
This is a major change on how we represent nested name qualifications in the AST. * The nested name specifier itself and how it's stored is changed. The prefixes for types are handled within the type hierarchy, which makes canonicalization for them super cheap, no memory allocation required. Also translating a type into nested name specifier form becomes a no-op. An identifier is stored as a DependentNameType. The nested name specifier gains a lightweight handle class, to be used instead of passing around pointers, which is similar to what is implemented for TemplateName. There is still one free bit available, and this handle can be used within a PointerUnion and PointerIntPair, which should keep bit-packing aficionados happy. * The ElaboratedType node is removed, all type nodes in which it could previously apply to can now store the elaborated keyword and name qualifier, tail allocating when present. * TagTypes can now point to the exact declaration found when producing these, as opposed to the previous situation of there only existing one TagType per entity. This increases the amount of type sugar retained, and can have several applications, for example in tracking module ownership, and other tools which care about source file origins, such as IWYU. These TagTypes are lazily allocated, in order to limit the increase in AST size. This patch offers a great performance benefit. It greatly improves compilation time for [stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for `test_on2.cpp` in that project, which is the slowest compiling test, this patch improves `-c` compilation time by about 7.2%, with the `-fsyntax-only` improvement being at ~12%. This has great results on compile-time-tracker as well:  This patch also further enables other optimziations in the future, and will reduce the performance impact of template specialization resugaring when that lands. It has some other miscelaneous drive-by fixes. About the review: Yes the patch is huge, sorry about that. Part of the reason is that I started by the nested name specifier part, before the ElaboratedType part, but that had a huge performance downside, as ElaboratedType is a big performance hog. I didn't have the steam to go back and change the patch after the fact. There is also a lot of internal API changes, and it made sense to remove ElaboratedType in one go, versus removing it from one type at a time, as that would present much more churn to the users. Also, the nested name specifier having a different API avoids missing changes related to how prefixes work now, which could make existing code compile but not work. How to review: The important changes are all in `clang/include/clang/AST` and `clang/lib/AST`, with also important changes in `clang/lib/Sema/TreeTransform.h`. The rest and bulk of the changes are mostly consequences of the changes in API. PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just for easier to rebasing. I plan to rename it back after this lands. Fixes #136624 Fixes https://github.com/llvm/llvm-project/issues/43179 Fixes https://github.com/llvm/llvm-project/issues/68670 Fixes https://github.com/llvm/llvm-project/issues/92757
1031 lines
37 KiB
C++
1031 lines
37 KiB
C++
//===--- AST.cpp - Utility AST functions -----------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AST.h"
|
|
|
|
#include "SourceCode.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTTypeTraits.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/TemplateBase.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Index/USRGeneration.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <iterator>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace clang {
|
|
namespace clangd {
|
|
|
|
namespace {
|
|
std::optional<llvm::ArrayRef<TemplateArgumentLoc>>
|
|
getTemplateSpecializationArgLocs(const NamedDecl &ND) {
|
|
if (auto *Func = llvm::dyn_cast<FunctionDecl>(&ND)) {
|
|
if (const ASTTemplateArgumentListInfo *Args =
|
|
Func->getTemplateSpecializationArgsAsWritten())
|
|
return Args->arguments();
|
|
} else if (auto *Cls = llvm::dyn_cast<ClassTemplateSpecializationDecl>(&ND)) {
|
|
if (auto *Args = Cls->getTemplateArgsAsWritten())
|
|
return Args->arguments();
|
|
} else if (auto *Var = llvm::dyn_cast<VarTemplateSpecializationDecl>(&ND)) {
|
|
if (auto *Args = Var->getTemplateArgsAsWritten())
|
|
return Args->arguments();
|
|
}
|
|
// We return std::nullopt for ClassTemplateSpecializationDecls because it does
|
|
// not contain TemplateArgumentLoc information.
|
|
return std::nullopt;
|
|
}
|
|
|
|
template <class T>
|
|
bool isTemplateSpecializationKind(const NamedDecl *D,
|
|
TemplateSpecializationKind Kind) {
|
|
if (const auto *TD = dyn_cast<T>(D))
|
|
return TD->getTemplateSpecializationKind() == Kind;
|
|
return false;
|
|
}
|
|
|
|
bool isTemplateSpecializationKind(const NamedDecl *D,
|
|
TemplateSpecializationKind Kind) {
|
|
return isTemplateSpecializationKind<FunctionDecl>(D, Kind) ||
|
|
isTemplateSpecializationKind<CXXRecordDecl>(D, Kind) ||
|
|
isTemplateSpecializationKind<VarDecl>(D, Kind);
|
|
}
|
|
|
|
// Store all UsingDirectiveDecls in parent contexts of DestContext, that were
|
|
// introduced before InsertionPoint.
|
|
llvm::DenseSet<const NamespaceDecl *>
|
|
getUsingNamespaceDirectives(const DeclContext *DestContext,
|
|
SourceLocation Until) {
|
|
const auto &SM = DestContext->getParentASTContext().getSourceManager();
|
|
llvm::DenseSet<const NamespaceDecl *> VisibleNamespaceDecls;
|
|
for (const auto *DC = DestContext; DC; DC = DC->getLookupParent()) {
|
|
for (const auto *D : DC->decls()) {
|
|
if (!SM.isWrittenInSameFile(D->getLocation(), Until) ||
|
|
!SM.isBeforeInTranslationUnit(D->getLocation(), Until))
|
|
continue;
|
|
if (auto *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
|
|
VisibleNamespaceDecls.insert(
|
|
UDD->getNominatedNamespace()->getCanonicalDecl());
|
|
}
|
|
}
|
|
return VisibleNamespaceDecls;
|
|
}
|
|
|
|
// Goes over all parents of SourceContext until we find a common ancestor for
|
|
// DestContext and SourceContext. Any qualifier including and above common
|
|
// ancestor is redundant, therefore we stop at lowest common ancestor.
|
|
// In addition to that stops early whenever IsVisible returns true. This can be
|
|
// used to implement support for "using namespace" decls.
