
`compiler-rt/lib/builtins/divtc3.c` and `multc3.c` don't compile on Solaris/sparcv9 with `gcc -m32`: ``` FAILED: projects/compiler-rt/lib/builtins/CMakeFiles/clang_rt.builtins-sparc.dir/divtc3.c.o [...] compiler-rt/lib/builtins/divtc3.c: In function ‘__divtc3’: compiler-rt/lib/builtins/divtc3.c:22:18: error: implicit declaration of function ‘__compiler_rt_logbtf’ [-Wimplicit-function-declaration] 22 | fp_t __logbw = __compiler_rt_logbtf( | ^~~~~~~~~~~~~~~~~~~~ ``` and many more. It turns out that while the definition of `__divtc3` is guarded with `CRT_HAS_F128`, the `__compiler_rt_logbtf` and other declarations use `CRT_HAS_128BIT && CRT_HAS_F128` as guard. This only shows up with `gcc` since, as documented in Issue #41838, `clang` violates the SPARC psABI in not using 128-bit `long double`, so this code path isn't used. Fixed by changing the guards to match. Tested on `sparcv9-sun-solaris2.11`.
57 lines
2.3 KiB
C
57 lines
2.3 KiB
C
//===-- divtc3.c - Implement __divtc3 -------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements __divtc3 for the compiler_rt library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define QUAD_PRECISION
|
|
#include "fp_lib.h"
|
|
|
|
#if defined(CRT_HAS_128BIT) && defined(CRT_HAS_F128)
|
|
|
|
// Returns: the quotient of (a + ib) / (c + id)
|
|
|
|
COMPILER_RT_ABI Qcomplex __divtc3(fp_t __a, fp_t __b, fp_t __c, fp_t __d) {
|
|
int __ilogbw = 0;
|
|
fp_t __logbw = __compiler_rt_logbtf(
|
|
__compiler_rt_fmaxtf(crt_fabstf(__c), crt_fabstf(__d)));
|
|
if (crt_isfinite(__logbw)) {
|
|
__ilogbw = (int)__logbw;
|
|
__c = __compiler_rt_scalbntf(__c, -__ilogbw);
|
|
__d = __compiler_rt_scalbntf(__d, -__ilogbw);
|
|
}
|
|
fp_t __denom = __c * __c + __d * __d;
|
|
Qcomplex z;
|
|
COMPLEXTF_REAL(z) =
|
|
__compiler_rt_scalbntf((__a * __c + __b * __d) / __denom, -__ilogbw);
|
|
COMPLEXTF_IMAGINARY(z) =
|
|
__compiler_rt_scalbntf((__b * __c - __a * __d) / __denom, -__ilogbw);
|
|
if (crt_isnan(COMPLEXTF_REAL(z)) && crt_isnan(COMPLEXTF_IMAGINARY(z))) {
|
|
if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b))) {
|
|
COMPLEXTF_REAL(z) = crt_copysigntf(CRT_INFINITY, __c) * __a;
|
|
COMPLEXTF_IMAGINARY(z) = crt_copysigntf(CRT_INFINITY, __c) * __b;
|
|
} else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) &&
|
|
crt_isfinite(__d)) {
|
|
__a = crt_copysigntf(crt_isinf(__a) ? (fp_t)1.0 : (fp_t)0.0, __a);
|
|
__b = crt_copysigntf(crt_isinf(__b) ? (fp_t)1.0 : (fp_t)0.0, __b);
|
|
COMPLEXTF_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
|
|
COMPLEXTF_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
|
|
} else if (crt_isinf(__logbw) && __logbw > 0.0 && crt_isfinite(__a) &&
|
|
crt_isfinite(__b)) {
|
|
__c = crt_copysigntf(crt_isinf(__c) ? (fp_t)1.0 : (fp_t)0.0, __c);
|
|
__d = crt_copysigntf(crt_isinf(__d) ? (fp_t)1.0 : (fp_t)0.0, __d);
|
|
COMPLEXTF_REAL(z) = 0.0 * (__a * __c + __b * __d);
|
|
COMPLEXTF_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d);
|
|
}
|
|
}
|
|
return z;
|
|
}
|
|
|
|
#endif
|