llvm-project/llvm/lib/Transforms/IPO/MergeFunctions.cpp
Jeremy Morse c9d8b68676
[DebugInfo] Suppress lots of users of DbgValueInst (#149476)
This is another prune of dead code -- we never generate debug intrinsics
nowadays, therefore there's no need for these codepaths to run.

---------

Co-authored-by: Nikita Popov <github@npopov.com>
2025-07-18 11:31:52 +01:00

1060 lines
38 KiB
C++

//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass looks for equivalent functions that are mergable and folds them.
//
// Order relation is defined on set of functions. It was made through
// special function comparison procedure that returns
// 0 when functions are equal,
// -1 when Left function is less than right function, and
// 1 for opposite case. We need total-ordering, so we need to maintain
// four properties on the functions set:
// a <= a (reflexivity)
// if a <= b and b <= a then a = b (antisymmetry)
// if a <= b and b <= c then a <= c (transitivity).
// for all a and b: a <= b or b <= a (totality).
//
// Comparison iterates through each instruction in each basic block.
// Functions are kept on binary tree. For each new function F we perform
// lookup in binary tree.
// In practice it works the following way:
// -- We define Function* container class with custom "operator<" (FunctionPtr).
// -- "FunctionPtr" instances are stored in std::set collection, so every
// std::set::insert operation will give you result in log(N) time.
//
// As an optimization, a hash of the function structure is calculated first, and
// two functions are only compared if they have the same hash. This hash is
// cheap to compute, and has the property that if function F == G according to
// the comparison function, then hash(F) == hash(G). This consistency property
// is critical to ensuring all possible merging opportunities are exploited.
// Collisions in the hash affect the speed of the pass but not the correctness
// or determinism of the resulting transformation.
//
// When a match is found the functions are folded. If both functions are
// overridable, we move the functionality into a new internal function and
// leave two overridable thunks to it.
//
//===----------------------------------------------------------------------===//
//
// Future work:
//
// * virtual functions.
//
// Many functions have their address taken by the virtual function table for
// the object they belong to. However, as long as it's only used for a lookup
// and call, this is irrelevant, and we'd like to fold such functions.
//
// * be smarter about bitcasts.
//
// In order to fold functions, we will sometimes add either bitcast instructions
// or bitcast constant expressions. Unfortunately, this can confound further
// analysis since the two functions differ where one has a bitcast and the
// other doesn't. We should learn to look through bitcasts.
//
// * Compare complex types with pointer types inside.
// * Compare cross-reference cases.
// * Compare complex expressions.
//
// All the three issues above could be described as ability to prove that
// fA == fB == fC == fE == fF == fG in example below:
//
// void fA() {
// fB();
// }
// void fB() {
// fA();
// }
//
// void fE() {
// fF();
// }
// void fF() {
// fG();
// }
// void fG() {
// fE();
// }
//
// Simplest cross-reference case (fA <--> fB) was implemented in previous
// versions of MergeFunctions, though it presented only in two function pairs
// in test-suite (that counts >50k functions)
// Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
// could cover much more cases.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/MergeFunctions.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/StructuralHash.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/FunctionComparator.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <set>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "mergefunc"
STATISTIC(NumFunctionsMerged, "Number of functions merged");
STATISTIC(NumThunksWritten, "Number of thunks generated");
STATISTIC(NumAliasesWritten, "Number of aliases generated");
STATISTIC(NumDoubleWeak, "Number of new functions created");
static cl::opt<unsigned> NumFunctionsForVerificationCheck(
"mergefunc-verify",
cl::desc("How many functions in a module could be used for "
"MergeFunctions to pass a basic correctness check. "
"'0' disables this check. Works only with '-debug' key."),
cl::init(0), cl::Hidden);
// Under option -mergefunc-preserve-debug-info we:
// - Do not create a new function for a thunk.
// - Retain the debug info for a thunk's parameters (and associated
// instructions for the debug info) from the entry block.
// Note: -debug will display the algorithm at work.
// - Create debug-info for the call (to the shared implementation) made by
// a thunk and its return value.
// - Erase the rest of the function, retaining the (minimally sized) entry
// block to create a thunk.
// - Preserve a thunk's call site to point to the thunk even when both occur
// within the same translation unit, to aid debugability. Note that this
// behaviour differs from the underlying -mergefunc implementation which
// modifies the thunk's call site to point to the shared implementation
// when both occur within the same translation unit.
static cl::opt<bool>
MergeFunctionsPDI("mergefunc-preserve-debug-info", cl::Hidden,
cl::init(false),
cl::desc("Preserve debug info in thunk when mergefunc "
"transformations are made."));
static cl::opt<bool>
MergeFunctionsAliases("mergefunc-use-aliases", cl::Hidden,
cl::init(false),
cl::desc("Allow mergefunc to create aliases"));
namespace {
class FunctionNode {
mutable AssertingVH<Function> F;
stable_hash Hash;
public:
// Note the hash is recalculated potentially multiple times, but it is cheap.
