llvm-project/clang/unittests/Sema/HeuristicResolverTest.cpp
Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

857 lines
26 KiB
C++

//===-- HeuristicResolverTests.cpp --------------------------*- C++ -*-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/HeuristicResolver.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Tooling/Tooling.h"
#include "gmock/gmock-matchers.h"
#include "gtest/gtest.h"
using namespace clang::ast_matchers;
using testing::ElementsAre;
namespace clang {
namespace {
// Helper for matching a sequence of elements with a variadic list of matchers.
// Usage: `ElementsAre(matchAdapter(Vs, MatchFunction)...)`, where `Vs...` is
// a variadic list of matchers.
// For each `V` in `Vs`, this will match the corresponding element `E` if
// `MatchFunction(V, E)` is true.
MATCHER_P2(matchAdapter, MatcherForElement, MatchFunction, "matchAdapter") {
return MatchFunction(MatcherForElement, arg);
}
template <typename InputNode>
using ResolveFnT = std::function<std::vector<const NamedDecl *>(
const HeuristicResolver *, InputNode)>;
// Test heuristic resolution on `Code` using the resolution procedure
// `ResolveFn`, which takes a `HeuristicResolver` and an input AST node of type
// `InputNode` and returns a `std::vector<const NamedDecl *>`.
// `InputMatcher` should be an AST matcher that matches a single node to pass as
// input to `ResolveFn`, bound to the ID "input". `OutputMatchers` should be AST
// matchers that each match a single node, bound to the ID "output".
template <typename InputNode, typename ParamT, typename InputMatcher,
typename... OutputMatchers>
void expectResolution(llvm::StringRef Code, ResolveFnT<ParamT> ResolveFn,
const InputMatcher &IM, const OutputMatchers &...OMS) {
auto TU = tooling::buildASTFromCodeWithArgs(Code, {"-std=c++20"});
auto &Ctx = TU->getASTContext();
auto InputMatches = match(IM, Ctx);
ASSERT_EQ(1u, InputMatches.size());
const auto *Input = InputMatches[0].template getNodeAs<InputNode>("input");
ASSERT_TRUE(Input);
auto OutputNodeMatches = [&](auto &OutputMatcher, auto &Actual) {
auto OutputMatches = match(OutputMatcher, Ctx);
if (OutputMatches.size() != 1u)
return false;
const auto *ExpectedOutput =
OutputMatches[0].template getNodeAs<NamedDecl>("output");
if (!ExpectedOutput)
return false;
return ExpectedOutput == Actual;
};
HeuristicResolver H(Ctx);
std::vector<const NamedDecl *> Results;
if constexpr (std::is_pointer_v<ParamT>)
Results = ResolveFn(&H, Input);
else
Results = ResolveFn(&H, *Input);
EXPECT_THAT(Results, ElementsAre(matchAdapter(OMS, OutputNodeMatches)...));
}
// Wrapper for the above that accepts a HeuristicResolver member function
// pointer directly.
template <typename InputNode, typename InputMatcher, typename... OutputMatchers>
void expectResolution(llvm::StringRef Code,
std::vector<const NamedDecl *> (
HeuristicResolver::*ResolveFn)(const InputNode *)
const,
const InputMatcher &IM, const OutputMatchers &...OMS) {
expectResolution<InputNode>(
Code, ResolveFnT<const InputNode *>(std::mem_fn(ResolveFn)), IM, OMS...);
}
TEST(HeuristicResolver, MemberExpr) {
std::string Code = R"cpp(
template <typename T>
struct S {
void bar() {}
};
template <typename T>
void foo(S<T> arg) {
arg.bar();
}
)cpp";
// Test resolution of "bar" in "arg.bar()".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("bar")).bind("input"),
cxxMethodDecl(hasName("bar")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_Overloads) {
std::string Code = R"cpp(
template <typename T>
struct S {
void bar(int);
void bar(float);
};
template <typename T, typename U>
void foo(S<T> arg, U u) {
arg.bar(u);
}
)cpp";
// Test resolution of "bar" in "arg.bar(u)". Both overloads should be found.
