
This change introduces a new kernel attribute that allows thread blocks to be mapped to clusters. In addition, it also adds support of `+ptx90` PTX ISA support.
1973 lines
64 KiB
C++
1973 lines
64 KiB
C++
//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a printer that converts from our internal representation
|
|
// of machine-dependent LLVM code to NVPTX assembly language.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NVPTXAsmPrinter.h"
|
|
#include "MCTargetDesc/NVPTXBaseInfo.h"
|
|
#include "MCTargetDesc/NVPTXInstPrinter.h"
|
|
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
|
|
#include "MCTargetDesc/NVPTXTargetStreamer.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXMCExpr.h"
|
|
#include "NVPTXMachineFunctionInfo.h"
|
|
#include "NVPTXRegisterInfo.h"
|
|
#include "NVPTXSubtarget.h"
|
|
#include "NVPTXTargetMachine.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "TargetInfo/NVPTXTargetInfo.h"
|
|
#include "cl_common_defines.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/CodeGenTypes/MachineValueType.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/NativeFormatting.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEPOTNAME "__local_depot"
|
|
|
|
/// discoverDependentGlobals - Return a set of GlobalVariables on which \p V
|
|
/// depends.
|
|
static void
|
|
discoverDependentGlobals(const Value *V,
|
|
DenseSet<const GlobalVariable *> &Globals) {
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
|
|
Globals.insert(GV);
|
|
return;
|
|
}
|
|
|
|
if (const User *U = dyn_cast<User>(V))
|
|
for (const auto &O : U->operands())
|
|
discoverDependentGlobals(O, Globals);
|
|
}
|
|
|
|
/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
|
|
/// instances to be emitted, but only after any dependents have been added
|
|
/// first.s
|
|
static void
|
|
VisitGlobalVariableForEmission(const GlobalVariable *GV,
|
|
SmallVectorImpl<const GlobalVariable *> &Order,
|
|
DenseSet<const GlobalVariable *> &Visited,
|
|
DenseSet<const GlobalVariable *> &Visiting) {
|
|
// Have we already visited this one?
|
|
if (Visited.count(GV))
|
|
return;
|
|
|
|
// Do we have a circular dependency?
|
|
if (!Visiting.insert(GV).second)
|
|
report_fatal_error("Circular dependency found in global variable set");
|
|
|
|
// Make sure we visit all dependents first
|
|
DenseSet<const GlobalVariable *> Others;
|
|
for (const auto &O : GV->operands())
|
|
discoverDependentGlobals(O, Others);
|
|
|
|
for (const GlobalVariable *GV : Others)
|
|
VisitGlobalVariableForEmission(GV, Order, Visited, Visiting);
|
|
|
|
// Now we can visit ourself
|
|
Order.push_back(GV);
|
|
Visited.insert(GV);
|
|
Visiting.erase(GV);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitInstruction(const MachineInstr *MI) {
|
|
NVPTX_MC::verifyInstructionPredicates(MI->getOpcode(),
|
|
getSubtargetInfo().getFeatureBits());
|
|
|
|
MCInst Inst;
|
|
lowerToMCInst(MI, Inst);
|
|
EmitToStreamer(*OutStreamer, Inst);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
|
|
OutMI.setOpcode(MI->getOpcode());
|
|
// Special: Do not mangle symbol operand of CALL_PROTOTYPE
|
|
if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
|
|
const MachineOperand &MO = MI->getOperand(0);
|
|
OutMI.addOperand(GetSymbolRef(
|
|
OutContext.getOrCreateSymbol(Twine(MO.getSymbolName()))));
|
|
return;
|
|
}
|
|
|
|
for (const auto MO : MI->operands())
|
|
OutMI.addOperand(lowerOperand(MO));
|
|
}
|
|
|
|
MCOperand NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO) {
|
|
switch (MO.getType()) {
|
|
default:
|
|
llvm_unreachable("unknown operand type");
|
|
case MachineOperand::MO_Register:
|
|
return MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
|
|
case MachineOperand::MO_Immediate:
|
|
return MCOperand::createImm(MO.getImm());
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
return MCOperand::createExpr(
|
|
MCSymbolRefExpr::create(MO.getMBB()->getSymbol(), OutContext));
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
return GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
|
|
case MachineOperand::MO_GlobalAddress:
|
|
return GetSymbolRef(getSymbol(MO.getGlobal()));
|
|
case MachineOperand::MO_FPImmediate: {
|
|
const ConstantFP *Cnt = MO.getFPImm();
|
|
const APFloat &Val = Cnt->getValueAPF();
|
|
|
|
switch (Cnt->getType()->getTypeID()) {
|
|
default:
|
|
report_fatal_error("Unsupported FP type");
|
|
break;
|
|
case Type::HalfTyID:
|
|
return MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantFPHalf(Val, OutContext));
|
|
case Type::BFloatTyID:
|
|
return MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantBFPHalf(Val, OutContext));
|
|
case Type::FloatTyID:
|
|
return MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext));
|
|
case Type::DoubleTyID:
|
|
return MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
|
|
if (Register::isVirtualRegister(Reg)) {
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
|
|
DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
|
|
unsigned RegNum = RegMap[Reg];
|
|
|
|
// Encode the register class in the upper 4 bits
|
|
// Must be kept in sync with NVPTXInstPrinter::printRegName
|
|
unsigned Ret = 0;
|
|
if (RC == &NVPTX::B1RegClass) {
|
|
Ret = (1 << 28);
|
|
} else if (RC == &NVPTX::B16RegClass) {
|
|
Ret = (2 << 28);
|
|
} else if (RC == &NVPTX::B32RegClass) {
|
|
Ret = (3 << 28);
|
|
} else if (RC == &NVPTX::B64RegClass) {
|
|
Ret = (4 << 28);
|
|
} else if (RC == &NVPTX::B128RegClass) {
|
|
Ret = (7 << 28);
|
|
} else {
|
|
report_fatal_error("Bad register class");
|
|
}
|
|
|
|
// Insert the vreg number
|
|
Ret |= (RegNum & 0x0FFFFFFF);
|
|
return Ret;
|
|
} else {
|
|
// Some special-use registers are actually physical registers.
|
|
// Encode this as the register class ID of 0 and the real register ID.
|
|
return Reg & 0x0FFFFFFF;
|
|
}
|
|
}
|
|
|
|
MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
|
|
const MCExpr *Expr;
|
|
Expr = MCSymbolRefExpr::create(Symbol, OutContext);
|
|
return MCOperand::createExpr(Expr);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
|
|
const DataLayout &DL = getDataLayout();
|
|
const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
|
|
const auto *TLI = cast<NVPTXTargetLowering>(STI.getTargetLowering());
|
|
|
|
Type *Ty = F->getReturnType();
|
|
if (Ty->getTypeID() == Type::VoidTyID)
|
|
return;
|
|
O << " (";
|
|
|
|
auto PrintScalarRetVal = [&](unsigned Size) {
|
|
O << ".param .b" << promoteScalarArgumentSize(Size) << " func_retval0";
|
|
};
|
|
if (shouldPassAsArray(Ty)) {
|
|
const unsigned TotalSize = DL.getTypeAllocSize(Ty);
|
|
const Align RetAlignment = TLI->getFunctionArgumentAlignment(
|
|
F, Ty, AttributeList::ReturnIndex, DL);
|
|
O << ".param .align " << RetAlignment.value() << " .b8 func_retval0["
|
|
<< TotalSize << "]";
|
|
} else if (Ty->isFloatingPointTy()) {
|
|
PrintScalarRetVal(Ty->getPrimitiveSizeInBits());
|
|
} else if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
|
|
PrintScalarRetVal(ITy->getBitWidth());
|
|
} else if (isa<PointerType>(Ty)) {
|
|
PrintScalarRetVal(TLI->getPointerTy(DL).getSizeInBits());
|
|
} else
|
|
llvm_unreachable("Unknown return type");
|
|
O << ") ";
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
|
|
raw_ostream &O) {
|
|
const Function &F = MF.getFunction();
|
|
printReturnValStr(&F, O);
|
|
}
|
|
|
|
// Return true if MBB is the header of a loop marked with
|
|
// llvm.loop.unroll.disable or llvm.loop.unroll.count=1.
|
|
bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
|
|
const MachineBasicBlock &MBB) const {
|
|
MachineLoopInfo &LI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
|
|
// We insert .pragma "nounroll" only to the loop header.