FunctionNode(Function *F) : F(F), Hash(StructuralHash(*F)) {}
Function *getFunc() const { return F; }
stable_hash getHash() const { return Hash; }
/// Replace the reference to the function F by the function G, assuming their
/// implementations are equal.
void replaceBy(Function *G) const {
F = G;
}
};
/// MergeFunctions finds functions which will generate identical machine code,
/// by considering all pointer types to be equivalent. Once identified,
/// MergeFunctions will fold them by replacing a call to one to a call to a
/// bitcast of the other.
class MergeFunctions {
public:
MergeFunctions() : FnTree(FunctionNodeCmp(&GlobalNumbers)) {
}
template <typename FuncContainer> bool run(FuncContainer &Functions);
DenseMap<Function *, Function *> runOnFunctions(ArrayRef<Function *> F);
SmallPtrSet<GlobalValue *, 4> &getUsed();
private:
// The function comparison operator is provided here so that FunctionNodes do
// not need to become larger with another pointer.
class FunctionNodeCmp {
GlobalNumberState* GlobalNumbers;
public:
FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
// Order first by hashes, then full function comparison.
if (LHS.getHash() != RHS.getHash())
return LHS.getHash() < RHS.getHash();
FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
return FCmp.compare() < 0;
}
};
using FnTreeType = std::set<FunctionNode, FunctionNodeCmp>;
GlobalNumberState GlobalNumbers;
/// A work queue of functions that may have been modified and should be
/// analyzed again.
std::vector<WeakTrackingVH> Deferred;
/// Set of values marked as used in llvm.used and llvm.compiler.used.
SmallPtrSet<GlobalValue *, 4> Used;
#ifndef NDEBUG
/// Checks the rules of order relation introduced among functions set.
/// Returns true, if check has been passed, and false if failed.
bool doFunctionalCheck(std::vector<WeakTrackingVH> &Worklist);
#endif
/// Insert a ComparableFunction into the FnTree, or merge it away if it's
/// equal to one that's already present.
bool insert(Function *NewFunction);
/// Remove a Function from the FnTree and queue it up for a second sweep of
/// analysis.
void remove(Function *F);
/// Find the functions that use this Value and remove them from FnTree and
/// queue the functions.
void removeUsers(Value *V);
/// Replace all direct calls of Old with calls of New. Will bitcast New if
/// necessary to make types match.
void replaceDirectCallers(Function *Old, Function *New);
/// Merge two equivalent functions. Upon completion, G may be deleted, or may
/// be converted into a thunk. In either case, it should never be visited
/// again.
void mergeTwoFunctions(Function *F, Function *G);
/// Fill PDIUnrelatedWL with instructions from the entry block that are
/// unrelated to parameter related debug info.
/// \param PDVRUnrelatedWL The equivalent non-intrinsic debug records.
void
filterInstsUnrelatedToPDI(BasicBlock *GEntryBlock,
std::vector<Instruction *> &PDIUnrelatedWL,
std::vector<DbgVariableRecord *> &PDVRUnrelatedWL);
/// Erase the rest of the CFG (i.e. barring the entry block).
void eraseTail(Function *G);
/// Erase the instructions in PDIUnrelatedWL as they are unrelated to the
/// parameter debug info, from the entry block.
/// \param PDVRUnrelatedWL contains the equivalent set of non-instruction
/// debug-info records.
void
eraseInstsUnrelatedToPDI(std::vector<Instruction *> &PDIUnrelatedWL,
std::vector<DbgVariableRecord *> &PDVRUnrelatedWL);
/// Replace G with a simple tail call to bitcast(F). Also (unless
/// MergeFunctionsPDI holds) replace direct uses of G with bitcast(F),
/// delete G.
void writeThunk(Function *F, Function *G);
// Replace G with an alias to F (deleting function G)
void writeAlias(Function *F, Function *G);
// If needed, replace G with an alias to F if possible, or a thunk to F if
// profitable. Returns false if neither is the case. If \p G is not needed
// (i.e. it is discardable and not used), \p G is removed directly.
bool writeThunkOrAliasIfNeeded(Function *F, Function *G);
/// Replace function F with function G in the function tree.
void replaceFunctionInTree(const FunctionNode &FN, Function *G);
/// The set of all distinct functions. Use the insert() and remove() methods
/// to modify it. The map allows efficient lookup and deferring of Functions.