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("bar")).bind("input"),
cxxMethodDecl(hasName("bar"), hasParameter(0, hasType(asString("int"))))
.bind("output"),
cxxMethodDecl(hasName("bar"), hasParameter(0, hasType(asString("float"))))
.bind("output"));
}
TEST(HeuristicResolver, MemberExpr_SmartPointer) {
std::string Code = R"cpp(
template <typename> struct S { void foo() {} };
template <typename T> struct unique_ptr {
T* operator->();
};
template <typename T>
void test(unique_ptr<S<T>>& v) {
v->foo();
}
)cpp";
// Test resolution of "foo" in "v->foo()".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("foo")).bind("input"),
cxxMethodDecl(hasName("foo")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_SmartPointer_Qualified) {
std::string Code = R"cpp(
template <typename> struct Waldo {
void find();
void find() const;
};
template <typename T> struct unique_ptr {
T* operator->();
};
template <typename T>
void test(unique_ptr<const Waldo<T>>& w) {
w->find();
}
)cpp";
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("find")).bind("input"),
cxxMethodDecl(hasName("find"), isConst()).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_Static_Qualified) {
std::string Code = R"cpp(
template <typename T>
struct Waldo {
static void find();
};
template <typename T>
void foo(const Waldo<T>& t) {
t.find();
}
)cpp";
// Test resolution of "find" in "t.find()".
// The object being `const` should have no bearing on a call to a static
// method.
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("find")).bind("input"),
cxxMethodDecl(hasName("find")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_AutoTypeDeduction1) {
std::string Code = R"cpp(
template <typename T>
struct A {
int waldo;
};
template <typename T>
void foo(A<T> a) {
auto copy = a;
copy.waldo;
}
)cpp";
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("waldo")).bind("input"),
fieldDecl(hasName("waldo")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_AutoTypeDeduction2) {
std::string Code = R"cpp(
struct B {
int waldo;
};
template <typename T>
struct A {
B b;
};
template <typename T>
void foo(A<T> a) {
auto b = a.b;
b.waldo;
}
)cpp";
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("waldo")).bind("input"),
fieldDecl(hasName("waldo")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_Chained) {
std::string Code = R"cpp(
struct A { void foo() {} };
template <typename T>
struct B {
A func(int);
void bar() {
func(1).foo();
}
};
)cpp";
// Test resolution of "foo" in "func(1).foo()".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("foo")).bind("input"),
cxxMethodDecl(hasName("foo")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_ReferenceType) {
std::string Code = R"cpp(
struct B {
int waldo;
};
template <typename T>
struct A {
B &b;
};
template <typename T>
void foo(A<T> &a) {
a.b.waldo;
}
)cpp";
// Test resolution of "waldo" in "a.b.waldo".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("waldo")).bind("input"),
fieldDecl(hasName("waldo")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_PointerType) {
std::string Code = R"cpp(
struct B {
int waldo;
};
template <typename T>
struct A {
B *b;
};
template <typename T>
void foo(A<T> &a) {
a.b->waldo;
}
)cpp";
// Test resolution of "waldo" in "a.b->waldo".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("waldo")).bind("input"),
fieldDecl(hasName("waldo")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_TemplateArgs) {
std::string Code = R"cpp(
struct Foo {
static Foo k(int);
template <typename T> T convert();
};
template <typename T>
void test() {
Foo::k(T()).template convert<T>();
}
)cpp";
// Test resolution of "convert" in "Foo::k(T()).template convert<T>()".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("convert")).bind("input"),
functionTemplateDecl(hasName("convert")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_TypeAlias) {
std::string Code = R"cpp(
template <typename T>
struct Waldo {
void find();
};
template <typename T>
using Wally = Waldo<T>;
template <typename T>
void foo(Wally<T> w) {
w.find();
}
)cpp";
