llvm-project/llvm/utils/TableGen/Basic/DirectiveEmitter.cpp
Krzysztof Parzyszek 661cbd5a52
[utils][TableGen] Make some non-bitmask enums iterable (#148647)
Additionally, add sentinel values <Enum>::First_ and <Enum>::Last_ to
each one of those enums.

This will allow using `enum_seq_inclusive` to generate the list of
enum-typed values of any generated scoped (non-bitmask) enum.
2025-07-17 11:27:47 -05:00

1445 lines
52 KiB
C++

//===- DirectiveEmitter.cpp - Directive Language Emitter ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// DirectiveEmitter uses the descriptions of directives and clauses to construct
// common code declarations to be used in Frontends.
//
//===----------------------------------------------------------------------===//
#include "llvm/TableGen/DirectiveEmitter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <numeric>
#include <string>
#include <vector>
using namespace llvm;
namespace {
// Simple RAII helper for defining ifdef-undef-endif scopes.
class IfDefScope {
public:
IfDefScope(StringRef Name, raw_ostream &OS) : Name(Name), OS(OS) {
OS << "#ifdef " << Name << "\n"
<< "#undef " << Name << "\n";
}
~IfDefScope() { OS << "\n#endif // " << Name << "\n\n"; }
private:
StringRef Name;
raw_ostream &OS;
};
} // namespace
namespace {
enum class Frontend { LLVM, Flang, Clang };
StringRef getFESpelling(Frontend FE) {
switch (FE) {
case Frontend::LLVM:
return "llvm";
case Frontend::Flang:
return "flang";
case Frontend::Clang:
return "clang";
}
llvm_unreachable("unknown FE kind");
}
} // namespace
// Get the full namespace qualifier for the directive language.
static std::string getQualifier(const DirectiveLanguage &DirLang,
Frontend FE = Frontend::LLVM) {
return (Twine(getFESpelling(FE)) + "::" + DirLang.getCppNamespace().str() +
"::")
.str();
}
// Get prefixed formatted name, e.g. for "target data", get "OMPD_target_data".
// This should work for any Record as long as BaseRecord::getFormattedName
// works.
static std::string getIdentifierName(const Record *Rec, StringRef Prefix) {
return Prefix.str() + BaseRecord(Rec).getFormattedName();
}
using RecordWithSpelling = std::pair<const Record *, Spelling::Value>;
static std::vector<RecordWithSpelling>
getSpellings(ArrayRef<const Record *> Records) {
std::vector<RecordWithSpelling> List;
for (const Record *R : Records) {
BaseRecord Rec(R);
llvm::transform(Rec.getSpellings(), std::back_inserter(List),
[R](Spelling::Value V) { return std::make_pair(R, V); });
}
return List;
}
static void generateEnumExports(ArrayRef<const Record *> Records,
raw_ostream &OS, StringRef Enum,
StringRef Prefix) {
for (const Record *R : Records) {
std::string N = getIdentifierName(R, Prefix);
OS << "constexpr auto " << N << " = " << Enum << "::" << N << ";\n";
}
}
// Generate enum class. Entries are emitted in the order in which they appear
// in the `Records` vector.
static void generateEnumClass(ArrayRef<const Record *> Records, raw_ostream &OS,
StringRef Enum, StringRef Prefix,
bool ExportEnums) {
OS << "\n";
OS << "enum class " << Enum << " {\n";
if (!Records.empty()) {
std::string N;
for (auto [I, R] : llvm::enumerate(Records)) {
N = getIdentifierName(R, Prefix);
OS << " " << N << ",\n";
// Make the sentinel names less likely to conflict with actual names...
if (I == 0)
OS << " First_ = " << N << ",\n";
}
OS << " Last_ = " << N << ",\n";
}
OS << "};\n";
OS << "\n";
OS << "static constexpr std::size_t " << Enum
<< "_enumSize = " << Records.size() << ";\n";
// Make the enum values available in the defined namespace. This allows us to
// write something like Enum_X if we have a `using namespace <CppNamespace>`.
// At the same time we do not loose the strong type guarantees of the enum
// class, that is we cannot pass an unsigned as Directive without an explicit
// cast.
if (ExportEnums) {
OS << "\n";
generateEnumExports(Records, OS, Enum, Prefix);
}
}
// Generate enum class with values corresponding to different bit positions.
// Entries are emitted in the order in which they appear in the `Records`
// vector.
static void generateEnumBitmask(ArrayRef<const Record *> Records,
raw_ostream &OS, StringRef Enum,
StringRef Prefix, bool ExportEnums) {
assert(Records.size() <= 64 && "Too many values for a bitmask");
StringRef Type = Records.size() <= 32 ? "uint32_t" : "uint64_t";
StringRef TypeSuffix = Records.size() <= 32 ? "U" : "ULL";
OS << "\n";
OS << "enum class " << Enum << " : " << Type << " {\n";
std::string LastName;
for (auto [I, R] : llvm::enumerate(Records)) {
LastName = getIdentifierName(R, Prefix);
OS << " " << LastName << " = " << (1ull << I) << TypeSuffix << ",\n";
}
OS << " LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/" << LastName << ")\n";
OS << "};\n";
OS << "\n";
OS << "static constexpr std::size_t " << Enum
<< "_enumSize = " << Records.size() << ";\n";
// Make the enum values available in the defined namespace. This allows us to
// write something like Enum_X if we have a `using namespace <CppNamespace>`.
// At the same time we do not loose the strong type guarantees of the enum
// class, that is we cannot pass an unsigned as Directive without an explicit
// cast.
if (ExportEnums) {
OS << "\n";
generateEnumExports(Records, OS, Enum, Prefix);
}
}
// Generate enums for values that clauses can take.
// Also generate function declarations for get<Enum>Name(StringRef Str).