FnTreeType FnTree;
// Map functions to the iterators of the FunctionNode which contains them
// in the FnTree. This must be updated carefully whenever the FnTree is
// modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
// dangling iterators into FnTree. The invariant that preserves this is that
// there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
DenseMap<AssertingVH<Function>, FnTreeType::iterator> FNodesInTree;
/// Deleted-New functions mapping
DenseMap<Function *, Function *> DelToNewMap;
};
} // end anonymous namespace
PreservedAnalyses MergeFunctionsPass::run(Module &M,
ModuleAnalysisManager &AM) {
if (!MergeFunctionsPass::runOnModule(M))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
SmallPtrSet<GlobalValue *, 4> &MergeFunctions::getUsed() { return Used; }
bool MergeFunctionsPass::runOnModule(Module &M) {
MergeFunctions MF;
SmallVector<GlobalValue *, 4> UsedV;
collectUsedGlobalVariables(M, UsedV, /*CompilerUsed=*/false);
collectUsedGlobalVariables(M, UsedV, /*CompilerUsed=*/true);
MF.getUsed().insert_range(UsedV);
return MF.run(M);
}
DenseMap<Function *, Function *>
MergeFunctionsPass::runOnFunctions(ArrayRef<Function *> F) {
MergeFunctions MF;
return MF.runOnFunctions(F);
}
#ifndef NDEBUG
bool MergeFunctions::doFunctionalCheck(std::vector<WeakTrackingVH> &Worklist) {
if (const unsigned Max = NumFunctionsForVerificationCheck) {
unsigned TripleNumber = 0;
bool Valid = true;
dbgs() << "MERGEFUNC-VERIFY: Started for first " << Max << " functions.\n";
unsigned i = 0;
for (std::vector<WeakTrackingVH>::iterator I = Worklist.begin(),
E = Worklist.end();
I != E && i < Max; ++I, ++i) {
unsigned j = i;
for (std::vector<WeakTrackingVH>::iterator J = I; J != E && j < Max;
++J, ++j) {
Function *F1 = cast<Function>(*I);
Function *F2 = cast<Function>(*J);
int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();
// If F1 <= F2, then F2 >= F1, otherwise report failure.
if (Res1 != -Res2) {
dbgs() << "MERGEFUNC-VERIFY: Non-symmetric; triple: " << TripleNumber
<< "\n";
dbgs() << *F1 << '\n' << *F2 << '\n';
Valid = false;
}
if (Res1 == 0)
continue;
unsigned k = j;
for (std::vector<WeakTrackingVH>::iterator K = J; K != E && k < Max;
++k, ++K, ++TripleNumber) {
if (K == J)
continue;
Function *F3 = cast<Function>(*K);
int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();
bool Transitive = true;
if (Res1 != 0 && Res1 == Res4) {
// F1 > F2, F2 > F3 => F1 > F3
Transitive = Res3 == Res1;
} else if (Res3 != 0 && Res3 == -Res4) {
// F1 > F3, F3 > F2 => F1 > F2
Transitive = Res3 == Res1;
} else if (Res4 != 0 && -Res3 == Res4) {
// F2 > F3, F3 > F1 => F2 > F1
Transitive = Res4 == -Res1;
}
if (!Transitive) {
dbgs() << "MERGEFUNC-VERIFY: Non-transitive; triple: "
<< TripleNumber << "\n";
dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
<< Res4 << "\n";
dbgs() << *F1 << '\n' << *F2 << '\n' << *F3 << '\n';
Valid = false;
}
}
}
}
dbgs() << "MERGEFUNC-VERIFY: " << (Valid ? "Passed." : "Failed.") << "\n";
return Valid;
}
return true;
}
#endif
/// Check whether \p F has an intrinsic which references
/// distinct metadata as an operand. The most common
/// instance of this would be CFI checks for function-local types.
static bool hasDistinctMetadataIntrinsic(const Function &F) {
for (const BasicBlock &BB : F) {
for (const Instruction &I : BB.instructionsWithoutDebug()) {
if (!isa<IntrinsicInst>(&I))
continue;
for (Value *Op : I.operands()) {
auto *MDL = dyn_cast<MetadataAsValue>(Op);
if (!MDL)
continue;
if (MDNode *N = dyn_cast<MDNode>(MDL->getMetadata()))
if (N->isDistinct())
return true;
}
}
}
return false;
}
/// Check whether \p F is eligible for function merging.