|
|
std::string getQualification(ASTContext &Context,
|
|
const DeclContext *DestContext,
|
|
const DeclContext *SourceContext,
|
|
llvm::function_ref<bool(const Decl *)> IsVisible) {
|
|
std::vector<const Decl *> Parents;
|
|
[[maybe_unused]] bool ReachedNS = false;
|
|
for (const DeclContext *CurContext = SourceContext; CurContext;
|
|
CurContext = CurContext->getLookupParent()) {
|
|
// Stop once we reach a common ancestor.
|
|
if (CurContext->Encloses(DestContext))
|
|
break;
|
|
|
|
const Decl *CurD;
|
|
if (auto *TD = llvm::dyn_cast<TagDecl>(CurContext)) {
|
|
// There can't be any more tag parents after hitting a namespace.
|
|
assert(!ReachedNS);
|
|
CurD = TD;
|
|
} else if (auto *NSD = llvm::dyn_cast<NamespaceDecl>(CurContext)) {
|
|
ReachedNS = true;
|
|
// Anonymous and inline namespace names are not spelled while qualifying
|
|
// a name, so skip those.
|
|
if (NSD->isAnonymousNamespace() || NSD->isInlineNamespace())
|
|
continue;
|
|
CurD = NSD;
|
|
} else {
|
|
// Other types of contexts cannot be spelled in code, just skip over
|
|
// them.
|
|
continue;
|
|
}
|
|
// Stop if this namespace is already visible at DestContext.
|
|
if (IsVisible(CurD))
|
|
break;
|
|
|
|
Parents.push_back(CurD);
|
|
}
|
|
|
|
// Go over the declarations in reverse order, since we stored inner-most
|
|
// parent first.
|
|
NestedNameSpecifier Qualifier = std::nullopt;
|
|
bool IsFirst = true;
|
|
for (const auto *CurD : llvm::reverse(Parents)) {
|
|
if (auto *TD = llvm::dyn_cast<TagDecl>(CurD)) {
|
|
QualType T;
|
|
if (const auto *RD = dyn_cast<CXXRecordDecl>(TD);
|
|
ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) {
|
|
ArrayRef<TemplateArgument> Args;
|
|
if (const auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD))
|
|
Args = SD->getTemplateArgs().asArray();
|
|
else
|
|
Args = CTD->getTemplateParameters()->getInjectedTemplateArgs(Context);
|
|
T = Context.getTemplateSpecializationType(
|
|
ElaboratedTypeKeyword::None,
|
|
Context.getQualifiedTemplateName(
|
|
Qualifier, /*TemplateKeyword=*/!IsFirst, TemplateName(CTD)),
|
|
Args, /*CanonicalArgs=*/{}, Context.getCanonicalTagType(RD));
|
|
} else {
|
|
T = Context.getTagType(ElaboratedTypeKeyword::None, Qualifier, TD,
|
|
/*OwnsTag=*/false);
|
|
}
|
|
Qualifier = NestedNameSpecifier(T.getTypePtr());
|
|
} else {
|
|
Qualifier =
|
|
NestedNameSpecifier(Context, cast<NamespaceDecl>(CurD), Qualifier);
|
|
}
|
|
IsFirst = false;
|
|
}
|
|
if (!Qualifier)
|
|
return "";
|
|
|
|
std::string Result;
|
|
llvm::raw_string_ostream OS(Result);
|
|
Qualifier.print(OS, Context.getPrintingPolicy());
|
|
return OS.str();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool isImplicitTemplateInstantiation(const NamedDecl *D) {
|
|
return isTemplateSpecializationKind(D, TSK_ImplicitInstantiation);
|
|
}
|
|
|
|
bool isExplicitTemplateSpecialization(const NamedDecl *D) {
|
|
return isTemplateSpecializationKind(D, TSK_ExplicitSpecialization);
|
|
}
|
|
|
|
bool isImplementationDetail(const Decl *D) {
|
|
return !isSpelledInSource(D->getLocation(),
|
|
D->getASTContext().getSourceManager());
|
|
}
|
|
|
|
SourceLocation nameLocation(const clang::Decl &D, const SourceManager &SM) {
|
|
auto L = D.getLocation();
|
|
// For `- (void)foo` we want `foo` not the `-`.
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(&D))
|
|
L = MD->getSelectorStartLoc();
|
|
if (isSpelledInSource(L, SM))
|
|
return SM.getSpellingLoc(L);
|
|
return SM.getExpansionLoc(L);
|
|
}
|
|
|
|
std::string printQualifiedName(const NamedDecl &ND) {
|
|
std::string QName;
|
|
llvm::raw_string_ostream OS(QName);
|
|
PrintingPolicy Policy(ND.getASTContext().getLangOpts());
|
|
// Note that inline namespaces are treated as transparent scopes. This
|
|
// reflects the way they're most commonly used for lookup. Ideally we'd
|
|
// include them, but at query time it's hard to find all the inline
|
|
// namespaces to query: the preamble doesn't have a dedicated list.
|
|
Policy.SuppressUnwrittenScope = true;
|
|
Policy.SuppressScope = true;
|
|
// (unnamed struct), not (unnamed struct at /path/to/foo.cc:42:1).
|
|
// In clangd, context is usually available and paths are mostly noise.
|
|
Policy.AnonymousTagLocations = false;
|
|
ND.printQualifiedName(OS, Policy);
|
|
assert(!StringRef(QName).starts_with("::"));
|
|
return QName;
|
|
}
|
|
|
|
static bool isAnonymous(const DeclarationName &N) {
|
|
return N.isIdentifier() && !N.getAsIdentifierInfo();
|
|
}
|
|
|
|
NestedNameSpecifierLoc getQualifierLoc(const NamedDecl &ND) {
|
|
if (auto *V = llvm::dyn_cast<DeclaratorDecl>(&ND))
|
|
return V->getQualifierLoc();
|
|
if (auto *T = llvm::dyn_cast<TagDecl>(&ND))
|
|
return T->getQualifierLoc();
|
|
return NestedNameSpecifierLoc();
|
|
}
|
|
|
|
std::string printUsingNamespaceName(const ASTContext &Ctx,
|
|
const UsingDirectiveDecl &D) {
|
|
PrintingPolicy PP(Ctx.getLangOpts());
|
|
std::string Name;
|
|
llvm::raw_string_ostream Out(Name);
|
|
|
|
D.getQualifier().print(Out, PP);
|
|
D.getNominatedNamespaceAsWritten()->printName(Out);
|
|
return Out.str();
|
|
}
|
|
|
|
std::string printName(const ASTContext &Ctx, const NamedDecl &ND) {
|
|
std::string Name;
|
|
llvm::raw_string_ostream Out(Name);
|
|
PrintingPolicy PP(Ctx.getLangOpts());
|
|
// We don't consider a class template's args part of the constructor name.
