
EXPECT_EQ(m0.getNumContiguousTrailingDims(), 3);
// Conservatively assume memref is sparse everywhere if cannot get the
// strides.
// memref<2x2x2xf32, (i,j,k)->(i,k,j)>
auto m1 = MemRefType::get(
{2, 2, 2}, f32,
AffineMap::getPermutationMap(ArrayRef<int64_t>{0, 2, 1}, &ctx));
EXPECT_EQ(m1.getNumContiguousTrailingDims(), 0);
// A base cases of a fixed memref with the usual strides.
// memref<2x2x2xf32, strided<[4, 2, 1]>>
auto m3 = MemRefType::get({2, 2, 2}, f32, strided({4, 2, 1}));
EXPECT_EQ(m3.getNumContiguousTrailingDims(), 3);
// A fixed memref with a discontinuity in the rightmost dimension.
// memref<2x2x2xf32, strided<[8, 4, 2]>>
auto m4 = MemRefType::get({2, 2, 2}, f32, strided({8, 4, 2}));
EXPECT_EQ(m4.getNumContiguousTrailingDims(), 0);
// A fixed memref with a discontinuity in the "middle".
// memref<2x2x2xf32, strided<[8, 2, 1]>>
auto m5 = MemRefType::get({2, 2, 2}, f32, strided({8, 2, 1}));
EXPECT_EQ(m5.getNumContiguousTrailingDims(), 2);
// A dynamic memref where the dynamic dimension breaks continuity.
// memref<2x?x2xf32, strided<[4, 2, 1]>>
auto m6 = MemRefType::get({2, _, 2}, f32, strided({4, 2, 1}));
EXPECT_EQ(m6.getNumContiguousTrailingDims(), 2);
// A edge case of a dynamic memref where the dynamic dimension is the first
// one.
// memref<?x2x2xf32, strided<[4, 2, 1]>>
auto m7 = MemRefType::get({2, _, 2}, f32, strided({4, 2, 1}));
EXPECT_EQ(m7.getNumContiguousTrailingDims(), 2);
// A memref with a unit dimension. Unit dimensions do not affect continuity,
// even if the corresponding stride is dynamic.
// memref<2x1x2xf32, strided<[2,?,1]>>
auto m8 = MemRefType::get({2, 1, 2}, f32, strided({2, _, 1}));
EXPECT_EQ(m8.getNumContiguousTrailingDims(), 3);
}
//
// Test the member function `memref::areTrailingDimsContiguous`
//
TEST(MemRefLayout, contigTrailingDim) {
MLIRContext ctx;
OpBuilder b(&ctx);
const int64_t _ = ShapedType::kDynamic;
const FloatType f32 = b.getF32Type();
auto strided = [&ctx](ArrayRef<int64_t> s) {
return StridedLayoutAttr::get(&ctx, 0, s);
};
// A not-entirely-continuous, not-entirely-discontinuous memref.
// ensure `areTrailingDimsContiguous` returns `true` for the value
// returned by `getNumContiguousTrailingDims` and `false` for the next bigger
// number.
// memref<2x?x2xf32, strided<[?,2,1]>>
auto m = MemRefType::get({2, _, 2}, f32, strided({_, 2, 1}));
int64_t n = m.getNumContiguousTrailingDims();
EXPECT_TRUE(m.areTrailingDimsContiguous(n));
ASSERT_TRUE(n + 1 <= m.getRank());
EXPECT_FALSE(m.areTrailingDimsContiguous(n + 1));
}