static bool isEligibleForMerging(Function &F) {
return !F.isDeclaration() && !F.hasAvailableExternallyLinkage() &&
!hasDistinctMetadataIntrinsic(F);
}
inline Function *asPtr(Function *Fn) { return Fn; }
inline Function *asPtr(Function &Fn) { return &Fn; }
template <typename FuncContainer> bool MergeFunctions::run(FuncContainer &M) {
bool Changed = false;
// All functions in the module, ordered by hash. Functions with a unique
// hash value are easily eliminated.
std::vector<std::pair<stable_hash, Function *>> HashedFuncs;
for (auto &Func : M) {
Function *FuncPtr = asPtr(Func);
if (isEligibleForMerging(*FuncPtr)) {
HashedFuncs.push_back({StructuralHash(*FuncPtr), FuncPtr});
}
}
llvm::stable_sort(HashedFuncs, less_first());
auto S = HashedFuncs.begin();
for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
// If the hash value matches the previous value or the next one, we must
// consider merging it. Otherwise it is dropped and never considered again.
if ((I != S && std::prev(I)->first == I->first) ||
(std::next(I) != IE && std::next(I)->first == I->first)) {
Deferred.push_back(WeakTrackingVH(I->second));
}
}
do {
std::vector<WeakTrackingVH> Worklist;
Deferred.swap(Worklist);
LLVM_DEBUG(doFunctionalCheck(Worklist));
LLVM_DEBUG(dbgs() << "size of module: " << M.size() << '\n');
LLVM_DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
// Insert functions and merge them.
for (WeakTrackingVH &I : Worklist) {
if (!I)
continue;
Function *F = cast<Function>(I);
if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) {
Changed |= insert(F);
}
}
LLVM_DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
} while (!Deferred.empty());
FnTree.clear();
FNodesInTree.clear();
GlobalNumbers.clear();
Used.clear();
return Changed;
}
DenseMap<Function *, Function *>
MergeFunctions::runOnFunctions(ArrayRef<Function *> F) {
[[maybe_unused]] bool MergeResult = this->run(F);
assert(MergeResult == !DelToNewMap.empty());
return this->DelToNewMap;
}
// Replace direct callers of Old with New.
void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
for (Use &U : make_early_inc_range(Old->uses())) {
CallBase *CB = dyn_cast<CallBase>(U.getUser());
if (CB && CB->isCallee(&U)) {
// Do not copy attributes from the called function to the call-site.
// Function comparison ensures that the attributes are the same up to
// type congruences in byval(), in which case we need to keep the byval
// type of the call-site, not the callee function.
remove(CB->getFunction());
U.set(New);
}
}
}
// Erase the instructions in PDIUnrelatedWL as they are unrelated to the
// parameter debug info, from the entry block.
void MergeFunctions::eraseInstsUnrelatedToPDI(
std::vector<Instruction *> &PDIUnrelatedWL,
std::vector<DbgVariableRecord *> &PDVRUnrelatedWL) {
LLVM_DEBUG(
dbgs() << " Erasing instructions (in reverse order of appearance in "
"entry block) unrelated to parameter debug info from entry "
"block: {\n");
while (!PDIUnrelatedWL.empty()) {
Instruction *I = PDIUnrelatedWL.back();
LLVM_DEBUG(dbgs() << " Deleting Instruction: ");
LLVM_DEBUG(I->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
I->eraseFromParent();
PDIUnrelatedWL.pop_back();
}
while (!PDVRUnrelatedWL.empty()) {
DbgVariableRecord *DVR = PDVRUnrelatedWL.back();
LLVM_DEBUG(dbgs() << " Deleting DbgVariableRecord ");
LLVM_DEBUG(DVR->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
DVR->eraseFromParent();
PDVRUnrelatedWL.pop_back();
}
LLVM_DEBUG(dbgs() << " } // Done erasing instructions unrelated to parameter "
"debug info from entry block. \n");
}
// Reduce G to its entry block.
void MergeFunctions::eraseTail(Function *G) {
std::vector<BasicBlock *> WorklistBB;
for (BasicBlock &BB : drop_begin(*G)) {
BB.dropAllReferences();
WorklistBB.push_back(&BB);
}
while (!WorklistBB.empty()) {
BasicBlock *BB = WorklistBB.back();
BB->eraseFromParent();
WorklistBB.pop_back();
}
}
// We are interested in the following instructions from the entry block as being
// related to parameter debug info:
// - @llvm.dbg.declare
// - stores from the incoming parameters to locations on the stack-frame
// - allocas that create these locations on the stack-frame
// - @llvm.dbg.value
// - the entry block's terminator
// The rest are unrelated to debug info for the parameters; fill up
// PDIUnrelatedWL with such instructions.