|
|
PP.SuppressTemplateArgsInCXXConstructors = true;
|
|
|
|
// Handle 'using namespace'. They all have the same name - <using-directive>.
|
|
if (auto *UD = llvm::dyn_cast<UsingDirectiveDecl>(&ND)) {
|
|
Out << "using namespace ";
|
|
UD->getQualifier().print(Out, PP);
|
|
UD->getNominatedNamespaceAsWritten()->printName(Out);
|
|
return Out.str();
|
|
}
|
|
|
|
if (isAnonymous(ND.getDeclName())) {
|
|
// Come up with a presentation for an anonymous entity.
|
|
if (isa<NamespaceDecl>(ND))
|
|
return "(anonymous namespace)";
|
|
if (auto *Cls = llvm::dyn_cast<RecordDecl>(&ND)) {
|
|
if (Cls->isLambda())
|
|
return "(lambda)";
|
|
return ("(anonymous " + Cls->getKindName() + ")").str();
|
|
}
|
|
if (isa<EnumDecl>(ND))
|
|
return "(anonymous enum)";
|
|
return "(anonymous)";
|
|
}
|
|
|
|
// Print nested name qualifier if it was written in the source code.
|
|
getQualifierLoc(ND).getNestedNameSpecifier().print(Out, PP);
|
|
// Print the name itself.
|
|
ND.getDeclName().print(Out, PP);
|
|
// Print template arguments.
|
|
Out << printTemplateSpecializationArgs(ND);
|
|
|
|
return Out.str();
|
|
}
|
|
|
|
std::string printTemplateSpecializationArgs(const NamedDecl &ND) {
|
|
std::string TemplateArgs;
|
|
llvm::raw_string_ostream OS(TemplateArgs);
|
|
PrintingPolicy Policy(ND.getASTContext().getLangOpts());
|
|
if (std::optional<llvm::ArrayRef<TemplateArgumentLoc>> Args =
|
|
getTemplateSpecializationArgLocs(ND)) {
|
|
printTemplateArgumentList(OS, *Args, Policy);
|
|
} else if (auto *Cls = llvm::dyn_cast<ClassTemplateSpecializationDecl>(&ND)) {
|
|
// FIXME: Fix cases when getTypeAsWritten returns null inside clang AST,
|
|
// e.g. friend decls. Currently we fallback to Template Arguments without
|
|
// location information.
|
|
printTemplateArgumentList(OS, Cls->getTemplateArgs().asArray(), Policy);
|
|
}
|
|
return TemplateArgs;
|
|
}
|
|
|
|
std::string printNamespaceScope(const DeclContext &DC) {
|
|
for (const auto *Ctx = &DC; Ctx != nullptr; Ctx = Ctx->getParent())
|
|
if (const auto *NS = dyn_cast<NamespaceDecl>(Ctx))
|
|
if (!NS->isAnonymousNamespace() && !NS->isInlineNamespace())
|
|
return printQualifiedName(*NS) + "::";
|
|
return "";
|
|
}
|
|
|
|
static llvm::StringRef
|
|
getNameOrErrForObjCInterface(const ObjCInterfaceDecl *ID) {
|
|
return ID ? ID->getName() : "<<error-type>>";
|
|
}
|
|
|
|
std::string printObjCMethod(const ObjCMethodDecl &Method) {
|
|
std::string Name;
|
|
llvm::raw_string_ostream OS(Name);
|
|
|
|
OS << (Method.isInstanceMethod() ? '-' : '+') << '[';
|
|
|
|
// Should always be true.
|
|
if (const ObjCContainerDecl *C =
|
|
dyn_cast<ObjCContainerDecl>(Method.getDeclContext()))
|
|
OS << printObjCContainer(*C);
|
|
|
|
Method.getSelector().print(OS << ' ');
|
|
if (Method.isVariadic())
|
|
OS << ", ...";
|
|
|
|
OS << ']';
|
|
return Name;
|
|
}
|
|
|
|
std::string printObjCContainer(const ObjCContainerDecl &C) {
|
|
if (const ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(&C)) {
|
|
std::string Name;
|
|
llvm::raw_string_ostream OS(Name);
|
|
const ObjCInterfaceDecl *Class = Category->getClassInterface();
|
|
OS << getNameOrErrForObjCInterface(Class) << '(' << Category->getName()
|
|
<< ')';
|
|
return Name;
|
|
}
|
|
if (const ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(&C)) {
|
|
std::string Name;
|
|
llvm::raw_string_ostream OS(Name);
|
|
const ObjCInterfaceDecl *Class = CID->getClassInterface();
|
|
OS << getNameOrErrForObjCInterface(Class) << '(' << CID->getName() << ')';
|
|
return Name;
|
|
}
|
|
return C.getNameAsString();
|
|
}
|
|
|
|
SymbolID getSymbolID(const Decl *D) {
|
|
llvm::SmallString<128> USR;
|
|
if (index::generateUSRForDecl(D, USR))
|
|
return {};
|
|
return SymbolID(USR);
|
|
}
|
|
|
|
SymbolID getSymbolID(const llvm::StringRef MacroName, const MacroInfo *MI,
|
|
const SourceManager &SM) {
|
|
if (MI == nullptr)
|
|
return {};
|
|
llvm::SmallString<128> USR;
|
|
if (index::generateUSRForMacro(MacroName, MI->getDefinitionLoc(), SM, USR))
|
|
return {};
|
|
return SymbolID(USR);
|
|
}
|
|
|
|
const ObjCImplDecl *getCorrespondingObjCImpl(const ObjCContainerDecl *D) {
|
|
if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
|
|
return ID->getImplementation();
|
|
if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
|
|
if (CD->IsClassExtension()) {
|
|
if (const auto *ID = CD->getClassInterface())
|
|
return ID->getImplementation();
|
|
return nullptr;
|
|
}
|
|
return CD->getImplementation();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Symbol::IncludeDirective
|
|
preferredIncludeDirective(llvm::StringRef FileName, const LangOptions &LangOpts,
|
|
ArrayRef<Inclusion> MainFileIncludes,
|
|
ArrayRef<const Decl *> TopLevelDecls) {
|
|
// Always prefer #include for non-ObjC code.