|
|
if (!LI.isLoopHeader(&MBB))
|
|
return false;
|
|
|
|
// llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
|
|
// we iterate through each back edge of the loop with header MBB, and check
|
|
// whether its metadata contains llvm.loop.unroll.disable.
|
|
for (const MachineBasicBlock *PMBB : MBB.predecessors()) {
|
|
if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
|
|
// Edges from other loops to MBB are not back edges.
|
|
continue;
|
|
}
|
|
if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
|
|
if (MDNode *LoopID =
|
|
PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) {
|
|
if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
|
|
return true;
|
|
if (MDNode *UnrollCountMD =
|
|
GetUnrollMetadata(LoopID, "llvm.loop.unroll.count")) {
|
|
if (mdconst::extract<ConstantInt>(UnrollCountMD->getOperand(1))
|
|
->isOne())
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
|
|
AsmPrinter::emitBasicBlockStart(MBB);
|
|
if (isLoopHeaderOfNoUnroll(MBB))
|
|
OutStreamer->emitRawText(StringRef("\t.pragma \"nounroll\";\n"));
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionEntryLabel() {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream O(Str);
|
|
|
|
if (!GlobalsEmitted) {
|
|
emitGlobals(*MF->getFunction().getParent());
|
|
GlobalsEmitted = true;
|
|
}
|
|
|
|
// Set up
|
|
MRI = &MF->getRegInfo();
|
|
F = &MF->getFunction();
|
|
emitLinkageDirective(F, O);
|
|
if (isKernelFunction(*F))
|
|
O << ".entry ";
|
|
else {
|
|
O << ".func ";
|
|
printReturnValStr(*MF, O);
|
|
}
|
|
|
|
CurrentFnSym->print(O, MAI);
|
|
|
|
emitFunctionParamList(F, O);
|
|
O << "\n";
|
|
|
|
if (isKernelFunction(*F))
|
|
emitKernelFunctionDirectives(*F, O);
|
|
|
|
if (shouldEmitPTXNoReturn(F, TM))
|
|
O << ".noreturn";
|
|
|
|
OutStreamer->emitRawText(O.str());
|
|
|
|
VRegMapping.clear();
|
|
// Emit open brace for function body.
|
|
OutStreamer->emitRawText(StringRef("{\n"));
|
|
setAndEmitFunctionVirtualRegisters(*MF);
|
|
encodeDebugInfoRegisterNumbers(*MF);
|
|
// Emit initial .loc debug directive for correct relocation symbol data.
|
|
if (const DISubprogram *SP = MF->getFunction().getSubprogram()) {
|
|
assert(SP->getUnit());
|
|
if (!SP->getUnit()->isDebugDirectivesOnly())
|
|
emitInitialRawDwarfLocDirective(*MF);
|
|
}
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::runOnMachineFunction(MachineFunction &F) {
|
|
bool Result = AsmPrinter::runOnMachineFunction(F);
|
|
// Emit closing brace for the body of function F.
|
|
// The closing brace must be emitted here because we need to emit additional
|
|
// debug labels/data after the last basic block.
|
|
// We need to emit the closing brace here because we don't have function that
|
|
// finished emission of the function body.
|
|
OutStreamer->emitRawText(StringRef("}\n"));
|
|
return Result;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionBodyStart() {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream O(Str);
|
|
emitDemotedVars(&MF->getFunction(), O);
|
|
OutStreamer->emitRawText(O.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionBodyEnd() {
|
|
VRegMapping.clear();
|
|
}
|
|
|
|
const MCSymbol *NVPTXAsmPrinter::getFunctionFrameSymbol() const {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream(Str) << DEPOTNAME << getFunctionNumber();
|
|
return OutContext.getOrCreateSymbol(Str);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
|
|
Register RegNo = MI->getOperand(0).getReg();
|
|
if (RegNo.isVirtual()) {
|
|
OutStreamer->AddComment(Twine("implicit-def: ") +
|
|
getVirtualRegisterName(RegNo));
|
|
} else {
|
|
const NVPTXSubtarget &STI = MI->getMF()->getSubtarget<NVPTXSubtarget>();
|
|
OutStreamer->AddComment(Twine("implicit-def: ") +
|
|
STI.getRegisterInfo()->getName(RegNo));
|
|
}
|
|
OutStreamer->addBlankLine();
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
|
|
raw_ostream &O) const {
|
|
// If the NVVM IR has some of reqntid* specified, then output
|
|
// the reqntid directive, and set the unspecified ones to 1.
|
|
// If none of Reqntid* is specified, don't output reqntid directive.
|
|
const auto ReqNTID = getReqNTID(F);
|
|
if (!ReqNTID.empty())
|
|
O << formatv(".reqntid {0:$[, ]}\n",
|
|
make_range(ReqNTID.begin(), ReqNTID.end()));
|
|
|
|
const auto MaxNTID = getMaxNTID(F);
|
|
if (!MaxNTID.empty())
|
|
O << formatv(".maxntid {0:$[, ]}\n",
|
|
make_range(MaxNTID.begin(), MaxNTID.end()));
|
|
|
|
if (const auto Mincta = getMinCTASm(F))
|
|
O << ".minnctapersm " << *Mincta << "\n";
|
|
|
|
if (const auto Maxnreg = getMaxNReg(F))
|
|
O << ".maxnreg " << *Maxnreg << "\n";
|
|
|
|
// .maxclusterrank directive requires SM_90 or higher, make sure that we
|
|
// filter it out for lower SM versions, as it causes a hard ptxas crash.
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const auto *STI = static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
|
|
|
|
if (STI->getSmVersion() >= 90) {
|
|
const auto ClusterDim = getClusterDim(F);
|
|
const bool BlocksAreClusters = hasBlocksAreClusters(F);
|
|
|
|
if (!ClusterDim.empty()) {
|
|
|
|
if (!BlocksAreClusters)
|
|
O << ".explicitcluster\n";
|
|
|
|
if (ClusterDim[0] != 0) {
|
|
assert(llvm::all_of(ClusterDim, [](unsigned D) { return D != 0; }) &&
|
|
"cluster_dim_x != 0 implies cluster_dim_y and cluster_dim_z "
|
|
"should be non-zero as well");
|
|
|
|
O << formatv(".reqnctapercluster {0:$[, ]}\n",
|
|
make_range(ClusterDim.begin(), ClusterDim.end()));
|
|
} else {
|
|
assert(llvm::all_of(ClusterDim, [](unsigned D) { return D == 0; }) &&
|
|
"cluster_dim_x == 0 implies cluster_dim_y and cluster_dim_z "
|
|
"should be 0 as well");
|
|
}
|
|
}
|
|
|
|
if (BlocksAreClusters) {
|
|
LLVMContext &Ctx = F.getContext();
|
|
if (ReqNTID.empty() || ClusterDim.empty())
|
|
Ctx.diagnose(DiagnosticInfoUnsupported(
|
|
F, "blocksareclusters requires reqntid and cluster_dim attributes",
|
|
F.getSubprogram()));
|
|
else if (STI->getPTXVersion() < 90)
|
|
Ctx.diagnose(DiagnosticInfoUnsupported(
|
|
F, "blocksareclusters requires PTX version >= 9.0",
|
|
F.getSubprogram()));
|
|
else
|
|
O << ".blocksareclusters\n";
|
|
}
|
|
|
|
if (const auto Maxclusterrank = getMaxClusterRank(F))
|
|
O << ".maxclusterrank " << *Maxclusterrank << "\n";
|
|
}
|
|
}
|
|
|
|
std::string NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
|
|
std::string Name;
|
|
raw_string_ostream NameStr(Name);
|
|
|
|
VRegRCMap::const_iterator I = VRegMapping.find(RC);
|
|
assert(I != VRegMapping.end() && "Bad register class");
|
|
const DenseMap<unsigned, unsigned> &RegMap = I->second;
|
|
|
|
VRegMap::const_iterator VI = RegMap.find(Reg);
|
|
assert(VI != RegMap.end() && "Bad virtual register");
|
|
unsigned MappedVR = VI->second;
|
|
|
|
NameStr << getNVPTXRegClassStr(RC) << MappedVR;
|
|
|
|
return Name;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
|
|
raw_ostream &O) {
|
|
O << getVirtualRegisterName(vr);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitAliasDeclaration(const GlobalAlias *GA,
|
|
raw_ostream &O) {
|
|
const Function *F = dyn_cast_or_null<Function>(GA->getAliaseeObject());
|
|
if (!F || isKernelFunction(*F) || F->isDeclaration())
|
|
report_fatal_error(
|
|
"NVPTX aliasee must be a non-kernel function definition");
|
|
|
|
if (GA->hasLinkOnceLinkage() || GA->hasWeakLinkage() ||
|
|
GA->hasAvailableExternallyLinkage() || GA->hasCommonLinkage())
|
|
report_fatal_error("NVPTX aliasee must not be '.weak'");
|
|
|
|
emitDeclarationWithName(F, getSymbol(GA), O);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
|
|
emitDeclarationWithName(F, getSymbol(F), O);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDeclarationWithName(const Function *F, MCSymbol *S,
|
|
raw_ostream &O) {
|
|
emitLinkageDirective(F, O);
|
|
if (isKernelFunction(*F))
|
|
O << ".entry ";
|
|
else
|
|
O << ".func ";
|
|
printReturnValStr(F, O);
|
|
S->print(O, MAI);
|
|
O << "\n";
|
|
emitFunctionParamList(F, O);
|
|
O << "\n";
|
|
if (shouldEmitPTXNoReturn(F, TM))
|
|
O << ".noreturn";
|
|
O << ";\n";
|
|
}
|
|
|
|
static bool usedInGlobalVarDef(const Constant *C) {
|
|
if (!C)
|
|
return false;
|
|
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
|
|
return GV->getName() != "llvm.used";
|
|
|
|
for (const User *U : C->users())
|
|
if (const Constant *C = dyn_cast<Constant>(U))
|
|
if (usedInGlobalVarDef(C))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool usedInOneFunc(const User *U, Function const *&OneFunc) {
|
|
if (const GlobalVariable *OtherGV = dyn_cast<GlobalVariable>(U))
|
|
if (OtherGV->getName() == "llvm.used")
|
|
return true;
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(U)) {
|
|
if (const Function *CurFunc = I->getFunction()) {
|
|
if (OneFunc && (CurFunc != OneFunc))
|
|
return false;
|
|
OneFunc = CurFunc;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
for (const User *UU : U->users())
|
|
if (!usedInOneFunc(UU, OneFunc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Find out if a global variable can be demoted to local scope.