void MergeFunctions::filterInstsUnrelatedToPDI(
BasicBlock *GEntryBlock, std::vector<Instruction *> &PDIUnrelatedWL,
std::vector<DbgVariableRecord *> &PDVRUnrelatedWL) {
std::set<Instruction *> PDIRelated;
std::set<DbgVariableRecord *> PDVRRelated;
// Work out whether a dbg.value intrinsic or an equivalent DbgVariableRecord
// is a parameter to be preserved.
auto ExamineDbgValue = [&PDVRRelated](DbgVariableRecord *DbgVal) {
LLVM_DEBUG(dbgs() << " Deciding: ");
LLVM_DEBUG(DbgVal->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
DILocalVariable *DILocVar = DbgVal->getVariable();
if (DILocVar->isParameter()) {
LLVM_DEBUG(dbgs() << " Include (parameter): ");
LLVM_DEBUG(DbgVal->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
PDVRRelated.insert(DbgVal);
} else {
LLVM_DEBUG(dbgs() << " Delete (!parameter): ");
LLVM_DEBUG(DbgVal->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
};
auto ExamineDbgDeclare = [&PDIRelated,
&PDVRRelated](DbgVariableRecord *DbgDecl) {
LLVM_DEBUG(dbgs() << " Deciding: ");
LLVM_DEBUG(DbgDecl->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
DILocalVariable *DILocVar = DbgDecl->getVariable();
if (DILocVar->isParameter()) {
LLVM_DEBUG(dbgs() << " Parameter: ");
LLVM_DEBUG(DILocVar->print(dbgs()));
AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DbgDecl->getAddress());
if (AI) {
LLVM_DEBUG(dbgs() << " Processing alloca users: ");
LLVM_DEBUG(dbgs() << "\n");
for (User *U : AI->users()) {
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
if (Value *Arg = SI->getValueOperand()) {
if (isa<Argument>(Arg)) {
LLVM_DEBUG(dbgs() << " Include: ");
LLVM_DEBUG(AI->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
PDIRelated.insert(AI);
LLVM_DEBUG(dbgs() << " Include (parameter): ");
LLVM_DEBUG(SI->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
PDIRelated.insert(SI);
LLVM_DEBUG(dbgs() << " Include: ");
LLVM_DEBUG(DbgDecl->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
PDVRRelated.insert(DbgDecl);
} else {
LLVM_DEBUG(dbgs() << " Delete (!parameter): ");
LLVM_DEBUG(SI->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
}
} else {
LLVM_DEBUG(dbgs() << " Defer: ");
LLVM_DEBUG(U->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
}
} else {
LLVM_DEBUG(dbgs() << " Delete (alloca NULL): ");
LLVM_DEBUG(DbgDecl->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
} else {
LLVM_DEBUG(dbgs() << " Delete (!parameter): ");
LLVM_DEBUG(DbgDecl->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
};
for (BasicBlock::iterator BI = GEntryBlock->begin(), BIE = GEntryBlock->end();
BI != BIE; ++BI) {
// Examine DbgVariableRecords as they happen "before" the instruction. Are
// they connected to parameters?
for (DbgVariableRecord &DVR : filterDbgVars(BI->getDbgRecordRange())) {
if (DVR.isDbgValue() || DVR.isDbgAssign()) {
ExamineDbgValue(&DVR);
} else {
assert(DVR.isDbgDeclare());
ExamineDbgDeclare(&DVR);
}
}
if (BI->isTerminator() && &*BI == GEntryBlock->getTerminator()) {
LLVM_DEBUG(dbgs() << " Will Include Terminator: ");
LLVM_DEBUG(BI->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
PDIRelated.insert(&*BI);
} else {
LLVM_DEBUG(dbgs() << " Defer: ");
LLVM_DEBUG(BI->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
}
LLVM_DEBUG(
dbgs()
<< " Report parameter debug info related/related instructions: {\n");
auto IsPDIRelated = [](auto *Rec, auto &Container, auto &UnrelatedCont) {
if (Container.find(Rec) == Container.end()) {
LLVM_DEBUG(dbgs() << " !PDIRelated: ");
LLVM_DEBUG(Rec->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
UnrelatedCont.push_back(Rec);
} else {
LLVM_DEBUG(dbgs() << " PDIRelated: ");
LLVM_DEBUG(Rec->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
};
// Collect the set of unrelated instructions and debug records.
for (Instruction &I : *GEntryBlock) {
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
IsPDIRelated(&DVR, PDVRRelated, PDVRUnrelatedWL);
IsPDIRelated(&I, PDIRelated, PDIUnrelatedWL);
}
LLVM_DEBUG(dbgs() << " }\n");
}
/// Whether this function may be replaced by a forwarding thunk.