static void generateClauseEnumVal(ArrayRef<const Record *> Records,
raw_ostream &OS,
const DirectiveLanguage &DirLang,
std::string &EnumHelperFuncs) {
for (const Record *R : Records) {
Clause C(R);
const auto &ClauseVals = C.getClauseVals();
if (ClauseVals.size() <= 0)
continue;
StringRef Enum = C.getEnumName();
if (Enum.empty()) {
PrintError("enumClauseValue field not set in Clause" +
C.getFormattedName() + ".");
return;
}
OS << "\n";
OS << "enum class " << Enum << " {\n";
for (const EnumVal Val : ClauseVals)
OS << " " << Val.getRecordName() << "=" << Val.getValue() << ",\n";
OS << "};\n";
if (DirLang.hasMakeEnumAvailableInNamespace()) {
OS << "\n";
for (const auto &CV : ClauseVals) {
OS << "constexpr auto " << CV->getName() << " = " << Enum
<< "::" << CV->getName() << ";\n";
}
EnumHelperFuncs += (Twine("LLVM_ABI ") + Twine(Enum) + Twine(" get") +
Twine(Enum) + Twine("(StringRef Str);\n"))
.str();
EnumHelperFuncs +=
(Twine("LLVM_ABI StringRef get") + Twine(DirLang.getName()) +
Twine(Enum) + Twine("Name(") + Twine(Enum) + Twine(" x);\n"))
.str();
}
}
}
static bool hasDuplicateClauses(ArrayRef<const Record *> Clauses,
const Directive &Directive,
StringSet<> &CrtClauses) {
bool HasError = false;
for (const VersionedClause VerClause : Clauses) {
StringRef Name = VerClause.getClause().getRecordName();
const auto InsRes = CrtClauses.insert(Name);
if (!InsRes.second) {
PrintError("Clause " + Name + " already defined on directive " +
Directive.getRecordName());
HasError = true;
}
}
return HasError;
}
// Check for duplicate clauses in lists. Clauses cannot appear twice in the
// three allowed list. Also, since required implies allowed, clauses cannot
// appear in both the allowedClauses and requiredClauses lists.
static bool
hasDuplicateClausesInDirectives(ArrayRef<const Record *> Directives) {
bool HasDuplicate = false;
for (const Directive Dir : Directives) {
StringSet<> Clauses;
// Check for duplicates in the three allowed lists.
if (hasDuplicateClauses(Dir.getAllowedClauses(), Dir, Clauses) ||
hasDuplicateClauses(Dir.getAllowedOnceClauses(), Dir, Clauses) ||
hasDuplicateClauses(Dir.getAllowedExclusiveClauses(), Dir, Clauses)) {
HasDuplicate = true;
}
// Check for duplicate between allowedClauses and required
Clauses.clear();
if (hasDuplicateClauses(Dir.getAllowedClauses(), Dir, Clauses) ||
hasDuplicateClauses(Dir.getRequiredClauses(), Dir, Clauses)) {
HasDuplicate = true;
}
if (HasDuplicate)
PrintFatalError("One or more clauses are defined multiple times on"
" directive " +
Dir.getRecordName());
}
return HasDuplicate;
}
// Check consitency of records. Return true if an error has been detected.
// Return false if the records are valid.
bool DirectiveLanguage::HasValidityErrors() const {
if (getDirectiveLanguages().size() != 1) {
PrintFatalError("A single definition of DirectiveLanguage is needed.");
return true;
}
return hasDuplicateClausesInDirectives(getDirectives());
}
// Count the maximum number of leaf constituents per construct.
static size_t getMaxLeafCount(const DirectiveLanguage &DirLang) {
size_t MaxCount = 0;
for (const Directive D : DirLang.getDirectives())
MaxCount = std::max(MaxCount, D.getLeafConstructs().size());
return MaxCount;
}
// Generate the declaration section for the enumeration in the directive
// language.
static void emitDirectivesDecl(const RecordKeeper &Records, raw_ostream &OS) {
const auto DirLang = DirectiveLanguage(Records);
if (DirLang.HasValidityErrors())
return;
StringRef Lang = DirLang.getName();
OS << "#ifndef LLVM_" << Lang << "_INC\n";
OS << "#define LLVM_" << Lang << "_INC\n";
OS << "\n#include \"llvm/ADT/ArrayRef.h\"\n";
if (DirLang.hasEnableBitmaskEnumInNamespace())
OS << "#include \"llvm/ADT/BitmaskEnum.h\"\n";
OS << "#include \"llvm/ADT/Sequence.h\"\n";
OS << "#include \"llvm/ADT/StringRef.h\"\n";
OS << "#include \"llvm/Frontend/Directive/Spelling.h\"\n";
OS << "#include \"llvm/Support/Compiler.h\"\n";
OS << "#include <cstddef>\n"; // for size_t
OS << "#include <utility>\n"; // for std::pair
OS << "\n";
OS << "namespace llvm {\n";
// Open namespaces defined in the directive language
SmallVector<StringRef, 2> Namespaces;
SplitString(DirLang.getCppNamespace(), Namespaces, "::");
for (auto Ns : Namespaces)
OS << "namespace " << Ns << " {\n";
if (DirLang.hasEnableBitmaskEnumInNamespace())
OS << "\nLLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();\n";
// Emit Directive associations
std::vector<const Record *> Associations;
copy_if(DirLang.getAssociations(), std::back_inserter(Associations),
// Skip the "special" value
[](const Record *Def) { return Def->getName() != "AS_FromLeaves"; });
generateEnumClass(Associations, OS, "Association",
/*Prefix=*/"", /*ExportEnums=*/false);
generateEnumClass(DirLang.getCategories(), OS, "Category", /*Prefix=*/"",
/*ExportEnums=*/false);
generateEnumBitmask(DirLang.getSourceLanguages(), OS, "SourceLanguage",
/*Prefix=*/"", /*ExportEnums=*/false);
// Emit Directive enumeration
generateEnumClass(DirLang.getDirectives(), OS, "Directive",
DirLang.getDirectivePrefix(),
DirLang.hasMakeEnumAvailableInNamespace());
// Emit Clause enumeration
generateEnumClass(DirLang.getClauses(), OS, "Clause",
DirLang.getClausePrefix(),
DirLang.hasMakeEnumAvailableInNamespace());
// Emit ClauseVals enumeration
std::string EnumHelperFuncs;
generateClauseEnumVal(DirLang.getClauses(), OS, DirLang, EnumHelperFuncs);
// Generic function signatures
OS << "\n";
OS << "// Enumeration helper functions\n";
OS << "LLVM_ABI std::pair<Directive, directive::VersionRange> get" << Lang
<< "DirectiveKindAndVersions(StringRef Str);\n";
OS << "inline Directive get" << Lang << "DirectiveKind(StringRef Str) {\n";
OS << " return get" << Lang << "DirectiveKindAndVersions(Str).first;\n";
OS << "}\n";
OS << "\n";
OS << "LLVM_ABI StringRef get" << Lang
<< "DirectiveName(Directive D, unsigned Ver = 0);\n";
OS << "\n";
OS << "LLVM_ABI std::pair<Clause, directive::VersionRange> get" << Lang
<< "ClauseKindAndVersions(StringRef Str);\n";
OS << "\n";
OS << "inline Clause get" << Lang << "ClauseKind(StringRef Str) {\n";
OS << " return get" << Lang << "ClauseKindAndVersions(Str).first;\n";
OS << "}\n";
OS << "\n";
OS << "LLVM_ABI StringRef get" << Lang
<< "ClauseName(Clause C, unsigned Ver = 0);\n";
OS << "\n";
OS << "/// Return true if \\p C is a valid clause for \\p D in version \\p "
<< "Version.\n";
OS << "LLVM_ABI bool isAllowedClauseForDirective(Directive D, "
<< "Clause C, unsigned Version);\n";
OS << "\n";
OS << "constexpr std::size_t getMaxLeafCount() { return "
<< getMaxLeafCount(DirLang) << "; }\n";
OS << "LLVM_ABI Association getDirectiveAssociation(Directive D);\n";
OS << "LLVM_ABI Category getDirectiveCategory(Directive D);\n";
OS << "LLVM_ABI SourceLanguage getDirectiveLanguages(Directive D);\n";
if (EnumHelperFuncs.length() > 0) {
OS << EnumHelperFuncs;
OS << "\n";
}
// Closing namespaces
for (auto Ns : reverse(Namespaces))
OS << "} // namespace " << Ns << "\n";
// These specializations need to be in ::llvm.
