llvm-project/clang/test/SemaTemplate/explicit-specialization-member.cpp
Krystian Stasiowski 9a88aa0e2b
[Clang][Sema] Diagnose variable template explicit specializations with storage-class-specifiers (#93873)
According to [temp.expl.spec] p2:
> The declaration in an _explicit-specialization_ shall not be an
_export-declaration_. An explicit specialization shall not use a
_storage-class-specifier_ other than `thread_local`.

Clang partially implements this, but a number of issues exist:
1. We don't diagnose class scope explicit specializations of variable
templates with _storage-class-specifiers_, e.g.
    ```
    struct A
    {
        template<typename T>
        static constexpr int x = 0;

        template<>
static constexpr int x<void> = 1; // ill-formed, but clang accepts
    };
    ````
2. We incorrectly reject class scope explicit specializations of
variable templates when `static` is not used, e.g.
    ```
    struct A
    {
        template<typename T>
        static constexpr int x = 0;

        template<>
constexpr int x<void> = 1; // error: non-static data member cannot be
constexpr; did you intend to make it static?
    };
    ````
3. We don't diagnose dependent class scope explicit specializations of
function templates with storage class specifiers, e.g.
    ```
    template<typename T>
    struct A
    {
        template<typename U>
        static void f();

        template<>
        static void f<int>(); // ill-formed, but clang accepts
    };
    ````

This patch addresses these issues as follows:
- # 1 is fixed by issuing a diagnostic when an explicit
specialization of a variable template has storage class specifier
- # 2 is fixed by considering any non-function declaration with any
template parameter lists at class scope to be a static data member. This
also allows for better error recovery (it's more likely the user
intended to declare a variable template than a "field template").
- # 3 is fixed by checking whether a function template explicit
specialization has a storage class specifier even when the primary
template is not yet known.

One thing to note is that it would be far simpler to diagnose this when
parsing the _decl-specifier-seq_, but such an implementation would
necessitate a refactor of `ParsedTemplateInfo` which I believe to be
outside the scope of this patch.
2024-06-18 13:40:31 -04:00

96 lines
2.5 KiB
C++

// RUN: %clang_cc1 -fsyntax-only -std=c++17 -verify %s -fcxx-exceptions
template<typename T>
struct X0 {
typedef T* type;
void f0(T);
void f1(type);
};
template<> void X0<char>::f0(char);
template<> void X0<char>::f1(type);
namespace PR6161 {
template<typename _CharT>
class numpunct : public locale::facet // expected-error{{use of undeclared identifier 'locale'}} \
// expected-error{{expected class name}}
{
static locale::id id; // expected-error{{use of undeclared identifier}}
};
numpunct<char>::~numpunct();
}
namespace PR12331 {
template<typename T> struct S {
struct U { static const int n = 5; };
enum E { e = U::n }; // expected-note {{implicit instantiation first required here}}
int arr[e];
};
template<> struct S<int>::U { static const int n = sizeof(int); }; // expected-error {{explicit specialization of 'U' after instantiation}}
}
namespace PR18246 {
template<typename T>
class Baz {
public:
template<int N> void bar();
};
template<typename T>
template<int N>
void Baz<T>::bar() {
}
template<typename T>
void Baz<T>::bar<0>() { // expected-error {{cannot specialize a member of an unspecialized template}}
}
}
namespace PR19340 {
template<typename T> struct Helper {
template<int N> static void func(const T *m) {}
};
template<typename T> void Helper<T>::func<2>() {} // expected-error {{cannot specialize a member}}
}
namespace SpecLoc {
template <typename T> struct A {
static int n; // expected-note {{previous}}
static void f(); // expected-note {{previous}}
};
template<> float A<int>::n; // expected-error {{different type}}
template<> void A<int>::f() throw(); // expected-error {{does not match}}
}
namespace PR41607 {
template<int N> struct Outer {
template<typename...> struct Inner;
template<> struct Inner<> {
static constexpr int f() { return N; }
};
template<typename...> static int a;
template<> constexpr int a<> = N;
template<typename...> static inline int b;
template<> inline constexpr int b<> = N;
template<typename...> static constexpr int f();
template<> constexpr int f() {
return N;
}
};
static_assert(Outer<123>::Inner<>::f() == 123, "");
static_assert(Outer<123>::Inner<>::f() != 125, "");
static_assert(Outer<123>::a<> == 123, "");
static_assert(Outer<123>::a<> != 125, "");
static_assert(Outer<123>::b<> == 123, "");
static_assert(Outer<123>::b<> != 125, "");
static_assert(Outer<123>::f<>() == 123, "");
static_assert(Outer<123>::f<>() != 125, "");
}