// Test resolution of "find" in "w.find()".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("find")).bind("input"),
cxxMethodDecl(hasName("find")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_BaseClass_TypeAlias) {
std::string Code = R"cpp(
template <typename T>
struct Waldo {
void find();
};
template <typename T>
using Wally = Waldo<T>;
template <typename T>
struct S : Wally<T> {
void foo() {
this->find();
}
};
)cpp";
// Test resolution of "find" in "this->find()".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("find")).bind("input"),
cxxMethodDecl(hasName("find")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_Metafunction) {
std::string Code = R"cpp(
template <typename T>
struct Waldo {
void find();
};
template <typename T>
struct MetaWaldo {
using Type = Waldo<T>;
};
template <typename T>
void foo(typename MetaWaldo<T>::Type w) {
w.find();
}
)cpp";
// Test resolution of "find" in "w.find()".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("find")).bind("input"),
cxxMethodDecl(hasName("find")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_Metafunction_Enumerator) {
std::string Code = R"cpp(
enum class State { Hidden };
template <typename T>
struct Meta {
using Type = State;
};
template <typename T>
void foo(typename Meta<T>::Type t) {
t.Hidden;
}
)cpp";
// Test resolution of "Hidden" in "t.Hidden".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("Hidden")).bind("input"),
enumConstantDecl(hasName("Hidden")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_DeducedNonTypeTemplateParameter) {
std::string Code = R"cpp(
template <int N>
struct Waldo {
const int found = N;
};
template <Waldo W>
int foo() {
return W.found;
}
)cpp";
// Test resolution of "found" in "W.found".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("found")).bind("input"),
fieldDecl(hasName("found")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_HangIssue126536) {
std::string Code = R"cpp(
template <class T>
void foo() {
T bar;
auto baz = (bar, bar);
baz.foo();
}
)cpp";
// Test resolution of "foo" in "baz.foo()".
// Here, we are testing that we do not get into an infinite loop.
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("foo")).bind("input"));
}
TEST(HeuristicResolver, MemberExpr_DefaultTemplateArgument) {
std::string Code = R"cpp(
struct Default {
void foo();
};
template <typename T = Default>
void bar(T t) {
t.foo();
}
)cpp";
// Test resolution of "foo" in "t.foo()".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("foo")).bind("input"),
cxxMethodDecl(hasName("foo")).bind("output"));
}
TEST(HeuristicResolver, MemberExpr_DefaultTemplateArgument_Recursive) {
std::string Code = R"cpp(
struct Default {
void foo();
};
template <typename D = Default, typename T = D>
void bar(T t) {
t.foo();
}
)cpp";
// Test resolution of "foo" in "t.foo()".
expectResolution(
Code, &HeuristicResolver::resolveMemberExpr,
cxxDependentScopeMemberExpr(hasMemberName("foo")).bind("input"),
cxxMethodDecl(hasName("foo")).bind("output"));
}
TEST(HeuristicResolver, DeclRefExpr_StaticMethod) {
std::string Code = R"cpp(
template <typename T>
struct S {
static void bar() {}
};
template <typename T>
void foo() {
S<T>::bar();
}
)cpp";
// Test resolution of "bar" in "S<T>::bar()".
expectResolution(
Code, &HeuristicResolver::resolveDeclRefExpr,
dependentScopeDeclRefExpr(hasDependentName("bar")).bind("input"),
cxxMethodDecl(hasName("bar")).bind("output"));
}
TEST(HeuristicResolver, DeclRefExpr_DefaultTemplateArgument) {
std::string Code = R"cpp(
struct Default {
static void foo();
};
template <typename T = Default>
void bar() {
T::foo();
}
)cpp";
// Test resolution of "foo" in "T::foo()".
expectResolution(
Code, &HeuristicResolver::resolveDeclRefExpr,
dependentScopeDeclRefExpr(hasDependentName("foo")).bind("input"),
cxxMethodDecl(hasName("foo")).bind("output"));
}
TEST(HeuristicResolver, DeclRefExpr_StaticOverloads) {
std::string Code = R"cpp(
template <typename T>
struct S {
static void bar(int);
static void bar(float);
};
template <typename T, typename U>
void foo(U u) {
S<T>::bar(u);
}
)cpp";
// Test resolution of "bar" in "S<T>::bar(u)". Both overloads should be found.