for (StringRef Enum : {"Association", "Category", "Directive", "Clause"}) {
OS << "\n";
OS << "template <> struct enum_iteration_traits<"
<< DirLang.getCppNamespace() << "::" << Enum << "> {\n";
OS << " static constexpr bool is_iterable = true;\n";
OS << "};\n";
}
OS << "} // namespace llvm\n";
OS << "#endif // LLVM_" << Lang << "_INC\n";
}
// Given a list of spellings (for a given clause/directive), order them
// in a way that allows the use of binary search to locate a spelling
// for a specified version.
static std::vector<Spelling::Value>
orderSpellings(ArrayRef<Spelling::Value> Spellings) {
std::vector<Spelling::Value> List(Spellings.begin(), Spellings.end());
llvm::stable_sort(List,
[](const Spelling::Value &A, const Spelling::Value &B) {
return A.Versions < B.Versions;
});
return List;
}
// Generate function implementation for get<Enum>Name(StringRef Str)
static void generateGetName(ArrayRef<const Record *> Records, raw_ostream &OS,
StringRef Enum, const DirectiveLanguage &DirLang,
StringRef Prefix) {
StringRef Lang = DirLang.getName();
std::string Qual = getQualifier(DirLang);
OS << "\n";
OS << "llvm::StringRef " << Qual << "get" << Lang << Enum << "Name(" << Qual
<< Enum << " Kind, unsigned Version) {\n";
OS << " switch (Kind) {\n";
for (const Record *R : Records) {
BaseRecord Rec(R);
std::string Ident = getIdentifierName(R, Prefix);
OS << " case " << Ident << ":";
std::vector<Spelling::Value> Spellings(orderSpellings(Rec.getSpellings()));
assert(Spellings.size() != 0 && "No spellings for this item");
if (Spellings.size() == 1) {
OS << "\n";
OS << " return \"" << Spellings.front().Name << "\";\n";
} else {
OS << " {\n";
std::string SpellingsName = Ident + "_spellings";
OS << " static constexpr llvm::directive::Spelling " << SpellingsName
<< "[] = {\n";
for (auto &S : Spellings) {
OS << " {\"" << S.Name << "\", {" << S.Versions.Min << ", "
<< S.Versions.Max << "}},\n";
}
OS << " };\n";
OS << " return llvm::directive::FindName(" << SpellingsName
<< ", Version);\n";
OS << " }\n";
}
}
OS << " }\n"; // switch
OS << " llvm_unreachable(\"Invalid " << Lang << " " << Enum << " kind\");\n";
OS << "}\n";
}
// Generate function implementation for get<Enum>KindAndVersions(StringRef Str)
static void generateGetKind(ArrayRef<const Record *> Records, raw_ostream &OS,
StringRef Enum, const DirectiveLanguage &DirLang,
StringRef Prefix, bool ImplicitAsUnknown) {
const auto *DefaultIt = find_if(
Records, [](const Record *R) { return R->getValueAsBit("isDefault"); });
if (DefaultIt == Records.end()) {
PrintError("At least one " + Enum + " must be defined as default.");
return;
}
BaseRecord DefaultRec(*DefaultIt);
std::string Qual = getQualifier(DirLang);
std::string DefaultName = getIdentifierName(*DefaultIt, Prefix);
// std::pair<<Enum>, VersionRange>
// get<DirLang><Enum>KindAndVersions(StringRef Str);
OS << "\n";
OS << "std::pair<" << Qual << Enum << ", llvm::directive::VersionRange> "
<< Qual << "get" << DirLang.getName() << Enum
<< "KindAndVersions(llvm::StringRef Str) {\n";
OS << " directive::VersionRange All; // Default-initialized to \"all "
"versions\"\n";
OS << " return StringSwitch<std::pair<" << Enum << ", "
<< "directive::VersionRange>>(Str)\n";
directive::VersionRange All;
for (const Record *R : Records) {
BaseRecord Rec(R);
std::string Ident = ImplicitAsUnknown && R->getValueAsBit("isImplicit")
? DefaultName
: getIdentifierName(R, Prefix);
for (auto &[Name, Versions] : Rec.getSpellings()) {
OS << " .Case(\"" << Name << "\", {" << Ident << ", ";
if (Versions.Min == All.Min && Versions.Max == All.Max)
OS << "All})\n";
else
OS << "{" << Versions.Min << ", " << Versions.Max << "}})\n";
}
}
OS << " .Default({" << DefaultName << ", All});\n";
OS << "}\n";
}
// Generate function implementations for
// <enumClauseValue> get<enumClauseValue>(StringRef Str) and
// StringRef get<enumClauseValue>Name(<enumClauseValue>)
static void generateGetClauseVal(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
StringRef Lang = DirLang.getName();
std::string Qual = getQualifier(DirLang);
for (const Clause C : DirLang.getClauses()) {
const auto &ClauseVals = C.getClauseVals();
if (ClauseVals.size() <= 0)
continue;
auto DefaultIt = find_if(ClauseVals, [](const Record *CV) {
return CV->getValueAsBit("isDefault");
});
if (DefaultIt == ClauseVals.end()) {
PrintError("At least one val in Clause " + C.getRecordName() +
" must be defined as default.");
return;
}
const auto DefaultName = (*DefaultIt)->getName();
StringRef Enum = C.getEnumName();
if (Enum.empty()) {
PrintError("enumClauseValue field not set in Clause" + C.getRecordName() +
".");
return;
}
OS << "\n";
OS << Qual << Enum << " " << Qual << "get" << Enum
<< "(llvm::StringRef Str) {\n";
OS << " return StringSwitch<" << Enum << ">(Str)\n";
for (const EnumVal Val : ClauseVals) {
OS << " .Case(\"" << Val.getFormattedName() << "\","
<< Val.getRecordName() << ")\n";
}
OS << " .Default(" << DefaultName << ");\n";
OS << "}\n";
OS << "\n";
OS << "llvm::StringRef " << Qual << "get" << Lang << Enum << "Name(" << Qual
<< Enum << " x) {\n";
OS << " switch (x) {\n";
for (const EnumVal Val : ClauseVals) {
OS << " case " << Val.getRecordName() << ":\n";
OS << " return \"" << Val.getFormattedName() << "\";\n";
}
OS << " }\n"; // switch
OS << " llvm_unreachable(\"Invalid " << Lang << " " << Enum
<< " kind\");\n";
OS << "}\n";
}
}
static void generateCaseForVersionedClauses(ArrayRef<const Record *> VerClauses,
raw_ostream &OS,
const DirectiveLanguage &DirLang,
StringSet<> &Cases) {
StringRef Prefix = DirLang.getClausePrefix();
for (const Record *R : VerClauses) {
VersionedClause VerClause(R);
std::string Name =
getIdentifierName(VerClause.getClause().getRecord(), Prefix);
if (Cases.insert(Name).second) {
OS << " case " << Name << ":\n";
OS << " return " << VerClause.getMinVersion()
<< " <= Version && " << VerClause.getMaxVersion() << " >= Version;\n";
}
}
}
// Generate the isAllowedClauseForDirective function implementation.