static bool canCreateThunkFor(Function *F) {
if (F->isVarArg())
return false;
// Don't merge tiny functions using a thunk, since it can just end up
// making the function larger.
if (F->size() == 1) {
if (F->front().sizeWithoutDebug() < 2) {
LLVM_DEBUG(dbgs() << "canCreateThunkFor: " << F->getName()
<< " is too small to bother creating a thunk for\n");
return false;
}
}
return true;
}
/// Copy all metadata of a specific kind from one function to another.
static void copyMetadataIfPresent(Function *From, Function *To,
StringRef Kind) {
SmallVector<MDNode *, 4> MDs;
From->getMetadata(Kind, MDs);
for (MDNode *MD : MDs)
To->addMetadata(Kind, *MD);
}
// Replace G with a simple tail call to bitcast(F). Also (unless
// MergeFunctionsPDI holds) replace direct uses of G with bitcast(F),
// delete G. Under MergeFunctionsPDI, we use G itself for creating
// the thunk as we preserve the debug info (and associated instructions)
// from G's entry block pertaining to G's incoming arguments which are
// passed on as corresponding arguments in the call that G makes to F.
// For better debugability, under MergeFunctionsPDI, we do not modify G's
// call sites to point to F even when within the same translation unit.
void MergeFunctions::writeThunk(Function *F, Function *G) {
BasicBlock *GEntryBlock = nullptr;
std::vector<Instruction *> PDIUnrelatedWL;
std::vector<DbgVariableRecord *> PDVRUnrelatedWL;
BasicBlock *BB = nullptr;
Function *NewG = nullptr;
if (MergeFunctionsPDI) {
LLVM_DEBUG(dbgs() << "writeThunk: (MergeFunctionsPDI) Do not create a new "
"function as thunk; retain original: "
<< G->getName() << "()\n");
GEntryBlock = &G->getEntryBlock();
LLVM_DEBUG(
dbgs() << "writeThunk: (MergeFunctionsPDI) filter parameter related "
"debug info for "
<< G->getName() << "() {\n");
filterInstsUnrelatedToPDI(GEntryBlock, PDIUnrelatedWL, PDVRUnrelatedWL);
GEntryBlock->getTerminator()->eraseFromParent();
BB = GEntryBlock;
} else {
NewG = Function::Create(G->getFunctionType(), G->getLinkage(),
G->getAddressSpace(), "", G->getParent());
NewG->setComdat(G->getComdat());
BB = BasicBlock::Create(F->getContext(), "", NewG);
}
IRBuilder<> Builder(BB);
Function *H = MergeFunctionsPDI ? G : NewG;
SmallVector<Value *, 16> Args;
unsigned i = 0;
FunctionType *FFTy = F->getFunctionType();
for (Argument &AI : H->args()) {
Args.push_back(Builder.CreateAggregateCast(&AI, FFTy->getParamType(i)));
++i;
}
CallInst *CI = Builder.CreateCall(F, Args);
ReturnInst *RI = nullptr;
bool isSwiftTailCall = F->getCallingConv() == CallingConv::SwiftTail &&
G->getCallingConv() == CallingConv::SwiftTail;
CI->setTailCallKind(isSwiftTailCall ? CallInst::TCK_MustTail
: CallInst::TCK_Tail);
CI->setCallingConv(F->getCallingConv());
CI->setAttributes(F->getAttributes());
if (H->getReturnType()->isVoidTy()) {
RI = Builder.CreateRetVoid();
} else {
RI = Builder.CreateRet(Builder.CreateAggregateCast(CI, H->getReturnType()));
}
if (MergeFunctionsPDI) {
DISubprogram *DIS = G->getSubprogram();
if (DIS) {
DebugLoc CIDbgLoc =
DILocation::get(DIS->getContext(), DIS->getScopeLine(), 0, DIS);
DebugLoc RIDbgLoc =
DILocation::get(DIS->getContext(), DIS->getScopeLine(), 0, DIS);
CI->setDebugLoc(CIDbgLoc);
RI->setDebugLoc(RIDbgLoc);
} else {
LLVM_DEBUG(
dbgs() << "writeThunk: (MergeFunctionsPDI) No DISubprogram for "
<< G->getName() << "()\n");
}
eraseTail(G);
eraseInstsUnrelatedToPDI(PDIUnrelatedWL, PDVRUnrelatedWL);
LLVM_DEBUG(
dbgs() << "} // End of parameter related debug info filtering for: "
<< G->getName() << "()\n");
} else {
NewG->copyAttributesFrom(G);
NewG->takeName(G);
// Ensure CFI type metadata is propagated to the new function.