|
|
if (!LangOpts.ObjC)
|
|
return Symbol::IncludeDirective::Include;
|
|
// If this is not a header file and has ObjC set as the language, prefer
|
|
// #import.
|
|
if (!isHeaderFile(FileName, LangOpts))
|
|
return Symbol::IncludeDirective::Import;
|
|
|
|
// Headers lack proper compile flags most of the time, so we might treat a
|
|
// header as ObjC accidentally. Perform some extra checks to make sure this
|
|
// works.
|
|
|
|
// Any file with a #import, should keep #import-ing.
|
|
for (auto &Inc : MainFileIncludes)
|
|
if (Inc.Directive == tok::pp_import)
|
|
return Symbol::IncludeDirective::Import;
|
|
|
|
// Any file declaring an ObjC decl should also be #import-ing.
|
|
// No need to look over the references, as the file doesn't have any #imports,
|
|
// it must be declaring interesting ObjC-like decls.
|
|
for (const Decl *D : TopLevelDecls)
|
|
if (isa<ObjCContainerDecl, ObjCIvarDecl, ObjCMethodDecl, ObjCPropertyDecl>(
|
|
D))
|
|
return Symbol::IncludeDirective::Import;
|
|
|
|
return Symbol::IncludeDirective::Include;
|
|
}
|
|
|
|
std::string printType(const QualType QT, const DeclContext &CurContext,
|
|
const llvm::StringRef Placeholder, bool FullyQualify) {
|
|
std::string Result;
|
|
llvm::raw_string_ostream OS(Result);
|
|
PrintingPolicy PP(CurContext.getParentASTContext().getPrintingPolicy());
|
|
PP.SuppressTagKeyword = true;
|
|
PP.SuppressUnwrittenScope = true;
|
|
PP.FullyQualifiedName = FullyQualify;
|
|
|
|
class PrintCB : public PrintingCallbacks {
|
|
public:
|
|
PrintCB(const DeclContext *CurContext) : CurContext(CurContext) {}
|
|
virtual ~PrintCB() {}
|
|
bool isScopeVisible(const DeclContext *DC) const override {
|
|
return DC->Encloses(CurContext);
|
|
}
|
|
|
|
private:
|
|
const DeclContext *CurContext;
|
|
};
|
|
PrintCB PCB(&CurContext);
|
|
PP.Callbacks = &PCB;
|
|
|
|
QT.print(OS, PP, Placeholder);
|
|
return OS.str();
|
|
}
|
|
|
|
bool hasReservedName(const Decl &D) {
|
|
if (const auto *ND = llvm::dyn_cast<NamedDecl>(&D))
|
|
if (const auto *II = ND->getIdentifier())
|
|
return isReservedName(II->getName());
|
|
return false;
|
|
}
|
|
|
|
bool hasReservedScope(const DeclContext &DC) {
|
|
for (const DeclContext *D = &DC; D; D = D->getParent()) {
|
|
if (D->isTransparentContext() || D->isInlineNamespace())
|
|
continue;
|
|
if (const auto *ND = llvm::dyn_cast<NamedDecl>(D))
|
|
if (hasReservedName(*ND))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
QualType declaredType(const TypeDecl *D) {
|
|
ASTContext &Context = D->getASTContext();
|
|
if (const auto *CTSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>(D))
|
|
if (const auto *Args = CTSD->getTemplateArgsAsWritten())
|
|
return Context.getTemplateSpecializationType(
|
|
ElaboratedTypeKeyword::None,
|
|
TemplateName(CTSD->getSpecializedTemplate()), Args->arguments(),
|
|
/*CanonicalArgs=*/{});
|
|
return Context.getTypeDeclType(D);
|
|
}
|
|
|
|
namespace {
|
|
/// Computes the deduced type at a given location by visiting the relevant
|
|
/// nodes. We use this to display the actual type when hovering over an "auto"
|
|
/// keyword or "decltype()" expression.
|
|
/// FIXME: This could have been a lot simpler by visiting AutoTypeLocs but it
|
|
/// seems that the AutoTypeLocs that can be visited along with their AutoType do
|
|
/// not have the deduced type set. Instead, we have to go to the appropriate
|
|
/// DeclaratorDecl/FunctionDecl and work our back to the AutoType that does have
|
|
/// a deduced type set. The AST should be improved to simplify this scenario.
|
|
class DeducedTypeVisitor : public RecursiveASTVisitor<DeducedTypeVisitor> {
|
|
SourceLocation SearchedLocation;
|
|
|
|
public:
|
|
DeducedTypeVisitor(SourceLocation SearchedLocation)
|
|
: SearchedLocation(SearchedLocation) {}
|
|
|
|
// Handle auto initializers:
|
|
//- auto i = 1;
|
|
//- decltype(auto) i = 1;
|
|
//- auto& i = 1;
|
|
//- auto* i = &a;
|
|
bool VisitDeclaratorDecl(DeclaratorDecl *D) {
|
|
if (!D->getTypeSourceInfo() ||
|
|
!D->getTypeSourceInfo()->getTypeLoc().getContainedAutoTypeLoc() ||
|
|
D->getTypeSourceInfo()
|
|
->getTypeLoc()
|
|
.getContainedAutoTypeLoc()
|
|
.getNameLoc() != SearchedLocation)
|
|
return true;
|
|
|
|
if (auto *AT = D->getType()->getContainedAutoType()) {
|
|
DeducedType = AT->desugar();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Handle auto return types:
|
|
//- auto foo() {}
|
|
//- auto& foo() {}
|
|
//- auto foo() -> int {}
|
|
//- auto foo() -> decltype(1+1) {}
|
|
//- operator auto() const { return 10; }
|
|
bool VisitFunctionDecl(FunctionDecl *D) {
|
|
if (!D->getTypeSourceInfo())
|
|
return true;
|
|
// Loc of auto in return type (c++14).