expectResolution(
Code, &HeuristicResolver::resolveDeclRefExpr,
dependentScopeDeclRefExpr(hasDependentName("bar")).bind("input"),
cxxMethodDecl(hasName("bar"), hasParameter(0, hasType(asString("int"))))
.bind("output"),
cxxMethodDecl(hasName("bar"), hasParameter(0, hasType(asString("float"))))
.bind("output"));
}
TEST(HeuristicResolver, DeclRefExpr_Enumerator) {
std::string Code = R"cpp(
template <typename T>
struct Foo {
enum class E { A, B };
E e = E::A;
};
)cpp";
// Test resolution of "A" in "E::A".
expectResolution(
Code, &HeuristicResolver::resolveDeclRefExpr,
dependentScopeDeclRefExpr(hasDependentName("A")).bind("input"),
enumConstantDecl(hasName("A")).bind("output"));
}
TEST(HeuristicResolver, DeclRefExpr_RespectScope) {
std::string Code = R"cpp(
template <typename Info>
struct PointerIntPair {
void *getPointer() const { return Info::getPointer(); }
};
)cpp";
// Test resolution of "getPointer" in "Info::getPointer()".
// Here, we are testing that we do not incorrectly get the enclosing
// getPointer() function as a result.
expectResolution(
Code, &HeuristicResolver::resolveDeclRefExpr,
dependentScopeDeclRefExpr(hasDependentName("getPointer")).bind("input"));
}
TEST(HeuristicResolver, DeclRefExpr_Nested) {
std::string Code = R"cpp(
struct S {
static int Waldo;
};
template <typename T>
struct Meta {
using Type = S;
};
template <typename T>
void foo() {
Meta<T>::Type::Waldo;
}
)cpp";
// Test resolution of "Waldo" in "Meta<T>::Type::Waldo".
expectResolution(
Code, &HeuristicResolver::resolveDeclRefExpr,
dependentScopeDeclRefExpr(hasDependentName("Waldo")).bind("input"),
varDecl(hasName("Waldo")).bind("output"));
}
TEST(HeuristicResolver, DependentNameType) {
std::string Code = R"cpp(
template <typename>
struct A {
struct B {};
};
template <typename T>
void foo(typename A<T>::B);
)cpp";
// Tests resolution of "B" in "A<T>::B".
expectResolution(
Code, &HeuristicResolver::resolveDependentNameType,
functionDecl(hasParameter(0, hasType(dependentNameType().bind("input")))),
classTemplateDecl(
has(cxxRecordDecl(has(cxxRecordDecl(hasName("B")).bind("output"))))));
}
TEST(HeuristicResolver, DependentNameType_Nested) {
std::string Code = R"cpp(
template <typename>
struct A {
struct B {
struct C {};
};
};
template <typename T>
void foo(typename A<T>::B::C);
)cpp";
// Tests resolution of "C" in "A<T>::B::C".
expectResolution(
Code, &HeuristicResolver::resolveDependentNameType,
functionDecl(hasParameter(0, hasType(dependentNameType().bind("input")))),
classTemplateDecl(has(cxxRecordDecl(has(
cxxRecordDecl(has(cxxRecordDecl(hasName("C")).bind("output"))))))));
}
TEST(HeuristicResolver, DependentNameType_Recursion) {
std::string Code = R"cpp(
template <int N>
struct Waldo {
using Type = typename Waldo<N - 1>::Type::Next;
};
)cpp";
// Test resolution of "Next" in "typename Waldo<N - 1>::Type::Next".
// Here, we are testing that we do not get into an infinite recursion.
expectResolution(Code, &HeuristicResolver::resolveDependentNameType,
typeAliasDecl(hasType(dependentNameType().bind("input"))));
}
TEST(HeuristicResolver, DependentNameType_MutualRecursion) {
std::string Code = R"cpp(
template <int N>
struct Odd;
template <int N>
struct Even {
using Type = typename Odd<N - 1>::Type::Next;
};
template <int N>
struct Odd {
using Type = typename Even<N - 1>::Type::Next;
};
)cpp";
// Test resolution of "Next" in "typename Even<N - 1>::Type::Next".