static void generateIsAllowedClause(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
std::string Qual = getQualifier(DirLang);
OS << "\n";
OS << "bool " << Qual << "isAllowedClauseForDirective(" << Qual
<< "Directive D, " << Qual << "Clause C, unsigned Version) {\n";
OS << " assert(unsigned(D) <= Directive_enumSize);\n";
OS << " assert(unsigned(C) <= Clause_enumSize);\n";
OS << " switch (D) {\n";
StringRef Prefix = DirLang.getDirectivePrefix();
for (const Record *R : DirLang.getDirectives()) {
Directive Dir(R);
OS << " case " << getIdentifierName(R, Prefix) << ":\n";
if (Dir.getAllowedClauses().empty() &&
Dir.getAllowedOnceClauses().empty() &&
Dir.getAllowedExclusiveClauses().empty() &&
Dir.getRequiredClauses().empty()) {
OS << " return false;\n";
} else {
OS << " switch (C) {\n";
StringSet<> Cases;
generateCaseForVersionedClauses(Dir.getAllowedClauses(), OS, DirLang,
Cases);
generateCaseForVersionedClauses(Dir.getAllowedOnceClauses(), OS, DirLang,
Cases);
generateCaseForVersionedClauses(Dir.getAllowedExclusiveClauses(), OS,
DirLang, Cases);
generateCaseForVersionedClauses(Dir.getRequiredClauses(), OS, DirLang,
Cases);
OS << " default:\n";
OS << " return false;\n";
OS << " }\n"; // End of clauses switch
}
OS << " break;\n";
}
OS << " }\n"; // End of directives switch
OS << " llvm_unreachable(\"Invalid " << DirLang.getName()
<< " Directive kind\");\n";
OS << "}\n"; // End of function isAllowedClauseForDirective
}
static void emitLeafTable(const DirectiveLanguage &DirLang, raw_ostream &OS,
StringRef TableName) {
// The leaf constructs are emitted in a form of a 2D table, where each
// row corresponds to a directive (and there is a row for each directive).
//
// Each row consists of
// - the id of the directive itself,
// - number of leaf constructs that will follow (0 for leafs),
// - ids of the leaf constructs (none if the directive is itself a leaf).
// The total number of these entries is at most MaxLeafCount+2. If this
// number is less than that, it is padded to occupy exactly MaxLeafCount+2
// entries in memory.
//
// The rows are stored in the table in the lexicographical order. This
// is intended to enable binary search when mapping a sequence of leafs
// back to the compound directive.
// The consequence of that is that in order to find a row corresponding
// to the given directive, we'd need to scan the first element of each
// row. To avoid this, an auxiliary ordering table is created, such that
// row for Dir_A = table[auxiliary[Dir_A]].
ArrayRef<const Record *> Directives = DirLang.getDirectives();
DenseMap<const Record *, int> DirId; // Record * -> llvm::omp::Directive
for (auto [Idx, Rec] : enumerate(Directives))
DirId.try_emplace(Rec, Idx);
using LeafList = std::vector<int>;
int MaxLeafCount = getMaxLeafCount(DirLang);
// The initial leaf table, rows order is same as directive order.
std::vector<LeafList> LeafTable(Directives.size());
for (auto [Idx, Rec] : enumerate(Directives)) {
Directive Dir(Rec);
std::vector<const Record *> Leaves = Dir.getLeafConstructs();
auto &List = LeafTable[Idx];
List.resize(MaxLeafCount + 2);
List[0] = Idx; // The id of the directive itself.
List[1] = Leaves.size(); // The number of leaves to follow.
for (int I = 0; I != MaxLeafCount; ++I)
List[I + 2] =
static_cast<size_t>(I) < Leaves.size() ? DirId.at(Leaves[I]) : -1;
}
// Some Fortran directives are delimited, i.e. they have the form of
// "directive"---"end directive". If "directive" is a compound construct,
// then the set of leaf constituents will be nonempty and the same for
// both directives. Given this set of leafs, looking up the corresponding
// compound directive should return "directive", and not "end directive".
// To avoid this problem, gather all "end directives" at the end of the
// leaf table, and only do the search on the initial segment of the table
// that excludes the "end directives".
// It's safe to find all directives whose names begin with "end ". The
// problem only exists for compound directives, like "end do simd".
// All existing directives with names starting with "end " are either
// "end directives" for an existing "directive", or leaf directives
// (such as "end declare target").
DenseSet<int> EndDirectives;
for (auto [Rec, Id] : DirId) {
// FIXME: This will need to recognize different spellings for different
// versions.
StringRef Name = Directive(Rec).getSpellingForIdentifier();
if (Name.starts_with_insensitive("end "))
EndDirectives.insert(Id);
}
// Avoid sorting the vector<vector> array, instead sort an index array.
// It will also be useful later to create the auxiliary indexing array.
std::vector<int> Ordering(Directives.size());
std::iota(Ordering.begin(), Ordering.end(), 0);
llvm::sort(Ordering, [&](int A, int B) {
auto &LeavesA = LeafTable[A];
auto &LeavesB = LeafTable[B];
int DirA = LeavesA[0], DirB = LeavesB[0];
// First of all, end directives compare greater than non-end directives.
bool IsEndA = EndDirectives.contains(DirA);
bool IsEndB = EndDirectives.contains(DirB);
if (IsEndA != IsEndB)
return IsEndA < IsEndB;
if (LeavesA[1] == 0 && LeavesB[1] == 0)
return DirA < DirB;
return std::lexicographical_compare(&LeavesA[2], &LeavesA[2] + LeavesA[1],
&LeavesB[2], &LeavesB[2] + LeavesB[1]);
});
// Emit the table
// The directives are emitted into a scoped enum, for which the underlying
// type is `int` (by default). The code above uses `int` to store directive
// ids, so make sure that we catch it when something changes in the
// underlying type.