|
|
* Currently, this is valid for CUDA shared variables, which have local
|
|
* scope and global lifetime. So the conditions to check are :
|
|
* 1. Is the global variable in shared address space?
|
|
* 2. Does it have local linkage?
|
|
* 3. Is the global variable referenced only in one function?
|
|
*/
|
|
static bool canDemoteGlobalVar(const GlobalVariable *GV, Function const *&f) {
|
|
if (!GV->hasLocalLinkage())
|
|
return false;
|
|
if (GV->getAddressSpace() != ADDRESS_SPACE_SHARED)
|
|
return false;
|
|
|
|
const Function *oneFunc = nullptr;
|
|
|
|
bool flag = usedInOneFunc(GV, oneFunc);
|
|
if (!flag)
|
|
return false;
|
|
if (!oneFunc)
|
|
return false;
|
|
f = oneFunc;
|
|
return true;
|
|
}
|
|
|
|
static bool useFuncSeen(const Constant *C,
|
|
const SmallPtrSetImpl<const Function *> &SeenSet) {
|
|
for (const User *U : C->users()) {
|
|
if (const Constant *cu = dyn_cast<Constant>(U)) {
|
|
if (useFuncSeen(cu, SeenSet))
|
|
return true;
|
|
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
|
|
if (const Function *Caller = I->getFunction())
|
|
if (SeenSet.contains(Caller))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
|
|
SmallPtrSet<const Function *, 32> SeenSet;
|
|
for (const Function &F : M) {
|
|
if (F.getAttributes().hasFnAttr("nvptx-libcall-callee")) {
|
|
emitDeclaration(&F, O);
|
|
continue;
|
|
}
|
|
|
|
if (F.isDeclaration()) {
|
|
if (F.use_empty())
|
|
continue;
|
|
if (F.getIntrinsicID())
|
|
continue;
|
|
emitDeclaration(&F, O);
|
|
continue;
|
|
}
|
|
for (const User *U : F.users()) {
|
|
if (const Constant *C = dyn_cast<Constant>(U)) {
|
|
if (usedInGlobalVarDef(C)) {
|
|
// The use is in the initialization of a global variable
|
|
// that is a function pointer, so print a declaration
|
|
// for the original function
|
|
emitDeclaration(&F, O);
|
|
break;
|
|
}
|
|
// Emit a declaration of this function if the function that
|
|
// uses this constant expr has already been seen.
|
|
if (useFuncSeen(C, SeenSet)) {
|
|
emitDeclaration(&F, O);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!isa<Instruction>(U))
|
|
continue;
|
|
const Function *Caller = cast<Instruction>(U)->getFunction();
|
|
if (!Caller)
|
|
continue;
|
|
|
|
// If a caller has already been seen, then the caller is
|
|
// appearing in the module before the callee. so print out
|
|
// a declaration for the callee.
|
|
if (SeenSet.contains(Caller)) {
|
|
emitDeclaration(&F, O);
|
|
break;
|
|
}
|
|
}
|
|
SeenSet.insert(&F);
|
|
}
|
|
for (const GlobalAlias &GA : M.aliases())
|
|
emitAliasDeclaration(&GA, O);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitStartOfAsmFile(Module &M) {
|
|
// Construct a default subtarget off of the TargetMachine defaults. The
|
|
// rest of NVPTX isn't friendly to change subtargets per function and
|
|
// so the default TargetMachine will have all of the options.
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const auto* STI = static_cast<const NVPTXSubtarget*>(NTM.getSubtargetImpl());
|
|
SmallString<128> Str1;
|
|
raw_svector_ostream OS1(Str1);
|
|
|
|
// Emit header before any dwarf directives are emitted below.
|
|
emitHeader(M, OS1, *STI);
|
|
OutStreamer->emitRawText(OS1.str());
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::doInitialization(Module &M) {
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const NVPTXSubtarget &STI =
|
|
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
|
|
if (M.alias_size() && (STI.getPTXVersion() < 63 || STI.getSmVersion() < 30))
|
|
report_fatal_error(".alias requires PTX version >= 6.3 and sm_30");
|
|
|
|
// We need to call the parent's one explicitly.
|
|
bool Result = AsmPrinter::doInitialization(M);
|
|
|
|
GlobalsEmitted = false;
|
|
|
|
return Result;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitGlobals(const Module &M) {
|
|
SmallString<128> Str2;
|
|
raw_svector_ostream OS2(Str2);
|
|
|
|
emitDeclarations(M, OS2);
|
|
|
|
// As ptxas does not support forward references of globals, we need to first
|
|
// sort the list of module-level globals in def-use order. We visit each
|
|
// global variable in order, and ensure that we emit it *after* its dependent
|
|
// globals. We use a little extra memory maintaining both a set and a list to
|
|
// have fast searches while maintaining a strict ordering.
|
|
SmallVector<const GlobalVariable *, 8> Globals;
|
|
DenseSet<const GlobalVariable *> GVVisited;
|
|
DenseSet<const GlobalVariable *> GVVisiting;
|
|
|
|
// Visit each global variable, in order
|
|
for (const GlobalVariable &I : M.globals())
|
|
VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
|
|
|
|
assert(GVVisited.size() == M.global_size() && "Missed a global variable");
|
|
assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
|
|
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const NVPTXSubtarget &STI =
|
|
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
|
|
|
|
// Print out module-level global variables in proper order
|
|
for (const GlobalVariable *GV : Globals)
|
|
printModuleLevelGV(GV, OS2, /*ProcessDemoted=*/false, STI);
|
|
|
|
OS2 << '\n';
|
|
|
|
OutStreamer->emitRawText(OS2.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream OS(Str);
|
|
|
|
MCSymbol *Name = getSymbol(&GA);
|
|
|
|
OS << ".alias " << Name->getName() << ", " << GA.getAliaseeObject()->getName()
|
|
<< ";\n";
|
|
|
|
OutStreamer->emitRawText(OS.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
|
|
const NVPTXSubtarget &STI) {
|
|
const unsigned PTXVersion = STI.getPTXVersion();
|
|
|
|
O << "//\n"
|
|
"// Generated by LLVM NVPTX Back-End\n"
|
|
"//\n"
|
|
"\n"
|
|
<< ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n"
|
|
<< ".target " << STI.getTargetName();
|
|
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
if (NTM.getDrvInterface() == NVPTX::NVCL)
|
|
O << ", texmode_independent";
|
|
|
|
bool HasFullDebugInfo = false;
|
|
for (DICompileUnit *CU : M.debug_compile_units()) {
|
|
switch(CU->getEmissionKind()) {
|
|
case DICompileUnit::NoDebug:
|
|
case DICompileUnit::DebugDirectivesOnly:
|
|
break;
|
|
case DICompileUnit::LineTablesOnly:
|
|
case DICompileUnit::FullDebug:
|
|
HasFullDebugInfo = true;
|
|
break;
|
|
}
|
|
if (HasFullDebugInfo)
|
|
break;
|
|
}
|
|
if (HasFullDebugInfo)
|
|
O << ", debug";
|
|
|
|
O << "\n"
|
|
<< ".address_size " << (NTM.is64Bit() ? "64" : "32") << "\n"
|
|
<< "\n";
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::doFinalization(Module &M) {
|
|
// If we did not emit any functions, then the global declarations have not
|
|
// yet been emitted.