// Similar to the above but we have two mutually recursive templates.
expectResolution(
Code, &HeuristicResolver::resolveDependentNameType,
classTemplateDecl(hasName("Odd"),
has(cxxRecordDecl(has(typeAliasDecl(
hasType(dependentNameType().bind("input"))))))));
}
TEST(HeuristicResolver, NestedNameSpecifier) {
// Test resolution of "B" in "A<T>::B::C".
// Unlike the "C", the "B" does not get its own DependentNameTypeLoc node,
// so the resolution uses the NestedNameSpecifier as input.
std::string Code = R"cpp(
template <typename>
struct A {
struct B {
struct C {};
};
};
template <typename T>
void foo(typename A<T>::B::C);
)cpp";
// Adapt the call to resolveNestedNameSpecifierToType() to the interface
// expected by expectResolution() (returning a vector of decls).
ResolveFnT<NestedNameSpecifier> ResolveFn =
[](const HeuristicResolver *H,
NestedNameSpecifier NNS) -> std::vector<const NamedDecl *> {
return {H->resolveNestedNameSpecifierToType(NNS)->getAsCXXRecordDecl()};
};
expectResolution<NestedNameSpecifier>(
Code, ResolveFn,
nestedNameSpecifier(hasPrefix(specifiesType(
hasDeclaration(classTemplateDecl(hasName("A"))))))
.bind("input"),
classTemplateDecl(
has(cxxRecordDecl(has(cxxRecordDecl(hasName("B")).bind("output"))))));
}
TEST(HeuristicResolver, TemplateSpecializationType) {
std::string Code = R"cpp(
template <typename>
struct A {
template <typename>
struct B {};
};
template <typename T>
void foo(typename A<T>::template B<int>);
)cpp";
// Test resolution of "B" in "A<T>::template B<int>".
expectResolution(Code, &HeuristicResolver::resolveTemplateSpecializationType,
functionDecl(hasParameter(0, hasType(type().bind("input")))),
classTemplateDecl(has(cxxRecordDecl(
has(classTemplateDecl(hasName("B")).bind("output"))))));
}
TEST(HeuristicResolver, DependentCall_NonMember) {
std::string Code = R"cpp(
template <typename T>
void nonmember(T);
template <typename T>
void bar(T t) {
nonmember(t);
}
)cpp";
// Test resolution of "nonmember" in "nonmember(t)".
expectResolution(Code, &HeuristicResolver::resolveCalleeOfCallExpr,
callExpr(callee(unresolvedLookupExpr(hasAnyDeclaration(
functionTemplateDecl(hasName("nonmember"))))))
.bind("input"),
functionTemplateDecl(hasName("nonmember")).bind("output"));
}
TEST(HeuristicResolver, DependentCall_Member) {
std::string Code = R"cpp(
template <typename T>
struct A {
void member(T);
};
template <typename T>
void bar(A<T> a, T t) {
a.member(t);
}
)cpp";
// Test resolution of "member" in "a.member(t)".
expectResolution(
Code, &HeuristicResolver::resolveCalleeOfCallExpr,
callExpr(callee(cxxDependentScopeMemberExpr(hasMemberName("member"))))
.bind("input"),
cxxMethodDecl(hasName("member")).bind("output"));
}
TEST(HeuristicResolver, DependentCall_StaticMember) {
std::string Code = R"cpp(
template <typename T>
struct A {
static void static_member(T);
};
template <typename T>
void bar(T t) {
A<T>::static_member(t);
}
)cpp";
// Test resolution of "static_member" in "A<T>::static_member(t)".
expectResolution(Code, &HeuristicResolver::resolveCalleeOfCallExpr,
callExpr(callee(dependentScopeDeclRefExpr(
hasDependentName("static_member"))))
.bind("input"),
cxxMethodDecl(hasName("static_member")).bind("output"));
}
TEST(HeuristicResolver, DependentCall_Overload) {
std::string Code = R"cpp(
void overload(int);
void overload(double);
template <typename T>
void bar(T t) {
overload(t);
}
)cpp";
// Test resolution of "overload" in "overload(t)". Both overload should be
// found.