StringRef Prefix = DirLang.getDirectivePrefix();
std::string Qual = getQualifier(DirLang);
std::string DirectiveType = Qual + "Directive";
OS << "\nstatic_assert(sizeof(" << DirectiveType << ") == sizeof(int));\n";
OS << "[[maybe_unused]] static const " << DirectiveType << ' ' << TableName
<< "[][" << MaxLeafCount + 2 << "] = {\n";
for (size_t I = 0, E = Directives.size(); I != E; ++I) {
auto &Leaves = LeafTable[Ordering[I]];
OS << " {" << Qual << getIdentifierName(Directives[Leaves[0]], Prefix);
OS << ", static_cast<" << DirectiveType << ">(" << Leaves[1] << "),";
for (size_t I = 2, E = Leaves.size(); I != E; ++I) {
int Idx = Leaves[I];
if (Idx >= 0)
OS << ' ' << Qual << getIdentifierName(Directives[Leaves[I]], Prefix)
<< ',';
else
OS << " static_cast<" << DirectiveType << ">(-1),";
}
OS << "},\n";
}
OS << "};\n\n";
// Emit a marker where the first "end directive" is.
auto FirstE = find_if(Ordering, [&](int RowIdx) {
return EndDirectives.contains(LeafTable[RowIdx][0]);
});
OS << "[[maybe_unused]] static auto " << TableName
<< "EndDirective = " << TableName << " + "
<< std::distance(Ordering.begin(), FirstE) << ";\n\n";
// Emit the auxiliary index table: it's the inverse of the `Ordering`
// table above.
OS << "[[maybe_unused]] static const int " << TableName << "Ordering[] = {\n";
OS << " ";
std::vector<int> Reverse(Ordering.size());
for (int I = 0, E = Ordering.size(); I != E; ++I)
Reverse[Ordering[I]] = I;
for (int Idx : Reverse)
OS << ' ' << Idx << ',';
OS << "\n};\n";
}
static void generateGetDirectiveAssociation(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
enum struct Association {
None = 0, // None should be the smallest value.
Block, // The values of the rest don't matter.
Declaration,
Delimited,
Loop,
Separating,
FromLeaves,
Invalid,
};
ArrayRef<const Record *> Associations = DirLang.getAssociations();
auto GetAssocValue = [](StringRef Name) -> Association {
return StringSwitch<Association>(Name)
.Case("AS_Block", Association::Block)
.Case("AS_Declaration", Association::Declaration)
.Case("AS_Delimited", Association::Delimited)
.Case("AS_Loop", Association::Loop)
.Case("AS_None", Association::None)
.Case("AS_Separating", Association::Separating)
.Case("AS_FromLeaves", Association::FromLeaves)
.Default(Association::Invalid);
};
auto GetAssocName = [&](Association A) -> StringRef {
if (A != Association::Invalid && A != Association::FromLeaves) {
const auto *F = find_if(Associations, [&](const Record *R) {
return GetAssocValue(R->getName()) == A;
});
if (F != Associations.end())
return (*F)->getValueAsString("name"); // enum name
}
llvm_unreachable("Unexpected association value");
};
auto ErrorPrefixFor = [&](Directive D) -> std::string {
return (Twine("Directive '") + D.getRecordName() + "' in namespace '" +
DirLang.getCppNamespace() + "' ")
.str();
};
auto Reduce = [&](Association A, Association B) -> Association {
if (A > B)
std::swap(A, B);
// Calculate the result using the following rules:
// x + x = x
// AS_None + x = x
// AS_Block + AS_Loop = AS_Loop
if (A == Association::None || A == B)
return B;
if (A == Association::Block && B == Association::Loop)
return B;
if (A == Association::Loop && B == Association::Block)
return A;
return Association::Invalid;
};
DenseMap<const Record *, Association> AsMap;
auto CompAssocImpl = [&](const Record *R, auto &&Self) -> Association {
if (auto F = AsMap.find(R); F != AsMap.end())
return F->second;
Directive D(R);
Association AS = GetAssocValue(D.getAssociation()->getName());
if (AS == Association::Invalid) {
PrintFatalError(ErrorPrefixFor(D) +
"has an unrecognized value for association: '" +
D.getAssociation()->getName() + "'");
}
if (AS != Association::FromLeaves) {
AsMap.try_emplace(R, AS);
return AS;
}
// Compute the association from leaf constructs.
std::vector<const Record *> Leaves = D.getLeafConstructs();
if (Leaves.empty()) {
PrintFatalError(ErrorPrefixFor(D) +
"requests association to be computed from leaves, "
"but it has no leaves");
}
Association Result = Self(Leaves[0], Self);
for (int I = 1, E = Leaves.size(); I < E; ++I) {
Association A = Self(Leaves[I], Self);
Association R = Reduce(Result, A);
if (R == Association::Invalid) {
PrintFatalError(ErrorPrefixFor(D) +
"has leaves with incompatible association values: " +
GetAssocName(A) + " and " + GetAssocName(R));
}
Result = R;
}
assert(Result != Association::Invalid);
assert(Result != Association::FromLeaves);
AsMap.try_emplace(R, Result);
return Result;
};
for (const Record *R : DirLang.getDirectives())
CompAssocImpl(R, CompAssocImpl); // Updates AsMap.