|
|
if (!GlobalsEmitted) {
|
|
emitGlobals(M);
|
|
GlobalsEmitted = true;
|
|
}
|
|
|
|
// call doFinalization
|
|
bool ret = AsmPrinter::doFinalization(M);
|
|
|
|
clearAnnotationCache(&M);
|
|
|
|
auto *TS =
|
|
static_cast<NVPTXTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
// Close the last emitted section
|
|
if (hasDebugInfo()) {
|
|
TS->closeLastSection();
|
|
// Emit empty .debug_macinfo section for better support of the empty files.
|
|
OutStreamer->emitRawText("\t.section\t.debug_macinfo\t{\t}");
|
|
}
|
|
|
|
// Output last DWARF .file directives, if any.
|
|
TS->outputDwarfFileDirectives();
|
|
|
|
return ret;
|
|
}
|
|
|
|
// This function emits appropriate linkage directives for
|
|
// functions and global variables.
|
|
//
|
|
// extern function declaration -> .extern
|
|
// extern function definition -> .visible
|
|
// external global variable with init -> .visible
|
|
// external without init -> .extern
|
|
// appending -> not allowed, assert.
|
|
// for any linkage other than
|
|
// internal, private, linker_private,
|
|
// linker_private_weak, linker_private_weak_def_auto,
|
|
// we emit -> .weak.
|
|
|
|
void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
|
|
raw_ostream &O) {
|
|
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
|
|
if (V->hasExternalLinkage()) {
|
|
if (const auto *GVar = dyn_cast<GlobalVariable>(V))
|
|
O << (GVar->hasInitializer() ? ".visible " : ".extern ");
|
|
else if (V->isDeclaration())
|
|
O << ".extern ";
|
|
else
|
|
O << ".visible ";
|
|
} else if (V->hasAppendingLinkage()) {
|
|
report_fatal_error("Symbol '" + (V->hasName() ? V->getName() : "") +
|
|
"' has unsupported appending linkage type");
|
|
} else if (!V->hasInternalLinkage() && !V->hasPrivateLinkage()) {
|
|
O << ".weak ";
|
|
}
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
|
|
raw_ostream &O, bool ProcessDemoted,
|
|
const NVPTXSubtarget &STI) {
|
|
// Skip meta data
|
|
if (GVar->hasSection())
|
|
if (GVar->getSection() == "llvm.metadata")
|
|
return;
|
|
|
|
// Skip LLVM intrinsic global variables
|
|
if (GVar->getName().starts_with("llvm.") ||
|
|
GVar->getName().starts_with("nvvm."))
|
|
return;
|
|
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// GlobalVariables are always constant pointers themselves.
|
|
Type *ETy = GVar->getValueType();
|
|
|
|
if (GVar->hasExternalLinkage()) {
|
|
if (GVar->hasInitializer())
|
|
O << ".visible ";
|
|
else
|
|
O << ".extern ";
|
|
} else if (STI.getPTXVersion() >= 50 && GVar->hasCommonLinkage() &&
|
|
GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) {
|
|
O << ".common ";
|
|
} else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
|
|
GVar->hasAvailableExternallyLinkage() ||
|
|
GVar->hasCommonLinkage()) {
|
|
O << ".weak ";
|
|
}
|
|
|
|
if (isTexture(*GVar)) {
|
|
O << ".global .texref " << getTextureName(*GVar) << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (isSurface(*GVar)) {
|
|
O << ".global .surfref " << getSurfaceName(*GVar) << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (GVar->isDeclaration()) {
|
|
// (extern) declarations, no definition or initializer
|
|
// Currently the only known declaration is for an automatic __local
|
|
// (.shared) promoted to global.
|
|
emitPTXGlobalVariable(GVar, O, STI);
|
|
O << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (isSampler(*GVar)) {
|
|
O << ".global .samplerref " << getSamplerName(*GVar);
|
|
|
|
const Constant *Initializer = nullptr;
|
|
if (GVar->hasInitializer())
|
|
Initializer = GVar->getInitializer();
|
|
const ConstantInt *CI = nullptr;
|
|
if (Initializer)
|
|
CI = dyn_cast<ConstantInt>(Initializer);
|
|
if (CI) {
|
|
unsigned sample = CI->getZExtValue();
|
|
|
|
O << " = { ";
|
|
|
|
for (int i = 0,
|
|
addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
|
|
i < 3; i++) {
|
|
O << "addr_mode_" << i << " = ";
|
|
switch (addr) {
|
|
case 0:
|
|
O << "wrap";
|
|
break;
|
|
case 1:
|
|
O << "clamp_to_border";
|
|
break;
|
|
case 2:
|
|
O << "clamp_to_edge";
|
|
break;
|
|
case 3:
|
|
O << "wrap";
|
|
break;
|
|
case 4:
|
|
O << "mirror";
|
|
break;
|
|
}
|
|
O << ", ";
|
|
}
|
|
O << "filter_mode = ";
|
|
switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
|
|
case 0:
|
|
O << "nearest";
|
|
break;
|
|
case 1:
|
|
O << "linear";
|
|
break;
|
|
case 2:
|
|
llvm_unreachable("Anisotropic filtering is not supported");
|
|
default:
|
|
O << "nearest";
|
|
break;
|
|
}
|
|
if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
|
|
O << ", force_unnormalized_coords = 1";
|
|
}
|
|
O << " }";
|
|
}
|
|
|
|
O << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (GVar->hasPrivateLinkage()) {
|
|
if (GVar->getName().starts_with("unrollpragma"))
|
|
return;
|
|
|
|
// FIXME - need better way (e.g. Metadata) to avoid generating this global
|
|
if (GVar->getName().starts_with("filename"))
|
|
return;
|
|
if (GVar->use_empty())
|
|
return;
|
|
}
|
|
|
|
const Function *DemotedFunc = nullptr;
|
|
if (!ProcessDemoted && canDemoteGlobalVar(GVar, DemotedFunc)) {
|
|
O << "// " << GVar->getName() << " has been demoted\n";
|
|
localDecls[DemotedFunc].push_back(GVar);
|
|
return;
|
|
}
|
|
|
|
O << ".";
|
|
emitPTXAddressSpace(GVar->getAddressSpace(), O);
|
|
|
|
if (isManaged(*GVar)) {
|
|
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30)
|
|
report_fatal_error(
|
|
".attribute(.managed) requires PTX version >= 4.0 and sm_30");
|
|
O << " .attribute(.managed)";
|
|
}
|
|
|
|
O << " .align "
|
|
<< GVar->getAlign().value_or(DL.getPrefTypeAlign(ETy)).value();
|
|
|
|
if (ETy->isPointerTy() || ((ETy->isIntegerTy() || ETy->isFloatingPointTy()) &&
|
|
ETy->getScalarSizeInBits() <= 64)) {
|
|
O << " .";
|
|
// Special case: ABI requires that we use .u8 for predicates
|
|
if (ETy->isIntegerTy(1))
|
|
O << "u8";
|
|
else
|
|
O << getPTXFundamentalTypeStr(ETy, false);
|
|
O << " ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
|
|
// Ptx allows variable initilization only for constant and global state
|
|
// spaces.
|
|
if (GVar->hasInitializer()) {
|
|
if ((GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
|
|
(GVar->getAddressSpace() == ADDRESS_SPACE_CONST)) {
|
|
const Constant *Initializer = GVar->getInitializer();
|
|
// 'undef' is treated as there is no value specified.
|
|
if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
|
|
O << " = ";
|
|
printScalarConstant(Initializer, O);
|
|
}
|
|
} else {
|
|
// The frontend adds zero-initializer to device and constant variables
|
|
// that don't have an initial value, and UndefValue to shared
|
|
// variables, so skip warning for this case.