|
|
auto CurLoc = D->getReturnTypeSourceRange().getBegin();
|
|
// Loc of "auto" in operator auto()
|
|
if (CurLoc.isInvalid() && isa<CXXConversionDecl>(D))
|
|
CurLoc = D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
|
|
// Loc of "auto" in function with trailing return type (c++11).
|
|
if (CurLoc.isInvalid())
|
|
CurLoc = D->getSourceRange().getBegin();
|
|
if (CurLoc != SearchedLocation)
|
|
return true;
|
|
|
|
const AutoType *AT = D->getReturnType()->getContainedAutoType();
|
|
if (AT && !AT->getDeducedType().isNull()) {
|
|
DeducedType = AT->getDeducedType();
|
|
} else if (auto *DT = dyn_cast<DecltypeType>(D->getReturnType())) {
|
|
// auto in a trailing return type just points to a DecltypeType and
|
|
// getContainedAutoType does not unwrap it.
|
|
if (!DT->getUnderlyingType().isNull())
|
|
DeducedType = DT->getUnderlyingType();
|
|
} else if (!D->getReturnType().isNull()) {
|
|
DeducedType = D->getReturnType();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Handle non-auto decltype, e.g.:
|
|
// - auto foo() -> decltype(expr) {}
|
|
// - decltype(expr);
|
|
bool VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
|
|
if (TL.getBeginLoc() != SearchedLocation)
|
|
return true;
|
|
|
|
// A DecltypeType's underlying type can be another DecltypeType! E.g.
|
|
// int I = 0;
|
|
// decltype(I) J = I;
|
|
// decltype(J) K = J;
|
|
const DecltypeType *DT = dyn_cast<DecltypeType>(TL.getTypePtr());
|
|
while (DT && !DT->getUnderlyingType().isNull()) {
|
|
DeducedType = DT->getUnderlyingType();
|
|
DT = dyn_cast<DecltypeType>(DeducedType.getTypePtr());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Handle functions/lambdas with `auto` typed parameters.
|
|
// We deduce the type if there's exactly one instantiation visible.
|
|
bool VisitParmVarDecl(ParmVarDecl *PVD) {
|
|
if (!PVD->getType()->isDependentType())
|
|
return true;
|
|
// 'auto' here does not name an AutoType, but an implicit template param.
|
|
TemplateTypeParmTypeLoc Auto =
|
|
getContainedAutoParamType(PVD->getTypeSourceInfo()->getTypeLoc());
|
|
if (Auto.isNull() || Auto.getNameLoc() != SearchedLocation)
|
|
return true;
|
|
|
|
// We expect the TTP to be attached to this function template.
|
|
// Find the template and the param index.
|
|
auto *Templated = llvm::dyn_cast<FunctionDecl>(PVD->getDeclContext());
|
|
if (!Templated)
|
|
return true;
|
|
auto *FTD = Templated->getDescribedFunctionTemplate();
|
|
if (!FTD)
|
|
return true;
|
|
int ParamIndex = paramIndex(*FTD, *Auto.getDecl());
|
|
if (ParamIndex < 0) {
|
|
assert(false && "auto TTP is not from enclosing function?");
|
|
return true;
|
|
}
|
|
|
|
// Now find the instantiation and the deduced template type arg.
|
|
auto *Instantiation =
|
|
llvm::dyn_cast_or_null<FunctionDecl>(getOnlyInstantiation(Templated));
|
|
if (!Instantiation)
|
|
return true;
|
|
const auto *Args = Instantiation->getTemplateSpecializationArgs();
|
|
if (Args->size() != FTD->getTemplateParameters()->size())
|
|
return true; // no weird variadic stuff
|
|
DeducedType = Args->get(ParamIndex).getAsType();
|
|
return true;
|
|
}
|
|
|
|
static int paramIndex(const TemplateDecl &TD, NamedDecl &Param) {
|
|
unsigned I = 0;
|
|
for (auto *ND : *TD.getTemplateParameters()) {
|
|
if (&Param == ND)
|
|
return I;
|
|
++I;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
QualType DeducedType;
|
|
};
|
|
} // namespace
|
|
|
|
std::optional<QualType> getDeducedType(ASTContext &ASTCtx, SourceLocation Loc) {
|
|
if (!Loc.isValid())
|
|
return {};
|
|
DeducedTypeVisitor V(Loc);
|
|
V.TraverseAST(ASTCtx);
|
|
if (V.DeducedType.isNull())
|
|
return std::nullopt;
|
|
return V.DeducedType;
|
|
}
|
|
|
|
TemplateTypeParmTypeLoc getContainedAutoParamType(TypeLoc TL) {
|
|
if (auto QTL = TL.getAs<QualifiedTypeLoc>())
|
|
return getContainedAutoParamType(QTL.getUnqualifiedLoc());
|
|
if (llvm::isa<PointerType, ReferenceType, ParenType>(TL.getTypePtr()))
|
|
return getContainedAutoParamType(TL.getNextTypeLoc());
|
|
if (auto FTL = TL.getAs<FunctionTypeLoc>())
|
|
return getContainedAutoParamType(FTL.getReturnLoc());
|
|
if (auto TTPTL = TL.getAs<TemplateTypeParmTypeLoc>()) {
|
|
if (TTPTL.getTypePtr()->getDecl()->isImplicit())
|
|
return TTPTL;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
template <typename TemplateDeclTy>
|
|
static NamedDecl *getOnlyInstantiationImpl(TemplateDeclTy *TD) {
|
|
NamedDecl *Only = nullptr;
|
|
for (auto *Spec : TD->specializations()) {
|
|
if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
|
|
continue;
|
|
if (Only != nullptr)
|
|
return nullptr;
|
|
Only = Spec;
|
|
}
|
|
return Only;
|
|
}
|
|
|
|
NamedDecl *getOnlyInstantiation(NamedDecl *TemplatedDecl) {
|
|
if (TemplateDecl *TD = TemplatedDecl->getDescribedTemplate()) {
|
|