OS << '\n';
StringRef Prefix = DirLang.getDirectivePrefix();
std::string Qual = getQualifier(DirLang);
OS << Qual << "Association " << Qual << "getDirectiveAssociation(" << Qual
<< "Directive Dir) {\n";
OS << " switch (Dir) {\n";
for (const Record *R : DirLang.getDirectives()) {
if (auto F = AsMap.find(R); F != AsMap.end()) {
OS << " case " << getIdentifierName(R, Prefix) << ":\n";
OS << " return Association::" << GetAssocName(F->second) << ";\n";
}
}
OS << " } // switch (Dir)\n";
OS << " llvm_unreachable(\"Unexpected directive\");\n";
OS << "}\n";
}
static void generateGetDirectiveCategory(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
std::string Qual = getQualifier(DirLang);
OS << '\n';
OS << Qual << "Category " << Qual << "getDirectiveCategory(" << Qual
<< "Directive Dir) {\n";
OS << " switch (Dir) {\n";
StringRef Prefix = DirLang.getDirectivePrefix();
for (const Record *R : DirLang.getDirectives()) {
Directive D(R);
OS << " case " << getIdentifierName(R, Prefix) << ":\n";
OS << " return Category::" << D.getCategory()->getValueAsString("name")
<< ";\n";
}
OS << " } // switch (Dir)\n";
OS << " llvm_unreachable(\"Unexpected directive\");\n";
OS << "}\n";
}
static void generateGetDirectiveLanguages(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
std::string Qual = getQualifier(DirLang);
OS << '\n';
OS << Qual << "SourceLanguage " << Qual << "getDirectiveLanguages(" << Qual
<< "Directive D) {\n";
OS << " switch (D) {\n";
StringRef Prefix = DirLang.getDirectivePrefix();
for (const Record *R : DirLang.getDirectives()) {
Directive D(R);
OS << " case " << getIdentifierName(R, Prefix) << ":\n";
OS << " return ";
llvm::interleave(
D.getSourceLanguages(), OS,
[&](const Record *L) {
StringRef N = L->getValueAsString("name");
OS << "SourceLanguage::" << BaseRecord::getSnakeName(N);
},
" | ");
OS << ";\n";
}
OS << " } // switch(D)\n";
OS << " llvm_unreachable(\"Unexpected directive\");\n";
OS << "}\n";
}
// Generate a simple enum set with the give clauses.
static void generateClauseSet(ArrayRef<const Record *> VerClauses,
raw_ostream &OS, StringRef ClauseSetPrefix,
const Directive &Dir,
const DirectiveLanguage &DirLang, Frontend FE) {
OS << "\n";
OS << "static " << DirLang.getClauseEnumSetClass() << " " << ClauseSetPrefix
<< DirLang.getDirectivePrefix() << Dir.getFormattedName() << " {\n";
StringRef Prefix = DirLang.getClausePrefix();
for (const VersionedClause VerClause : VerClauses) {
Clause C = VerClause.getClause();
if (FE == Frontend::Flang) {
OS << " Clause::" << getIdentifierName(C.getRecord(), Prefix) << ",\n";
} else {
assert(FE == Frontend::Clang);
assert(DirLang.getName() == "OpenACC");
OS << " OpenACCClauseKind::" << C.getClangAccSpelling() << ",\n";
}
}
OS << "};\n";
}
// Generate an enum set for the 4 kinds of clauses linked to a directive.
static void generateDirectiveClauseSets(const DirectiveLanguage &DirLang,
Frontend FE, raw_ostream &OS) {
std::string IfDefName{"GEN_"};
IfDefName += getFESpelling(FE).upper();
IfDefName += "_DIRECTIVE_CLAUSE_SETS";
IfDefScope Scope(IfDefName, OS);
StringRef Namespace =
getFESpelling(FE == Frontend::Flang ? Frontend::LLVM : FE);
OS << "\n";
// The namespace has to be different for clang vs flang, as 2 structs with the
// same name but different layout is UB. So just put the 'clang' on in the
// clang namespace.
OS << "namespace " << Namespace << " {\n";
// Open namespaces defined in the directive language.
SmallVector<StringRef, 2> Namespaces;
SplitString(DirLang.getCppNamespace(), Namespaces, "::");
for (auto Ns : Namespaces)
OS << "namespace " << Ns << " {\n";
for (const Directive Dir : DirLang.getDirectives()) {
OS << "\n";
OS << "// Sets for " << Dir.getSpellingForIdentifier() << "\n";
generateClauseSet(Dir.getAllowedClauses(), OS, "allowedClauses_", Dir,
DirLang, FE);
generateClauseSet(Dir.getAllowedOnceClauses(), OS, "allowedOnceClauses_",
Dir, DirLang, FE);
generateClauseSet(Dir.getAllowedExclusiveClauses(), OS,
"allowedExclusiveClauses_", Dir, DirLang, FE);
generateClauseSet(Dir.getRequiredClauses(), OS, "requiredClauses_", Dir,
DirLang, FE);
}
// Closing namespaces
for (auto Ns : reverse(Namespaces))
OS << "} // namespace " << Ns << "\n";
OS << "} // namespace " << Namespace << "\n";
}
// Generate a map of directive (key) with DirectiveClauses struct as values.
// The struct holds the 4 sets of enumeration for the 4 kinds of clauses
// allowances (allowed, allowed once, allowed exclusive and required).
static void generateDirectiveClauseMap(const DirectiveLanguage &DirLang,
Frontend FE, raw_ostream &OS) {
std::string IfDefName{"GEN_"};
IfDefName += getFESpelling(FE).upper();
IfDefName += "_DIRECTIVE_CLAUSE_MAP";
IfDefScope Scope(IfDefName, OS);
OS << "\n";
OS << "{\n";
// The namespace has to be different for clang vs flang, as 2 structs with the
// same name but different layout is UB. So just put the 'clang' on in the
// clang namespace.
std::string Qual =
getQualifier(DirLang, FE == Frontend::Flang ? Frontend::LLVM : FE);
StringRef Prefix = DirLang.getDirectivePrefix();
for (const Record *R : DirLang.getDirectives()) {
Directive Dir(R);
std::string Name = getIdentifierName(R, Prefix);
OS << " {";
if (FE == Frontend::Flang) {
OS << Qual << "Directive::" << Name << ",\n";
} else {
assert(FE == Frontend::Clang);
assert(DirLang.getName() == "OpenACC");
OS << "clang::OpenACCDirectiveKind::" << Dir.getClangAccSpelling()
<< ",\n";
}
OS << " {\n";
OS << " " << Qual << "allowedClauses_" << Name << ",\n";
OS << " " << Qual << "allowedOnceClauses_" << Name << ",\n";
OS << " " << Qual << "allowedExclusiveClauses_" << Name << ",\n";
OS << " " << Qual << "requiredClauses_" << Name << ",\n";
OS << " }\n";
OS << " },\n";
}
OS << "}\n";
}
// Generate classes entry for Flang clauses in the Flang parse-tree
// If the clause as a non-generic class, no entry is generated.
// If the clause does not hold a value, an EMPTY_CLASS is used.