copyMetadataIfPresent(G, NewG, "type");
copyMetadataIfPresent(G, NewG, "kcfi_type");
removeUsers(G);
G->replaceAllUsesWith(NewG);
G->eraseFromParent();
}
LLVM_DEBUG(dbgs() << "writeThunk: " << H->getName() << '\n');
++NumThunksWritten;
}
// Whether this function may be replaced by an alias
static bool canCreateAliasFor(Function *F) {
if (!MergeFunctionsAliases || !F->hasGlobalUnnamedAddr())
return false;
// We should only see linkages supported by aliases here
assert(F->hasLocalLinkage() || F->hasExternalLinkage()
|| F->hasWeakLinkage() || F->hasLinkOnceLinkage());
return true;
}
// Replace G with an alias to F (deleting function G)
void MergeFunctions::writeAlias(Function *F, Function *G) {
PointerType *PtrType = G->getType();
auto *GA = GlobalAlias::create(G->getValueType(), PtrType->getAddressSpace(),
G->getLinkage(), "", F, G->getParent());
const MaybeAlign FAlign = F->getAlign();
const MaybeAlign GAlign = G->getAlign();
if (FAlign || GAlign)
F->setAlignment(std::max(FAlign.valueOrOne(), GAlign.valueOrOne()));
else
F->setAlignment(std::nullopt);
GA->takeName(G);
GA->setVisibility(G->getVisibility());
GA->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
removeUsers(G);
G->replaceAllUsesWith(GA);
G->eraseFromParent();
LLVM_DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
++NumAliasesWritten;
}
// If needed, replace G with an alias to F if possible, or a thunk to F if
// profitable. Returns false if neither is the case. If \p G is not needed (i.e.
// it is discardable and unused), \p G is removed directly.
bool MergeFunctions::writeThunkOrAliasIfNeeded(Function *F, Function *G) {
if (G->isDiscardableIfUnused() && G->use_empty() && !MergeFunctionsPDI) {
G->eraseFromParent();
return true;
}
if (canCreateAliasFor(G)) {
writeAlias(F, G);
return true;
}
if (canCreateThunkFor(F)) {
writeThunk(F, G);
return true;
}
return false;
}
/// Returns true if \p F is either weak_odr or linkonce_odr.
static bool isODR(const Function *F) {
return F->hasWeakODRLinkage() || F->hasLinkOnceODRLinkage();
}
// Merge two equivalent functions. Upon completion, Function G is deleted.
void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
// Create a new thunk that both F and G can call, if F cannot call G directly.
// That is the case if F is either interposable or if G is either weak_odr or
// linkonce_odr.
if (F->isInterposable() || (isODR(F) && isODR(G))) {
assert((!isODR(G) || isODR(F)) &&
"if G is ODR, F must also be ODR due to ordering");
// Both writeThunkOrAliasIfNeeded() calls below must succeed, either because
// we can create aliases for G and NewF, or because a thunk for F is
// profitable. F here has the same signature as NewF below, so that's what
// we check.
if (!canCreateThunkFor(F) &&
(!canCreateAliasFor(F) || !canCreateAliasFor(G)))
return;
// Make them both thunks to the same internal function.
Function *NewF = Function::Create(F->getFunctionType(), F->getLinkage(),
F->getAddressSpace(), "", F->getParent());
NewF->copyAttributesFrom(F);
NewF->takeName(F);
NewF->setComdat(F->getComdat());
F->setComdat(nullptr);
// Ensure CFI type metadata is propagated to the new function.
copyMetadataIfPresent(F, NewF, "type");
copyMetadataIfPresent(F, NewF, "kcfi_type");
removeUsers(F);
F->replaceAllUsesWith(NewF);
// If G or NewF are (weak|linkonce)_odr, update all callers to call the
// thunk.
if (isODR(G))
replaceDirectCallers(G, F);
if (isODR(F))
replaceDirectCallers(NewF, F);
// We collect alignment before writeThunkOrAliasIfNeeded that overwrites
// NewF and G's content.
const MaybeAlign NewFAlign = NewF->getAlign();
const MaybeAlign GAlign = G->getAlign();
writeThunkOrAliasIfNeeded(F, G);
writeThunkOrAliasIfNeeded(F, NewF);
if (NewFAlign || GAlign)
F->setAlignment(std::max(NewFAlign.valueOrOne(), GAlign.valueOrOne()));
else
F->setAlignment(std::nullopt);
F->setLinkage(GlobalValue::PrivateLinkage);
++NumDoubleWeak;
++NumFunctionsMerged;
} else {
// For better debugability, under MergeFunctionsPDI, we do not modify G's
// call sites to point to F even when within the same translation unit.
if (!G->isInterposable() && !MergeFunctionsPDI) {
// Functions referred to by llvm.used/llvm.compiler.used are special:
// there are uses of the symbol name that are not visible to LLVM,
// usually from inline asm.
if (G->hasGlobalUnnamedAddr() && !Used.contains(G)) {
// G might have been a key in our GlobalNumberState, and it's illegal
// to replace a key in ValueMap<GlobalValue *> with a non-global.