if (auto *CTD = llvm::dyn_cast<ClassTemplateDecl>(TD))
|
|
return getOnlyInstantiationImpl(CTD);
|
|
if (auto *FTD = llvm::dyn_cast<FunctionTemplateDecl>(TD))
|
|
return getOnlyInstantiationImpl(FTD);
|
|
if (auto *VTD = llvm::dyn_cast<VarTemplateDecl>(TD))
|
|
return getOnlyInstantiationImpl(VTD);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<const Attr *> getAttributes(const DynTypedNode &N) {
|
|
std::vector<const Attr *> Result;
|
|
if (const auto *TL = N.get<TypeLoc>()) {
|
|
for (AttributedTypeLoc ATL = TL->getAs<AttributedTypeLoc>(); !ATL.isNull();
|
|
ATL = ATL.getModifiedLoc().getAs<AttributedTypeLoc>()) {
|
|
if (const Attr *A = ATL.getAttr())
|
|
Result.push_back(A);
|
|
assert(!ATL.getModifiedLoc().isNull());
|
|
}
|
|
}
|
|
if (const auto *S = N.get<AttributedStmt>()) {
|
|
for (; S != nullptr; S = dyn_cast<AttributedStmt>(S->getSubStmt()))
|
|
for (const Attr *A : S->getAttrs())
|
|
if (A)
|
|
Result.push_back(A);
|
|
}
|
|
if (const auto *D = N.get<Decl>()) {
|
|
for (const Attr *A : D->attrs())
|
|
if (A)
|
|
Result.push_back(A);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
std::string getQualification(ASTContext &Context,
|
|
const DeclContext *DestContext,
|
|
SourceLocation InsertionPoint,
|
|
const NamedDecl *ND) {
|
|
auto VisibleNamespaceDecls =
|
|
getUsingNamespaceDirectives(DestContext, InsertionPoint);
|
|
return getQualification(
|
|
Context, DestContext, ND->getDeclContext(), [&](const Decl *D) {
|
|
if (D->getKind() != Decl::Namespace)
|
|
return false;
|
|
const auto *NS = cast<NamespaceDecl>(D)->getCanonicalDecl();
|
|
return llvm::any_of(VisibleNamespaceDecls,
|
|
[NS](const NamespaceDecl *NSD) {
|
|
return NSD->getCanonicalDecl() == NS;
|
|
});
|
|
});
|
|
}
|
|
|
|
std::string getQualification(ASTContext &Context,
|
|
const DeclContext *DestContext,
|
|
const NamedDecl *ND,
|
|
llvm::ArrayRef<std::string> VisibleNamespaces) {
|
|
for (llvm::StringRef NS : VisibleNamespaces) {
|
|
assert(NS.ends_with("::"));
|
|
(void)NS;
|
|
}
|
|
return getQualification(
|
|
Context, DestContext, ND->getDeclContext(), [&](const Decl *D) {
|
|
return llvm::any_of(VisibleNamespaces, [&](llvm::StringRef Namespace) {
|
|
std::string NS;
|
|
llvm::raw_string_ostream OS(NS);
|
|
D->print(OS, Context.getPrintingPolicy());
|
|
return OS.str() == Namespace;
|
|
});
|
|
});
|
|
}
|
|
|
|
bool hasUnstableLinkage(const Decl *D) {
|
|
// Linkage of a ValueDecl depends on the type.
|
|
// If that's not deduced yet, deducing it may change the linkage.
|
|
auto *VD = llvm::dyn_cast_or_null<ValueDecl>(D);
|
|
return VD && !VD->getType().isNull() && VD->getType()->isUndeducedType();
|
|
}
|
|
|
|
bool isDeeplyNested(const Decl *D, unsigned MaxDepth) {
|
|
size_t ContextDepth = 0;
|
|
for (auto *Ctx = D->getDeclContext(); Ctx && !Ctx->isTranslationUnit();
|
|
Ctx = Ctx->getParent()) {
|
|
if (++ContextDepth == MaxDepth)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// returns true for `X` in `template <typename... X> void foo()`
|
|
bool isTemplateTypeParameterPack(NamedDecl *D) {
|
|
if (const auto *TTPD = dyn_cast<TemplateTypeParmDecl>(D)) {
|
|
return TTPD->isParameterPack();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns the template parameter pack type from an instantiated function
|
|
// template, if it exists, nullptr otherwise.
|
|
const TemplateTypeParmType *getFunctionPackType(const FunctionDecl *Callee) {
|
|
if (const auto *TemplateDecl = Callee->getPrimaryTemplate()) {
|
|
auto TemplateParams = TemplateDecl->getTemplateParameters()->asArray();
|
|
// find the template parameter pack from the back
|
|
const auto It = std::find_if(TemplateParams.rbegin(), TemplateParams.rend(),
|
|
isTemplateTypeParameterPack);
|
|
if (It != TemplateParams.rend()) {
|
|
const auto *TTPD = dyn_cast<TemplateTypeParmDecl>(*It);
|
|
return TTPD->getTypeForDecl()->castAs<TemplateTypeParmType>();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns the template parameter pack type that this parameter was expanded
|
|
// from (if in the Args... or Args&... or Args&&... form), if this is the case,
|
|
// nullptr otherwise.
|
|
const TemplateTypeParmType *getUnderlyingPackType(const ParmVarDecl *Param) {
|
|
const auto *PlainType = Param->getType().getTypePtr();
|
|
if (auto *RT = dyn_cast<ReferenceType>(PlainType))
|
|
PlainType = RT->getPointeeTypeAsWritten().getTypePtr();
|
|
if (const auto *SubstType = dyn_cast<SubstTemplateTypeParmType>(PlainType)) {
|
|
const auto *ReplacedParameter = SubstType->getReplacedParameter();
|
|
if (ReplacedParameter->isParameterPack()) {
|
|
return ReplacedParameter->getTypeForDecl()
|
|
->castAs<TemplateTypeParmType>();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// This visitor walks over the body of an instantiated function template.