|
|
if (!GVar->getInitializer()->isNullValue() &&
|
|
!isa<UndefValue>(GVar->getInitializer())) {
|
|
report_fatal_error("initial value of '" + GVar->getName() +
|
|
"' is not allowed in addrspace(" +
|
|
Twine(GVar->getAddressSpace()) + ")");
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Although PTX has direct support for struct type and array type and
|
|
// LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
|
|
// targets that support these high level field accesses. Structs, arrays
|
|
// and vectors are lowered into arrays of bytes.
|
|
switch (ETy->getTypeID()) {
|
|
case Type::IntegerTyID: // Integers larger than 64 bits
|
|
case Type::FP128TyID:
|
|
case Type::StructTyID:
|
|
case Type::ArrayTyID:
|
|
case Type::FixedVectorTyID: {
|
|
const uint64_t ElementSize = DL.getTypeStoreSize(ETy);
|
|
// Ptx allows variable initilization only for constant and
|
|
// global state spaces.
|
|
if (((GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
|
|
(GVar->getAddressSpace() == ADDRESS_SPACE_CONST)) &&
|
|
GVar->hasInitializer()) {
|
|
const Constant *Initializer = GVar->getInitializer();
|
|
if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
|
|
AggBuffer aggBuffer(ElementSize, *this);
|
|
bufferAggregateConstant(Initializer, &aggBuffer);
|
|
if (aggBuffer.numSymbols()) {
|
|
const unsigned int ptrSize = MAI->getCodePointerSize();
|
|
if (ElementSize % ptrSize ||
|
|
!aggBuffer.allSymbolsAligned(ptrSize)) {
|
|
// Print in bytes and use the mask() operator for pointers.
|
|
if (!STI.hasMaskOperator())
|
|
report_fatal_error(
|
|
"initialized packed aggregate with pointers '" +
|
|
GVar->getName() +
|
|
"' requires at least PTX ISA version 7.1");
|
|
O << " .u8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[" << ElementSize << "] = {";
|
|
aggBuffer.printBytes(O);
|
|
O << "}";
|
|
} else {
|
|
O << " .u" << ptrSize * 8 << " ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[" << ElementSize / ptrSize << "] = {";
|
|
aggBuffer.printWords(O);
|
|
O << "}";
|
|
}
|
|
} else {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[" << ElementSize << "] = {";
|
|
aggBuffer.printBytes(O);
|
|
O << "}";
|
|
}
|
|
} else {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
if (ElementSize)
|
|
O << "[" << ElementSize << "]";
|
|
}
|
|
} else {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
if (ElementSize)
|
|
O << "[" << ElementSize << "]";
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("type not supported yet");
|
|
}
|
|
}
|
|
O << ";\n";
|
|
}
|
|
|
|
void NVPTXAsmPrinter::AggBuffer::printSymbol(unsigned nSym, raw_ostream &os) {
|
|
const Value *v = Symbols[nSym];
|
|
const Value *v0 = SymbolsBeforeStripping[nSym];
|
|
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
|
|
MCSymbol *Name = AP.getSymbol(GVar);
|
|
PointerType *PTy = dyn_cast<PointerType>(v0->getType());
|
|
// Is v0 a generic pointer?
|
|
bool isGenericPointer = PTy && PTy->getAddressSpace() == 0;
|
|
if (EmitGeneric && isGenericPointer && !isa<Function>(v)) {
|
|
os << "generic(";
|
|
Name->print(os, AP.MAI);
|
|
os << ")";
|
|
} else {
|
|
Name->print(os, AP.MAI);
|
|
}
|
|
} else if (const ConstantExpr *CExpr = dyn_cast<ConstantExpr>(v0)) {
|
|
const MCExpr *Expr = AP.lowerConstantForGV(CExpr, false);
|
|
AP.printMCExpr(*Expr, os);
|
|
} else
|
|
llvm_unreachable("symbol type unknown");
|
|
}
|
|
|
|
void NVPTXAsmPrinter::AggBuffer::printBytes(raw_ostream &os) {
|
|
unsigned int ptrSize = AP.MAI->getCodePointerSize();
|
|
// Do not emit trailing zero initializers. They will be zero-initialized by
|
|
// ptxas. This saves on both space requirements for the generated PTX and on
|
|
// memory use by ptxas. (See:
|
|
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#global-state-space)
|
|
unsigned int InitializerCount = size;
|
|
// TODO: symbols make this harder, but it would still be good to trim trailing
|
|
// 0s for aggs with symbols as well.
|
|
if (numSymbols() == 0)
|
|
while (InitializerCount >= 1 && !buffer[InitializerCount - 1])
|
|
InitializerCount--;
|
|
|
|
symbolPosInBuffer.push_back(InitializerCount);
|
|
unsigned int nSym = 0;
|
|
unsigned int nextSymbolPos = symbolPosInBuffer[nSym];
|
|
for (unsigned int pos = 0; pos < InitializerCount;) {
|
|
if (pos)
|
|
os << ", ";
|
|
if (pos != nextSymbolPos) {
|
|
os << (unsigned int)buffer[pos];
|
|
++pos;
|
|
continue;
|
|
}
|
|
// Generate a per-byte mask() operator for the symbol, which looks like:
|
|
// .global .u8 addr[] = {0xFF(foo), 0xFF00(foo), 0xFF0000(foo), ...};
|
|
// See https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#initializers
|
|
std::string symText;
|
|
llvm::raw_string_ostream oss(symText);
|
|
printSymbol(nSym, oss);
|
|
for (unsigned i = 0; i < ptrSize; ++i) {
|
|
if (i)
|
|
os << ", ";
|
|
llvm::write_hex(os, 0xFFULL << i * 8, HexPrintStyle::PrefixUpper);
|
|
os << "(" << symText << ")";
|
|
}
|
|
pos += ptrSize;
|
|
nextSymbolPos = symbolPosInBuffer[++nSym];
|
|
assert(nextSymbolPos >= pos);
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::AggBuffer::printWords(raw_ostream &os) {
|
|
unsigned int ptrSize = AP.MAI->getCodePointerSize();
|
|
symbolPosInBuffer.push_back(size);
|
|
unsigned int nSym = 0;
|
|
unsigned int nextSymbolPos = symbolPosInBuffer[nSym];
|
|
assert(nextSymbolPos % ptrSize == 0);
|
|
for (unsigned int pos = 0; pos < size; pos += ptrSize) {
|
|
if (pos)
|
|
os << ", ";
|
|
if (pos == nextSymbolPos) {
|
|
printSymbol(nSym, os);
|
|
nextSymbolPos = symbolPosInBuffer[++nSym];
|
|
assert(nextSymbolPos % ptrSize == 0);
|
|
assert(nextSymbolPos >= pos + ptrSize);
|
|
} else if (ptrSize == 4)
|
|
os << support::endian::read32le(&buffer[pos]);
|
|
else
|
|
os << support::endian::read64le(&buffer[pos]);
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDemotedVars(const Function *F, raw_ostream &O) {
|
|
auto It = localDecls.find(F);
|
|
if (It == localDecls.end())
|
|
return;
|
|
|
|
ArrayRef<const GlobalVariable *> GVars = It->second;
|
|
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const NVPTXSubtarget &STI =
|
|
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
|
|
|
|
for (const GlobalVariable *GV : GVars) {
|
|
O << "\t// demoted variable\n\t";
|
|
printModuleLevelGV(GV, O, /*processDemoted=*/true, STI);
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
|
|
raw_ostream &O) const {
|
|
switch (AddressSpace) {
|
|
case ADDRESS_SPACE_LOCAL:
|
|
O << "local";
|
|
break;
|
|
case ADDRESS_SPACE_GLOBAL:
|
|
O << "global";
|
|
break;
|
|
case ADDRESS_SPACE_CONST:
|
|
O << "const";
|
|
break;
|
|
case ADDRESS_SPACE_SHARED:
|
|
O << "shared";
|
|
break;
|
|
default:
|
|
report_fatal_error("Bad address space found while emitting PTX: " +
|
|
llvm::Twine(AddressSpace));
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::string
|
|
NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID: {
|
|
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
|
|
if (NumBits == 1)
|
|
return "pred";
|
|
if (NumBits <= 64) {
|
|
std::string name = "u";
|
|
return name + utostr(NumBits);
|
|
}
|
|
llvm_unreachable("Integer too large");
|
|
break;
|
|
}
|
|
case Type::BFloatTyID:
|
|
case Type::HalfTyID:
|
|
// fp16 and bf16 are stored as .b16 for compatibility with pre-sm_53
|
|
// PTX assembly.