// If the clause class is generic then a WRAPPER_CLASS is used. When the value
// is optional, the value class is wrapped into a std::optional.
static void generateFlangClauseParserClass(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_CLASSES", OS);
OS << "\n";
for (const Clause Clause : DirLang.getClauses()) {
if (!Clause.getFlangClass().empty()) {
OS << "WRAPPER_CLASS(" << Clause.getFormattedParserClassName() << ", ";
if (Clause.isValueOptional() && Clause.isValueList()) {
OS << "std::optional<std::list<" << Clause.getFlangClass() << ">>";
} else if (Clause.isValueOptional()) {
OS << "std::optional<" << Clause.getFlangClass() << ">";
} else if (Clause.isValueList()) {
OS << "std::list<" << Clause.getFlangClass() << ">";
} else {
OS << Clause.getFlangClass();
}
} else {
OS << "EMPTY_CLASS(" << Clause.getFormattedParserClassName();
}
OS << ");\n";
}
}
// Generate a list of the different clause classes for Flang.
static void generateFlangClauseParserClassList(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_CLASSES_LIST", OS);
OS << "\n";
interleaveComma(DirLang.getClauses(), OS, [&](const Record *C) {
Clause Clause(C);
OS << Clause.getFormattedParserClassName() << "\n";
});
}
// Generate dump node list for the clauses holding a generic class name.
static void generateFlangClauseDump(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_DUMP_PARSE_TREE_CLAUSES", OS);
OS << "\n";
for (const Clause Clause : DirLang.getClauses()) {
OS << "NODE(" << DirLang.getFlangClauseBaseClass() << ", "
<< Clause.getFormattedParserClassName() << ")\n";
}
}
// Generate Unparse functions for clauses classes in the Flang parse-tree
// If the clause is a non-generic class, no entry is generated.
static void generateFlangClauseUnparse(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_UNPARSE", OS);
StringRef Base = DirLang.getFlangClauseBaseClass();
OS << "\n";
for (const Clause Clause : DirLang.getClauses()) {
if (Clause.skipFlangUnparser())
continue;
// The unparser doesn't know the effective version, so just pick some
// spelling.
StringRef SomeSpelling = Clause.getSpellingForIdentifier();
std::string Parser = Clause.getFormattedParserClassName();
std::string Upper = SomeSpelling.upper();
if (!Clause.getFlangClass().empty()) {
if (Clause.isValueOptional() && Clause.getDefaultValue().empty()) {
OS << "void Unparse(const " << Base << "::" << Parser << " &x) {\n";
OS << " Word(\"" << Upper << "\");\n";
OS << " Walk(\"(\", x.v, \")\");\n";
OS << "}\n";
} else if (Clause.isValueOptional()) {
OS << "void Unparse(const " << Base << "::" << Parser << " &x) {\n";
OS << " Word(\"" << Upper << "\");\n";
OS << " Put(\"(\");\n";
OS << " if (x.v.has_value())\n";
if (Clause.isValueList())
OS << " Walk(x.v, \",\");\n";
else
OS << " Walk(x.v);\n";
OS << " else\n";
OS << " Put(\"" << Clause.getDefaultValue() << "\");\n";
OS << " Put(\")\");\n";
OS << "}\n";
} else {
OS << "void Unparse(const " << Base << "::" << Parser << " &x) {\n";
OS << " Word(\"" << Upper << "\");\n";
OS << " Put(\"(\");\n";
if (Clause.isValueList())
OS << " Walk(x.v, \",\");\n";
else
OS << " Walk(x.v);\n";
OS << " Put(\")\");\n";
OS << "}\n";
}
} else {
OS << "void Before(const " << Base << "::" << Parser << " &) { Word(\""
<< Upper << "\"); }\n";
}
}
}
// Generate check in the Enter functions for clauses classes.
static void generateFlangClauseCheckPrototypes(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_CHECK_ENTER", OS);
OS << "\n";
for (const Clause Clause : DirLang.getClauses()) {
OS << "void Enter(const parser::" << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &);\n";
}
}
// Generate the mapping for clauses between the parser class and the
// corresponding clause Kind
static void generateFlangClauseParserKindMap(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_KIND_MAP", OS);
StringRef Prefix = DirLang.getClausePrefix();
std::string Qual = getQualifier(DirLang);
OS << "\n";
for (const Record *R : DirLang.getClauses()) {
Clause C(R);
OS << "if constexpr (std::is_same_v<A, parser::"
<< DirLang.getFlangClauseBaseClass()
<< "::" << C.getFormattedParserClassName();
OS << ">)\n";
OS << " return " << Qual << "Clause::" << getIdentifierName(R, Prefix)
<< ";\n";
}
OS << "llvm_unreachable(\"Invalid " << DirLang.getName()
<< " Parser clause\");\n";
}
// Generate the parser for the clauses.
static void generateFlangClausesParser(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
std::vector<const Record *> Clauses = DirLang.getClauses();
// Sort clauses in the reverse alphabetical order with respect to their
// names and aliases, so that longer names are tried before shorter ones.
std::vector<RecordWithSpelling> Names = getSpellings(Clauses);
llvm::sort(Names, [](const auto &A, const auto &B) {
return A.second.Name > B.second.Name;
});
IfDefScope Scope("GEN_FLANG_CLAUSES_PARSER", OS);
StringRef Base = DirLang.getFlangClauseBaseClass();
unsigned LastIndex = Names.size() - 1;
OS << "\n";
OS << "TYPE_PARSER(\n";
for (auto [Index, RecSp] : llvm::enumerate(Names)) {
auto [R, S] = RecSp;
Clause C(R);
StringRef FlangClass = C.getFlangClass();
OS << " \"" << S.Name << "\" >> construct<" << Base << ">(construct<"
<< Base << "::" << C.getFormattedParserClassName() << ">(";
if (FlangClass.empty()) {
OS << "))";
if (Index != LastIndex)
OS << " ||";
OS << "\n";
continue;
}
if (C.isValueOptional())
OS << "maybe(";
OS << "parenthesized(";
if (C.isValueList())
OS << "nonemptyList(";
if (!C.getPrefix().empty())
OS << "\"" << C.getPrefix() << ":\" >> ";
// The common Flang parser are used directly. Their name is identical to
// the Flang class with first letter as lowercase. If the Flang class is
// not a common class, we assume there is a specific Parser<>{} with the
// Flang class name provided.
SmallString<128> Scratch;
StringRef Parser =
StringSwitch<StringRef>(FlangClass)
.Case("Name", "name")
.Case("ScalarIntConstantExpr", "scalarIntConstantExpr")
.Case("ScalarIntExpr", "scalarIntExpr")
.Case("ScalarExpr", "scalarExpr")
.Case("ScalarLogicalExpr", "scalarLogicalExpr")
.Default(("Parser<" + FlangClass + ">{}").toStringRef(Scratch));
OS << Parser;
if (!C.getPrefix().empty() && C.isPrefixOptional())
OS << " || " << Parser;
if (C.isValueList()) // close nonemptyList(.
OS << ")";
OS << ")"; // close parenthesized(.
if (C.isValueOptional()) // close maybe(.