|
|
// The template accepts a parameter pack and the visitor records whether
|
|
// the pack parameters were forwarded to another call. For example, given:
|
|
//
|
|
// template <typename T, typename... Args>
|
|
// auto make_unique(Args... args) {
|
|
// return unique_ptr<T>(new T(args...));
|
|
// }
|
|
//
|
|
// When called as `make_unique<std::string>(2, 'x')` this yields a function
|
|
// `make_unique<std::string, int, char>` with two parameters.
|
|
// The visitor records that those two parameters are forwarded to the
|
|
// `constructor std::string(int, char);`.
|
|
//
|
|
// This information is recorded in the `ForwardingInfo` split into fully
|
|
// resolved parameters (passed as argument to a parameter that is not an
|
|
// expanded template type parameter pack) and forwarding parameters (passed to a
|
|
// parameter that is an expanded template type parameter pack).
|
|
class ForwardingCallVisitor
|
|
: public RecursiveASTVisitor<ForwardingCallVisitor> {
|
|
public:
|
|
ForwardingCallVisitor(ArrayRef<const ParmVarDecl *> Parameters)
|
|
: Parameters{Parameters},
|
|
PackType{getUnderlyingPackType(Parameters.front())} {}
|
|
|
|
bool VisitCallExpr(CallExpr *E) {
|
|
auto *Callee = getCalleeDeclOrUniqueOverload(E);
|
|
if (Callee) {
|
|
handleCall(Callee, E->arguments());
|
|
}
|
|
return !Info.has_value();
|
|
}
|
|
|
|
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
|
|
auto *Callee = E->getConstructor();
|
|
if (Callee) {
|
|
handleCall(Callee, E->arguments());
|
|
}
|
|
return !Info.has_value();
|
|
}
|
|
|
|
// The expanded parameter pack to be resolved
|
|
ArrayRef<const ParmVarDecl *> Parameters;
|
|
// The type of the parameter pack
|
|
const TemplateTypeParmType *PackType;
|
|
|
|
struct ForwardingInfo {
|
|
// If the parameters were resolved to another FunctionDecl, these are its
|
|
// first non-variadic parameters (i.e. the first entries of the parameter
|
|
// pack that are passed as arguments bound to a non-pack parameter.)
|
|
ArrayRef<const ParmVarDecl *> Head;
|
|
// If the parameters were resolved to another FunctionDecl, these are its
|
|
// variadic parameters (i.e. the entries of the parameter pack that are
|
|
// passed as arguments bound to a pack parameter.)
|
|
ArrayRef<const ParmVarDecl *> Pack;
|
|
// If the parameters were resolved to another FunctionDecl, these are its
|
|
// last non-variadic parameters (i.e. the last entries of the parameter pack
|
|
// that are passed as arguments bound to a non-pack parameter.)
|
|
ArrayRef<const ParmVarDecl *> Tail;
|
|
// If the parameters were resolved to another forwarding FunctionDecl, this
|
|
// is it.
|
|
std::optional<FunctionDecl *> PackTarget;
|
|
};
|
|
|
|
// The output of this visitor
|
|
std::optional<ForwardingInfo> Info;
|
|
|
|
private:
|
|
// inspects the given callee with the given args to check whether it
|
|
// contains Parameters, and sets Info accordingly.
|
|
void handleCall(FunctionDecl *Callee, typename CallExpr::arg_range Args) {
|
|
// Skip functions with less parameters, they can't be the target.
|
|
if (Callee->parameters().size() < Parameters.size())
|
|
return;
|
|
if (llvm::any_of(Args,
|
|
[](const Expr *E) { return isa<PackExpansionExpr>(E); })) {
|
|
return;
|
|
}
|
|
auto PackLocation = findPack(Args);
|
|
if (!PackLocation)
|
|
return;
|
|
ArrayRef<ParmVarDecl *> MatchingParams =
|
|
Callee->parameters().slice(*PackLocation, Parameters.size());
|
|
// Check whether the function has a parameter pack as the last template
|
|
// parameter
|
|
if (const auto *TTPT = getFunctionPackType(Callee)) {
|
|
// In this case: Separate the parameters into head, pack and tail
|
|
auto IsExpandedPack = [&](const ParmVarDecl *P) {
|
|
return getUnderlyingPackType(P) == TTPT;
|
|
};
|
|
ForwardingInfo FI;
|
|
FI.Head = MatchingParams.take_until(IsExpandedPack);
|
|
FI.Pack =
|
|
MatchingParams.drop_front(FI.Head.size()).take_while(IsExpandedPack);
|
|
FI.Tail = MatchingParams.drop_front(FI.Head.size() + FI.Pack.size());
|
|
FI.PackTarget = Callee;
|
|
Info = FI;
|
|
return;
|
|
}
|
|
// Default case: assume all parameters were fully resolved
|
|
ForwardingInfo FI;
|
|
FI.Head = MatchingParams;
|
|
Info = FI;
|
|
}
|
|
|
|
// Returns the beginning of the expanded pack represented by Parameters
|
|
// in the given arguments, if it is there.
|
|
std::optional<size_t> findPack(typename CallExpr::arg_range Args) {
|
|
// find the argument directly referring to the first parameter
|
|
assert(Parameters.size() <= static_cast<size_t>(llvm::size(Args)));
|
|
for (auto Begin = Args.begin(), End = Args.end() - Parameters.size() + 1;
|
|
Begin != End; ++Begin) {
|
|
if (const auto *RefArg = unwrapForward(*Begin)) {
|
|
if (Parameters.front() != RefArg->getDecl())
|
|
continue;
|
|
// Check that this expands all the way until the last parameter.
|
|
// It's enough to look at the last parameter, because it isn't possible
|
|
// to expand without expanding all of them.