|
|
return "b16";
|
|
case Type::FloatTyID:
|
|
return "f32";
|
|
case Type::DoubleTyID:
|
|
return "f64";
|
|
case Type::PointerTyID: {
|
|
unsigned PtrSize = TM.getPointerSizeInBits(Ty->getPointerAddressSpace());
|
|
assert((PtrSize == 64 || PtrSize == 32) && "Unexpected pointer size");
|
|
|
|
if (PtrSize == 64)
|
|
if (useB4PTR)
|
|
return "b64";
|
|
else
|
|
return "u64";
|
|
else if (useB4PTR)
|
|
return "b32";
|
|
else
|
|
return "u32";
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
llvm_unreachable("unexpected type");
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
|
|
raw_ostream &O,
|
|
const NVPTXSubtarget &STI) {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// GlobalVariables are always constant pointers themselves.
|
|
Type *ETy = GVar->getValueType();
|
|
|
|
O << ".";
|
|
emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
|
|
if (isManaged(*GVar)) {
|
|
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30)
|
|
report_fatal_error(
|
|
".attribute(.managed) requires PTX version >= 4.0 and sm_30");
|
|
|
|
O << " .attribute(.managed)";
|
|
}
|
|
O << " .align "
|
|
<< GVar->getAlign().value_or(DL.getPrefTypeAlign(ETy)).value();
|
|
|
|
// Special case for i128/fp128
|
|
if (ETy->getScalarSizeInBits() == 128) {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[16]";
|
|
return;
|
|
}
|
|
|
|
if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) {
|
|
O << " ." << getPTXFundamentalTypeStr(ETy) << " ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
return;
|
|
}
|
|
|
|
int64_t ElementSize = 0;
|
|
|
|
// Although PTX has direct support for struct type and array type and LLVM IR
|
|
// is very similar to PTX, the LLVM CodeGen does not support for targets that
|
|
// support these high level field accesses. Structs and arrays are lowered
|
|
// into arrays of bytes.
|
|
switch (ETy->getTypeID()) {
|
|
case Type::StructTyID:
|
|
case Type::ArrayTyID:
|
|
case Type::FixedVectorTyID:
|
|
ElementSize = DL.getTypeStoreSize(ETy);
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[";
|
|
if (ElementSize) {
|
|
O << ElementSize;
|
|
}
|
|
O << "]";
|
|
break;
|
|
default:
|
|
llvm_unreachable("type not supported yet");
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
|
|
const DataLayout &DL = getDataLayout();
|
|
const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
|
|
const auto *TLI = cast<NVPTXTargetLowering>(STI.getTargetLowering());
|
|
const NVPTXMachineFunctionInfo *MFI =
|
|
MF ? MF->getInfo<NVPTXMachineFunctionInfo>() : nullptr;
|
|
|
|
bool IsFirst = true;
|
|
const bool IsKernelFunc = isKernelFunction(*F);
|
|
|
|
if (F->arg_empty() && !F->isVarArg()) {
|
|
O << "()";
|
|
return;
|
|
}
|
|
|
|
O << "(\n";
|
|
|
|
for (const Argument &Arg : F->args()) {
|
|
Type *Ty = Arg.getType();
|
|
const std::string ParamSym = TLI->getParamName(F, Arg.getArgNo());
|
|
|
|
if (!IsFirst)
|
|
O << ",\n";
|
|
|
|
IsFirst = false;
|
|
|
|
// Handle image/sampler parameters
|
|
if (IsKernelFunc) {
|
|
const bool IsSampler = isSampler(Arg);
|
|
const bool IsTexture = !IsSampler && isImageReadOnly(Arg);
|
|
const bool IsSurface = !IsSampler && !IsTexture &&
|
|
(isImageReadWrite(Arg) || isImageWriteOnly(Arg));
|
|
if (IsSampler || IsTexture || IsSurface) {
|
|
const bool EmitImgPtr = !MFI || !MFI->checkImageHandleSymbol(ParamSym);
|
|
O << "\t.param ";
|
|
if (EmitImgPtr)
|
|
O << ".u64 .ptr ";
|
|
|
|
if (IsSampler)
|
|
O << ".samplerref ";
|
|
else if (IsTexture)
|
|
O << ".texref ";
|
|
else // IsSurface
|
|
O << ".surfref ";
|
|
O << ParamSym;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
auto GetOptimalAlignForParam = [TLI, &DL, F, &Arg](Type *Ty) -> Align {
|
|
if (MaybeAlign StackAlign =
|
|
getAlign(*F, Arg.getArgNo() + AttributeList::FirstArgIndex))
|
|
return StackAlign.value();
|
|
|
|
Align TypeAlign = TLI->getFunctionParamOptimizedAlign(F, Ty, DL);
|
|
MaybeAlign ParamAlign =
|
|
Arg.hasByValAttr() ? Arg.getParamAlign() : MaybeAlign();
|
|
return std::max(TypeAlign, ParamAlign.valueOrOne());
|
|
};
|
|
|
|
if (Arg.hasByValAttr()) {
|
|
// param has byVal attribute.
|
|
Type *ETy = Arg.getParamByValType();
|
|
assert(ETy && "Param should have byval type");
|
|
|
|
// Print .param .align <a> .b8 .param[size];
|
|
// <a> = optimal alignment for the element type; always multiple of
|
|
// PAL.getParamAlignment
|
|
// size = typeallocsize of element type
|
|
const Align OptimalAlign =
|
|
IsKernelFunc ? GetOptimalAlignForParam(ETy)
|
|
: TLI->getFunctionByValParamAlign(
|
|
F, ETy, Arg.getParamAlign().valueOrOne(), DL);
|
|
|
|
O << "\t.param .align " << OptimalAlign.value() << " .b8 " << ParamSym
|
|
<< "[" << DL.getTypeAllocSize(ETy) << "]";
|
|
continue;
|
|
}
|
|
|
|
if (shouldPassAsArray(Ty)) {
|
|
// Just print .param .align <a> .b8 .param[size];
|
|
// <a> = optimal alignment for the element type; always multiple of
|
|
// PAL.getParamAlignment
|
|
// size = typeallocsize of element type
|
|
Align OptimalAlign = GetOptimalAlignForParam(Ty);
|
|
|
|
O << "\t.param .align " << OptimalAlign.value() << " .b8 " << ParamSym
|
|
<< "[" << DL.getTypeAllocSize(Ty) << "]";
|
|
|
|
continue;
|
|
}
|
|
// Just a scalar
|
|
auto *PTy = dyn_cast<PointerType>(Ty);
|
|
unsigned PTySizeInBits = 0;
|
|
if (PTy) {
|
|
PTySizeInBits =
|
|
TLI->getPointerTy(DL, PTy->getAddressSpace()).getSizeInBits();
|
|
assert(PTySizeInBits && "Invalid pointer size");
|
|
}
|
|
|
|
if (IsKernelFunc) {
|
|
if (PTy) {
|
|
O << "\t.param .u" << PTySizeInBits << " .ptr";
|
|
|
|
switch (PTy->getAddressSpace()) {
|
|
default:
|
|
break;
|
|
case ADDRESS_SPACE_GLOBAL:
|
|
O << " .global";
|
|
break;
|
|
case ADDRESS_SPACE_SHARED:
|
|
O << " .shared";
|
|
break;
|
|
case ADDRESS_SPACE_CONST:
|
|
O << " .const";
|
|
break;
|
|
case ADDRESS_SPACE_LOCAL:
|
|
O << " .local";
|
|
break;
|
|
}
|
|
|
|
O << " .align " << Arg.getParamAlign().valueOrOne().value() << " "
|
|
<< ParamSym;
|
|
continue;
|
|
}
|
|
|
|
// non-pointer scalar to kernel func
|
|
O << "\t.param .";
|
|
// Special case: predicate operands become .u8 types
|
|
if (Ty->isIntegerTy(1))
|
|
O << "u8";
|
|
else
|
|
O << getPTXFundamentalTypeStr(Ty);
|
|
O << " " << ParamSym;
|
|
continue;
|
|
}
|
|
// Non-kernel function, just print .param .b<size> for ABI
|
|
// and .reg .b<size> for non-ABI
|
|
unsigned Size;
|
|
if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
|
|
Size = promoteScalarArgumentSize(ITy->getBitWidth());
|
|
} else if (PTy) {
|
|
assert(PTySizeInBits && "Invalid pointer size");
|
|
Size = PTySizeInBits;
|
|
} else
|
|
Size = Ty->getPrimitiveSizeInBits();
|
|
O << "\t.param .b" << Size << " " << ParamSym;
|
|
}
|
|
|
|
if (F->isVarArg()) {
|
|
if (!IsFirst)
|
|
O << ",\n";
|
|
O << "\t.param .align " << STI.getMaxRequiredAlignment() << " .b8 "
|
|
<< TLI->getParamName(F, /* vararg */ -1) << "[]";
|
|
}
|
|
|
|
O << "\n)";
|
|
}
|
|
|
|
void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
|
|
const MachineFunction &MF) {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream O(Str);
|
|
|
|
// Map the global virtual register number to a register class specific
|
|
// virtual register number starting from 1 with that class.