expectResolution(Code, &HeuristicResolver::resolveCalleeOfCallExpr,
callExpr(callee(unresolvedLookupExpr(hasAnyDeclaration(
functionDecl(hasName("overload"))))))
.bind("input"),
functionDecl(hasName("overload"),
hasParameter(0, hasType(asString("double"))))
.bind("output"),
functionDecl(hasName("overload"),
hasParameter(0, hasType(asString("int"))))
.bind("output"));
}
TEST(HeuristicResolver, UsingValueDecl) {
std::string Code = R"cpp(
template <typename T>
struct Base {
void waldo();
};
template <typename T>
struct Derived : Base<T> {
using Base<T>::waldo;
};
)cpp";
// Test resolution of "waldo" in "Base<T>::waldo".
expectResolution(Code, &HeuristicResolver::resolveUsingValueDecl,
unresolvedUsingValueDecl(hasName("waldo")).bind("input"),
cxxMethodDecl(hasName("waldo")).bind("output"));
}
// `arg` is a ParamVarDecl*, `Expected` is a string
MATCHER_P(ParamNameMatcher, Expected, "paramNameMatcher") {
EXPECT_TRUE(arg);
if (IdentifierInfo *Ident = arg->getDeclName().getAsIdentifierInfo()) {
return Ident->getName() == Expected;
}
return false;
}
// Helper function for testing HeuristicResolver::getProtoTypeLoc.
// Takes a matcher that selects a callee expression bound to the ID "input",
// calls getProtoTypeLoc() on it, and checks that the call found a
// FunctionProtoTypeLoc encoding the given parameter names.
template <typename InputMatcher, typename... ParameterNames>
void expectParameterNames(ASTContext &Ctx, const InputMatcher &IM,
ParameterNames... ExpectedParameterNames) {
auto InputMatches = match(IM, Ctx);
ASSERT_EQ(1u, InputMatches.size());
const auto *Input = InputMatches[0].template getNodeAs<Expr>("input");
ASSERT_TRUE(Input);
HeuristicResolver H(Ctx);
auto Loc = H.getFunctionProtoTypeLoc(Input);
ASSERT_TRUE(Loc);
EXPECT_THAT(Loc.getParams(),
ElementsAre(ParamNameMatcher(ExpectedParameterNames)...));
}
TEST(HeuristicResolver, ProtoTypeLoc) {
std::string Code = R"cpp(
void (*f1)(int param1);
void (__stdcall *f2)(int param2);
using f3_t = void(*)(int param3);
f3_t f3;
using f4_t = void(__stdcall *)(int param4);
f4_t f4;
struct S {
void (*f5)(int param5);
using f6_t = void(*)(int param6);
f6_t f6;
};
void bar() {
f1(42);
f2(42);
f3(42);
f4(42);
S s;
s.f5(42);
s.f6(42);
}
)cpp";
auto TU = tooling::buildASTFromCodeWithArgs(Code, {"-std=c++20"});
auto &Ctx = TU->getASTContext();
auto checkFreeFunction = [&](llvm::StringRef FunctionName,
llvm::StringRef ParamName) {
expectParameterNames(
Ctx,
callExpr(
callee(implicitCastExpr(hasSourceExpression(declRefExpr(
to(namedDecl(hasName(FunctionName))))))
.bind("input"))),
ParamName);
};
checkFreeFunction("f1", "param1");
checkFreeFunction("f2", "param2");
checkFreeFunction("f3", "param3");
checkFreeFunction("f4", "param4");
auto checkMemberFunction = [&](llvm::StringRef MemberName,
llvm::StringRef ParamName) {
expectParameterNames(
Ctx,
callExpr(callee(implicitCastExpr(hasSourceExpression(memberExpr(
member(hasName(MemberName)))))
.bind("input"))),
ParamName);
};
checkMemberFunction("f5", "param5");
checkMemberFunction("f6", "param6");
}
} // namespace
} // namespace clang