GlobalNumbers.erase(G);
// If G's address is not significant, replace it entirely.
removeUsers(G);
G->replaceAllUsesWith(F);
} else {
// Redirect direct callers of G to F. (See note on MergeFunctionsPDI
// above).
replaceDirectCallers(G, F);
}
}
// If G was internal then we may have replaced all uses of G with F. If so,
// stop here and delete G. There's no need for a thunk. (See note on
// MergeFunctionsPDI above).
if (G->isDiscardableIfUnused() && G->use_empty() && !MergeFunctionsPDI) {
G->eraseFromParent();
++NumFunctionsMerged;
return;
}
if (writeThunkOrAliasIfNeeded(F, G)) {
++NumFunctionsMerged;
}
}
}
/// Replace function F by function G.
void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
Function *G) {
Function *F = FN.getFunc();
assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
"The two functions must be equal");
auto I = FNodesInTree.find(F);
assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");
FnTreeType::iterator IterToFNInFnTree = I->second;
assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
// Remove F -> FN and insert G -> FN
FNodesInTree.erase(I);
FNodesInTree.insert({G, IterToFNInFnTree});
// Replace F with G in FN, which is stored inside the FnTree.
FN.replaceBy(G);
}
// Ordering for functions that are equal under FunctionComparator
static bool isFuncOrderCorrect(const Function *F, const Function *G) {
if (isODR(F) != isODR(G)) {
// ODR functions before non-ODR functions. A ODR function can call a non-ODR
// function if it is not interposable, but not the other way around.
return isODR(G);
}
if (F->isInterposable() != G->isInterposable()) {
// Strong before weak, because the weak function may call the strong
// one, but not the other way around.
return !F->isInterposable();
}
if (F->hasLocalLinkage() != G->hasLocalLinkage()) {
// External before local, because we definitely have to keep the external
// function, but may be able to drop the local one.
return !F->hasLocalLinkage();
}
// Impose a total order (by name) on the replacement of functions. This is
// important when operating on more than one module independently to prevent
// cycles of thunks calling each other when the modules are linked together.
return F->getName() <= G->getName();
}
// Insert a ComparableFunction into the FnTree, or merge it away if equal to one
// that was already inserted.
bool MergeFunctions::insert(Function *NewFunction) {
std::pair<FnTreeType::iterator, bool> Result =
FnTree.insert(FunctionNode(NewFunction));
if (Result.second) {
assert(FNodesInTree.count(NewFunction) == 0);
FNodesInTree.insert({NewFunction, Result.first});
LLVM_DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName()
<< '\n');
return false;
}
const FunctionNode &OldF = *Result.first;
if (!isFuncOrderCorrect(OldF.getFunc(), NewFunction)) {
// Swap the two functions.
Function *F = OldF.getFunc();
replaceFunctionInTree(*Result.first, NewFunction);
NewFunction = F;
assert(OldF.getFunc() != F && "Must have swapped the functions.");
}
LLVM_DEBUG(dbgs() << " " << OldF.getFunc()->getName()
<< " == " << NewFunction->getName() << '\n');
Function *DeleteF = NewFunction;
mergeTwoFunctions(OldF.getFunc(), DeleteF);
this->DelToNewMap.insert({DeleteF, OldF.getFunc()});
return true;
}
// Remove a function from FnTree. If it was already in FnTree, add
// it to Deferred so that we'll look at it in the next round.
void MergeFunctions::remove(Function *F) {
auto I = FNodesInTree.find(F);
if (I != FNodesInTree.end()) {
LLVM_DEBUG(dbgs() << "Deferred " << F->getName() << ".\n");
FnTree.erase(I->second);
// I->second has been invalidated, remove it from the FNodesInTree map to
// preserve the invariant.
FNodesInTree.erase(I);
Deferred.emplace_back(F);
}
}
// For each instruction used by the value, remove() the function that contains
// the instruction. This should happen right before a call to RAUW.
void MergeFunctions::removeUsers(Value *V) {
for (User *U : V->users())
if (auto *I = dyn_cast<Instruction>(U))
remove(I->getFunction());
}