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
|
|
// Emit the Fake Stack Object
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
int64_t NumBytes = MFI.getStackSize();
|
|
if (NumBytes) {
|
|
O << "\t.local .align " << MFI.getMaxAlign().value() << " .b8 \t"
|
|
<< DEPOTNAME << getFunctionNumber() << "[" << NumBytes << "];\n";
|
|
if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
|
|
O << "\t.reg .b64 \t%SP;\n"
|
|
<< "\t.reg .b64 \t%SPL;\n";
|
|
} else {
|
|
O << "\t.reg .b32 \t%SP;\n"
|
|
<< "\t.reg .b32 \t%SPL;\n";
|
|
}
|
|
}
|
|
|
|
// Go through all virtual registers to establish the mapping between the
|
|
// global virtual
|
|
// register number and the per class virtual register number.
|
|
// We use the per class virtual register number in the ptx output.
|
|
for (unsigned I : llvm::seq(MRI->getNumVirtRegs())) {
|
|
Register VR = Register::index2VirtReg(I);
|
|
if (MRI->use_empty(VR) && MRI->def_empty(VR))
|
|
continue;
|
|
auto &RCRegMap = VRegMapping[MRI->getRegClass(VR)];
|
|
RCRegMap[VR] = RCRegMap.size() + 1;
|
|
}
|
|
|
|
// Emit declaration of the virtual registers or 'physical' registers for
|
|
// each register class
|
|
for (const TargetRegisterClass *RC : TRI->regclasses()) {
|
|
const unsigned N = VRegMapping[RC].size();
|
|
|
|
// Only declare those registers that may be used.
|
|
if (N) {
|
|
const StringRef RCName = getNVPTXRegClassName(RC);
|
|
const StringRef RCStr = getNVPTXRegClassStr(RC);
|
|
O << "\t.reg " << RCName << " \t" << RCStr << "<" << (N + 1) << ">;\n";
|
|
}
|
|
}
|
|
|
|
OutStreamer->emitRawText(O.str());
|
|
}
|
|
|
|
/// Translate virtual register numbers in DebugInfo locations to their printed
|
|
/// encodings, as used by CUDA-GDB.
|
|
void NVPTXAsmPrinter::encodeDebugInfoRegisterNumbers(
|
|
const MachineFunction &MF) {
|
|
const NVPTXSubtarget &STI = MF.getSubtarget<NVPTXSubtarget>();
|
|
const NVPTXRegisterInfo *registerInfo = STI.getRegisterInfo();
|
|
|
|
// Clear the old mapping, and add the new one. This mapping is used after the
|
|
// printing of the current function is complete, but before the next function
|
|
// is printed.
|
|
registerInfo->clearDebugRegisterMap();
|
|
|
|
for (auto &classMap : VRegMapping) {
|
|
for (auto ®isterMapping : classMap.getSecond()) {
|
|
auto reg = registerMapping.getFirst();
|
|
registerInfo->addToDebugRegisterMap(reg, getVirtualRegisterName(reg));
|
|
}
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp,
|
|
raw_ostream &O) const {
|
|
APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
|
|
bool ignored;
|
|
unsigned int numHex;
|
|
const char *lead;
|
|
|
|
if (Fp->getType()->getTypeID() == Type::FloatTyID) {
|
|
numHex = 8;
|
|
lead = "0f";
|
|
APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored);
|
|
} else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
|
|
numHex = 16;
|
|
lead = "0d";
|
|
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored);
|
|
} else
|
|
llvm_unreachable("unsupported fp type");
|
|
|
|
APInt API = APF.bitcastToAPInt();
|
|
O << lead << format_hex_no_prefix(API.getZExtValue(), numHex, /*Upper=*/true);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
|
|
O << CI->getValue();
|
|
return;
|
|
}
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
|
|
printFPConstant(CFP, O);
|
|
return;
|
|
}
|
|
if (isa<ConstantPointerNull>(CPV)) {
|
|
O << "0";
|
|
return;
|
|
}
|
|
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
|
|
const bool IsNonGenericPointer = GVar->getAddressSpace() != 0;
|
|
if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
|
|
O << "generic(";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << ")";
|
|
} else {
|
|
getSymbol(GVar)->print(O, MAI);
|
|
}
|
|
return;
|
|
}
|
|
if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
const MCExpr *E = lowerConstantForGV(cast<Constant>(Cexpr), false);
|
|
printMCExpr(*E, O);
|
|
return;
|
|
}
|
|
llvm_unreachable("Not scalar type found in printScalarConstant()");
|
|
}
|
|
|
|
void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
|
|
AggBuffer *AggBuffer) {
|
|
const DataLayout &DL = getDataLayout();
|
|
int AllocSize = DL.getTypeAllocSize(CPV->getType());
|
|
if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
|
|
// Non-zero Bytes indicates that we need to zero-fill everything. Otherwise,
|
|
// only the space allocated by CPV.
|
|
AggBuffer->addZeros(Bytes ? Bytes : AllocSize);
|
|
return;
|
|
}
|
|
|
|
// Helper for filling AggBuffer with APInts.
|
|
auto AddIntToBuffer = [AggBuffer, Bytes](const APInt &Val) {
|
|
size_t NumBytes = (Val.getBitWidth() + 7) / 8;
|
|
SmallVector<unsigned char, 16> Buf(NumBytes);
|
|
// `extractBitsAsZExtValue` does not allow the extraction of bits beyond the
|
|
// input's bit width, and i1 arrays may not have a length that is a multuple
|
|
// of 8. We handle the last byte separately, so we never request out of
|
|
// bounds bits.