OS << ")";
OS << "))";
if (Index != LastIndex)
OS << " ||";
OS << "\n";
}
OS << ")\n";
}
// Generate the implementation section for the enumeration in the directive
// language
static void emitDirectivesClangImpl(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
// Currently we only have work to do for OpenACC, so skip otherwise.
if (DirLang.getName() != "OpenACC")
return;
generateDirectiveClauseSets(DirLang, Frontend::Clang, OS);
generateDirectiveClauseMap(DirLang, Frontend::Clang, OS);
}
// Generate the implementation section for the enumeration in the directive
// language
static void emitDirectivesFlangImpl(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
generateDirectiveClauseSets(DirLang, Frontend::Flang, OS);
generateDirectiveClauseMap(DirLang, Frontend::Flang, OS);
generateFlangClauseParserClass(DirLang, OS);
generateFlangClauseParserClassList(DirLang, OS);
generateFlangClauseDump(DirLang, OS);
generateFlangClauseUnparse(DirLang, OS);
generateFlangClauseCheckPrototypes(DirLang, OS);
generateFlangClauseParserKindMap(DirLang, OS);
generateFlangClausesParser(DirLang, OS);
}
static void generateClauseClassMacro(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
// Generate macros style information for legacy code in clang
IfDefScope Scope("GEN_CLANG_CLAUSE_CLASS", OS);
StringRef Prefix = DirLang.getClausePrefix();
OS << "\n";
OS << "#ifndef CLAUSE\n";
OS << "#define CLAUSE(Enum, Str, Implicit)\n";
OS << "#endif\n";
OS << "#ifndef CLAUSE_CLASS\n";
OS << "#define CLAUSE_CLASS(Enum, Str, Class)\n";
OS << "#endif\n";
OS << "#ifndef CLAUSE_NO_CLASS\n";
OS << "#define CLAUSE_NO_CLASS(Enum, Str)\n";
OS << "#endif\n";
OS << "\n";
OS << "#define __CLAUSE(Name, Class) \\\n";
OS << " CLAUSE(" << Prefix << "##Name, #Name, /* Implicit */ false) \\\n";
OS << " CLAUSE_CLASS(" << Prefix << "##Name, #Name, Class)\n";
OS << "#define __CLAUSE_NO_CLASS(Name) \\\n";
OS << " CLAUSE(" << Prefix << "##Name, #Name, /* Implicit */ false) \\\n";
OS << " CLAUSE_NO_CLASS(" << Prefix << "##Name, #Name)\n";
OS << "#define __IMPLICIT_CLAUSE_CLASS(Name, Str, Class) \\\n";
OS << " CLAUSE(" << Prefix << "##Name, Str, /* Implicit */ true) \\\n";
OS << " CLAUSE_CLASS(" << Prefix << "##Name, Str, Class)\n";
OS << "#define __IMPLICIT_CLAUSE_NO_CLASS(Name, Str) \\\n";
OS << " CLAUSE(" << Prefix << "##Name, Str, /* Implicit */ true) \\\n";
OS << " CLAUSE_NO_CLASS(" << Prefix << "##Name, Str)\n";
OS << "\n";
for (const Clause C : DirLang.getClauses()) {
std::string Name = C.getFormattedName();
if (C.getClangClass().empty()) { // NO_CLASS
if (C.isImplicit()) {
OS << "__IMPLICIT_CLAUSE_NO_CLASS(" << Name << ", \"" << Name
<< "\")\n";
} else {
OS << "__CLAUSE_NO_CLASS(" << Name << ")\n";
}
} else { // CLASS
if (C.isImplicit()) {
OS << "__IMPLICIT_CLAUSE_CLASS(" << Name << ", \"" << Name << "\", "
<< C.getClangClass() << ")\n";
} else {
OS << "__CLAUSE(" << Name << ", " << C.getClangClass() << ")\n";
}
}
}
OS << "\n";
OS << "#undef __IMPLICIT_CLAUSE_NO_CLASS\n";
OS << "#undef __IMPLICIT_CLAUSE_CLASS\n";
OS << "#undef __CLAUSE_NO_CLASS\n";
OS << "#undef __CLAUSE\n";
OS << "#undef CLAUSE_NO_CLASS\n";
OS << "#undef CLAUSE_CLASS\n";
OS << "#undef CLAUSE\n";
}
// Generate the implemenation for the enumeration in the directive
// language. This code can be included in library.
void emitDirectivesBasicImpl(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_DIRECTIVES_IMPL", OS);
StringRef DPrefix = DirLang.getDirectivePrefix();
StringRef CPrefix = DirLang.getClausePrefix();
OS << "\n";
OS << "#include \"llvm/Frontend/Directive/Spelling.h\"\n";
OS << "#include \"llvm/Support/ErrorHandling.h\"\n";
OS << "#include <utility>\n";
// getDirectiveKind(StringRef Str)
generateGetKind(DirLang.getDirectives(), OS, "Directive", DirLang, DPrefix,
/*ImplicitAsUnknown=*/false);
// getDirectiveName(Directive Kind)
generateGetName(DirLang.getDirectives(), OS, "Directive", DirLang, DPrefix);
// getClauseKind(StringRef Str)
generateGetKind(DirLang.getClauses(), OS, "Clause", DirLang, CPrefix,
/*ImplicitAsUnknown=*/true);
// getClauseName(Clause Kind)
generateGetName(DirLang.getClauses(), OS, "Clause", DirLang, CPrefix);
// <enumClauseValue> get<enumClauseValue>(StringRef Str) ; string -> value
// StringRef get<enumClauseValue>Name(<enumClauseValue>) ; value -> string
generateGetClauseVal(DirLang, OS);
// isAllowedClauseForDirective(Directive D, Clause C, unsigned Version)
generateIsAllowedClause(DirLang, OS);
// getDirectiveAssociation(Directive D)
generateGetDirectiveAssociation(DirLang, OS);
// getDirectiveCategory(Directive D)
generateGetDirectiveCategory(DirLang, OS);
// getDirectiveLanguages(Directive D)
generateGetDirectiveLanguages(DirLang, OS);
// Leaf table for getLeafConstructs, etc.
emitLeafTable(DirLang, OS, "LeafConstructTable");
}
// Generate the implemenation section for the enumeration in the directive
// language.
static void emitDirectivesImpl(const RecordKeeper &Records, raw_ostream &OS) {
const auto DirLang = DirectiveLanguage(Records);
if (DirLang.HasValidityErrors())
return;
emitDirectivesFlangImpl(DirLang, OS);
emitDirectivesClangImpl(DirLang, OS);
generateClauseClassMacro(DirLang, OS);
emitDirectivesBasicImpl(DirLang, OS);
}
static TableGen::Emitter::Opt
X("gen-directive-decl", emitDirectivesDecl,
"Generate directive related declaration code (header file)");
static TableGen::Emitter::Opt
Y("gen-directive-impl", emitDirectivesImpl,
"Generate directive related implementation code");