|
|
auto ParamEnd = Begin + Parameters.size() - 1;
|
|
RefArg = unwrapForward(*ParamEnd);
|
|
if (!RefArg || Parameters.back() != RefArg->getDecl())
|
|
continue;
|
|
return std::distance(Args.begin(), Begin);
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
static FunctionDecl *getCalleeDeclOrUniqueOverload(CallExpr *E) {
|
|
Decl *CalleeDecl = E->getCalleeDecl();
|
|
auto *Callee = dyn_cast_or_null<FunctionDecl>(CalleeDecl);
|
|
if (!Callee) {
|
|
if (auto *Lookup = dyn_cast<UnresolvedLookupExpr>(E->getCallee())) {
|
|
Callee = resolveOverload(Lookup, E);
|
|
}
|
|
}
|
|
// Ignore the callee if the number of arguments is wrong (deal with va_args)
|
|
if (Callee && Callee->getNumParams() == E->getNumArgs())
|
|
return Callee;
|
|
return nullptr;
|
|
}
|
|
|
|
static FunctionDecl *resolveOverload(UnresolvedLookupExpr *Lookup,
|
|
CallExpr *E) {
|
|
FunctionDecl *MatchingDecl = nullptr;
|
|
if (!Lookup->requiresADL()) {
|
|
// Check whether there is a single overload with this number of
|
|
// parameters
|
|
for (auto *Candidate : Lookup->decls()) {
|
|
if (auto *FuncCandidate = dyn_cast_or_null<FunctionDecl>(Candidate)) {
|
|
if (FuncCandidate->getNumParams() == E->getNumArgs()) {
|
|
if (MatchingDecl) {
|
|
// there are multiple candidates - abort
|
|
return nullptr;
|
|
}
|
|
MatchingDecl = FuncCandidate;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return MatchingDecl;
|
|
}
|
|
|
|
// Tries to get to the underlying argument by unwrapping implicit nodes and
|
|
// std::forward.
|
|
static const DeclRefExpr *unwrapForward(const Expr *E) {
|
|
E = E->IgnoreImplicitAsWritten();
|
|
// There might be an implicit copy/move constructor call on top of the
|
|
// forwarded arg.
|
|
// FIXME: Maybe mark implicit calls in the AST to properly filter here.
|
|
if (const auto *Const = dyn_cast<CXXConstructExpr>(E))
|
|
if (Const->getConstructor()->isCopyOrMoveConstructor())
|
|
E = Const->getArg(0)->IgnoreImplicitAsWritten();
|
|
if (const auto *Call = dyn_cast<CallExpr>(E)) {
|
|
const auto Callee = Call->getBuiltinCallee();
|
|
if (Callee == Builtin::BIforward) {
|
|
return dyn_cast<DeclRefExpr>(
|
|
Call->getArg(0)->IgnoreImplicitAsWritten());
|
|
}
|
|
}
|
|
return dyn_cast<DeclRefExpr>(E);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
SmallVector<const ParmVarDecl *>
|
|
resolveForwardingParameters(const FunctionDecl *D, unsigned MaxDepth) {
|
|
auto Parameters = D->parameters();
|
|
// If the function has a template parameter pack
|
|
if (const auto *TTPT = getFunctionPackType(D)) {
|
|
// Split the parameters into head, pack and tail
|
|
auto IsExpandedPack = [TTPT](const ParmVarDecl *P) {
|
|
return getUnderlyingPackType(P) == TTPT;
|
|
};
|
|
ArrayRef<const ParmVarDecl *> Head = Parameters.take_until(IsExpandedPack);
|
|
ArrayRef<const ParmVarDecl *> Pack =
|
|
Parameters.drop_front(Head.size()).take_while(IsExpandedPack);
|
|
ArrayRef<const ParmVarDecl *> Tail =
|
|
Parameters.drop_front(Head.size() + Pack.size());
|
|
SmallVector<const ParmVarDecl *> Result(Parameters.size());
|
|
// Fill in non-pack parameters
|
|
auto *HeadIt = std::copy(Head.begin(), Head.end(), Result.begin());
|
|
auto TailIt = std::copy(Tail.rbegin(), Tail.rend(), Result.rbegin());
|
|
// Recurse on pack parameters
|
|
size_t Depth = 0;
|
|
const FunctionDecl *CurrentFunction = D;
|
|
llvm::SmallSet<const FunctionTemplateDecl *, 4> SeenTemplates;
|
|
if (const auto *Template = D->getPrimaryTemplate()) {
|
|
SeenTemplates.insert(Template);
|
|
}
|
|
while (!Pack.empty() && CurrentFunction && Depth < MaxDepth) {
|
|
// Find call expressions involving the pack
|
|
ForwardingCallVisitor V{Pack};
|
|
V.TraverseStmt(CurrentFunction->getBody());
|
|
if (!V.Info) {
|
|
break;
|
|
}
|
|
// If we found something: Fill in non-pack parameters
|
|
auto Info = *V.Info;
|
|
HeadIt = std::copy(Info.Head.begin(), Info.Head.end(), HeadIt);
|
|
TailIt = std::copy(Info.Tail.rbegin(), Info.Tail.rend(), TailIt);
|
|
// Prepare next recursion level
|
|
Pack = Info.Pack;
|
|
CurrentFunction = Info.PackTarget.value_or(nullptr);
|
|
Depth++;
|
|
// If we are recursing into a previously encountered function: Abort
|
|
if (CurrentFunction) {
|
|
if (const auto *Template = CurrentFunction->getPrimaryTemplate()) {
|
|
bool NewFunction = SeenTemplates.insert(Template).second;
|
|
if (!NewFunction) {
|
|
return {Parameters.begin(), Parameters.end()};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Fill in the remaining unresolved pack parameters
|
|
HeadIt = std::copy(Pack.begin(), Pack.end(), HeadIt);
|
|
assert(TailIt.base() == HeadIt);
|
|
return Result;
|
|
}
|
|
return {Parameters.begin(), Parameters.end()};
|
|
}
|
|
|
|
bool isExpandedFromParameterPack(const ParmVarDecl *D) {
|
|
return getUnderlyingPackType(D) != nullptr;
|
|
}
|
|
|
|
} // namespace clangd
|
|
} // namespace clang
|