|
|
for (unsigned I = 0; I < NumBytes - 1; ++I) {
|
|
Buf[I] = Val.extractBitsAsZExtValue(8, I * 8);
|
|
}
|
|
size_t LastBytePosition = (NumBytes - 1) * 8;
|
|
size_t LastByteBits = Val.getBitWidth() - LastBytePosition;
|
|
Buf[NumBytes - 1] =
|
|
Val.extractBitsAsZExtValue(LastByteBits, LastBytePosition);
|
|
AggBuffer->addBytes(Buf.data(), NumBytes, Bytes);
|
|
};
|
|
|
|
switch (CPV->getType()->getTypeID()) {
|
|
case Type::IntegerTyID:
|
|
if (const auto *CI = dyn_cast<ConstantInt>(CPV)) {
|
|
AddIntToBuffer(CI->getValue());
|
|
break;
|
|
}
|
|
if (const auto *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
if (const auto *CI =
|
|
dyn_cast<ConstantInt>(ConstantFoldConstant(Cexpr, DL))) {
|
|
AddIntToBuffer(CI->getValue());
|
|
break;
|
|
}
|
|
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
|
|
Value *V = Cexpr->getOperand(0)->stripPointerCasts();
|
|
AggBuffer->addSymbol(V, Cexpr->getOperand(0));
|
|
AggBuffer->addZeros(AllocSize);
|
|
break;
|
|
}
|
|
}
|
|
llvm_unreachable("unsupported integer const type");
|
|
break;
|
|
|
|
case Type::HalfTyID:
|
|
case Type::BFloatTyID:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
AddIntToBuffer(cast<ConstantFP>(CPV)->getValueAPF().bitcastToAPInt());
|
|
break;
|
|
|
|
case Type::PointerTyID: {
|
|
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
|
|
AggBuffer->addSymbol(GVar, GVar);
|
|
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
const Value *v = Cexpr->stripPointerCasts();
|
|
AggBuffer->addSymbol(v, Cexpr);
|
|
}
|
|
AggBuffer->addZeros(AllocSize);
|
|
break;
|
|
}
|
|
|
|
case Type::ArrayTyID:
|
|
case Type::FixedVectorTyID:
|
|
case Type::StructTyID: {
|
|
if (isa<ConstantAggregate>(CPV) || isa<ConstantDataSequential>(CPV)) {
|
|
bufferAggregateConstant(CPV, AggBuffer);
|
|
if (Bytes > AllocSize)
|
|
AggBuffer->addZeros(Bytes - AllocSize);
|
|
} else if (isa<ConstantAggregateZero>(CPV))
|
|
AggBuffer->addZeros(Bytes);
|
|
else
|
|
llvm_unreachable("Unexpected Constant type");
|
|
break;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("unsupported type");
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
|
|
AggBuffer *aggBuffer) {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
auto ExtendBuffer = [](APInt Val, AggBuffer *Buffer) {
|
|
for (unsigned I : llvm::seq(Val.getBitWidth() / 8))
|
|
Buffer->addByte(Val.extractBitsAsZExtValue(8, I * 8));
|
|
};
|
|
|
|
// Integers of arbitrary width
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
|
|
ExtendBuffer(CI->getValue(), aggBuffer);
|
|
return;
|
|
}
|
|
|
|
// f128
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
|
|
if (CFP->getType()->isFP128Ty()) {
|
|
ExtendBuffer(CFP->getValueAPF().bitcastToAPInt(), aggBuffer);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Old constants
|
|
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
|
|
for (const auto &Op : CPV->operands())
|
|
bufferLEByte(cast<Constant>(Op), 0, aggBuffer);
|
|
return;
|
|
}
|
|
|
|
if (const auto *CDS = dyn_cast<ConstantDataSequential>(CPV)) {
|
|
for (unsigned I : llvm::seq(CDS->getNumElements()))
|
|
bufferLEByte(cast<Constant>(CDS->getElementAsConstant(I)), 0, aggBuffer);
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantStruct>(CPV)) {
|
|
if (CPV->getNumOperands()) {
|
|
StructType *ST = cast<StructType>(CPV->getType());
|
|
for (unsigned I : llvm::seq(CPV->getNumOperands())) {
|
|
int EndOffset = (I + 1 == CPV->getNumOperands())
|
|
? DL.getStructLayout(ST)->getElementOffset(0) +
|
|
DL.getTypeAllocSize(ST)
|
|
: DL.getStructLayout(ST)->getElementOffset(I + 1);
|
|
int Bytes = EndOffset - DL.getStructLayout(ST)->getElementOffset(I);
|
|
bufferLEByte(cast<Constant>(CPV->getOperand(I)), Bytes, aggBuffer);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
llvm_unreachable("unsupported constant type in printAggregateConstant()");
|
|
}
|
|
|
|
/// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly
|
|
/// a copy from AsmPrinter::lowerConstant, except customized to only handle
|
|
/// expressions that are representable in PTX and create
|
|
/// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
|
|
const MCExpr *
|
|
NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV,
|
|
bool ProcessingGeneric) const {
|
|
MCContext &Ctx = OutContext;
|
|
|
|
if (CV->isNullValue() || isa<UndefValue>(CV))
|
|
return MCConstantExpr::create(0, Ctx);
|
|
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
|
|
return MCConstantExpr::create(CI->getZExtValue(), Ctx);
|
|
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
|
|
const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create(getSymbol(GV), Ctx);
|
|
if (ProcessingGeneric)
|
|
return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
|
|
return Expr;
|
|
}
|
|
|
|
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
|
|
if (!CE) {
|
|
llvm_unreachable("Unknown constant value to lower!");
|
|
}
|
|
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
break; // Error
|
|
|
|
case Instruction::AddrSpaceCast: {
|
|
// Strip the addrspacecast and pass along the operand
|
|
PointerType *DstTy = cast<PointerType>(CE->getType());
|
|
if (DstTy->getAddressSpace() == 0)
|
|
return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
|
|
|
|
break; // Error
|
|
}
|
|
|
|
case Instruction::GetElementPtr: {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Generate a symbolic expression for the byte address
|
|
APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
|
|
cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
|
|
|
|
const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
|
|
ProcessingGeneric);
|
|
if (!OffsetAI)
|
|
return Base;
|
|
|
|
int64_t Offset = OffsetAI.getSExtValue();
|
|
return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
|
|
Ctx);
|
|
}
|
|
|
|
case Instruction::Trunc:
|
|
// We emit the value and depend on the assembler to truncate the generated
|
|
// expression properly. This is important for differences between
|
|
// blockaddress labels. Since the two labels are in the same function, it
|
|
// is reasonable to treat their delta as a 32-bit value.
|
|
[[fallthrough]];
|
|
case Instruction::BitCast:
|
|
return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
|
|
|
|
case Instruction::IntToPtr: {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Handle casts to pointers by changing them into casts to the appropriate
|
|
// integer type. This promotes constant folding and simplifies this code.
|
|
Constant *Op = CE->getOperand(0);
|
|
Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()),
|
|
/*IsSigned*/ false, DL);
|
|
if (Op)
|
|
return lowerConstantForGV(Op, ProcessingGeneric);
|
|
|
|
break; // Error
|
|
}
|
|
|
|
case Instruction::PtrToInt: {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Support only foldable casts to/from pointers that can be eliminated by
|
|
// changing the pointer to the appropriately sized integer type.
|
|
Constant *Op = CE->getOperand(0);
|
|
Type *Ty = CE->getType();
|
|
|
|
const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
|
|
|
|
// We can emit the pointer value into this slot if the slot is an
|
|
// integer slot equal to the size of the pointer.
|
|
if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
|
|
return OpExpr;
|
|
|
|
// Otherwise the pointer is smaller than the resultant integer, mask off
|
|
// the high bits so we are sure to get a proper truncation if the input is
|
|
// a constant expr.
|
|
unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
|
|
const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
|
|
return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
|
|
}
|
|
|
|
// The MC library also has a right-shift operator, but it isn't consistently
|
|
// signed or unsigned between different targets.
|
|
case Instruction::Add: {
|
|
const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
|
|
const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
|
|
switch (CE->getOpcode()) {
|
|
default: llvm_unreachable("Unknown binary operator constant cast expr");
|
|
case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the code isn't optimized, there may be outstanding folding
|
|
// opportunities. Attempt to fold the expression using DataLayout as a
|
|
// last resort before giving up.
|
|
Constant *C = ConstantFoldConstant(CE, getDataLayout());
|
|
if (C != CE)
|
|
return lowerConstantForGV(C, ProcessingGeneric);
|
|
|
|
// Otherwise report the problem to the user.
|
|
std::string S;
|
|
raw_string_ostream OS(S);
|
|
OS << "Unsupported expression in static initializer: ";
|
|
CE->printAsOperand(OS, /*PrintType=*/false,
|
|
!MF ? nullptr : MF->getFunction().getParent());
|
|
report_fatal_error(Twine(OS.str()));
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) const {
|
|
OutContext.getAsmInfo()->printExpr(OS, Expr);
|
|
}
|
|
|
|
/// PrintAsmOperand - Print out an operand for an inline asm expression.
|
|
///
|
|
bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
|
|
const char *ExtraCode, raw_ostream &O) {
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0)
|
|
return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
default:
|
|
// See if this is a generic print operand
|
|
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
|
|
case 'r':
|
|
break;
|
|
}
|
|
}
|
|
|
|
printOperand(MI, OpNo, O);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
|
|
unsigned OpNo,
|
|
const char *ExtraCode,
|
|
raw_ostream &O) {
|
|
if (ExtraCode && ExtraCode[0])
|
|
return true; // Unknown modifier
|
|
|
|
O << '[';
|
|
printMemOperand(MI, OpNo, O);
|
|
O << ']';
|
|
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum,
|
|
raw_ostream &O) {
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_Register:
|
|
if (MO.getReg().isPhysical()) {
|
|
if (MO.getReg() == NVPTX::VRDepot)
|
|
O << DEPOTNAME << getFunctionNumber();
|
|
else
|
|
O << NVPTXInstPrinter::getRegisterName(MO.getReg());
|
|
} else {
|
|
emitVirtualRegister(MO.getReg(), O);
|
|
}
|
|
break;
|
|
|
|
case MachineOperand::MO_Immediate:
|
|
O << MO.getImm();
|
|
break;
|
|
|
|
case MachineOperand::MO_FPImmediate:
|
|
printFPConstant(MO.getFPImm(), O);
|
|
break;
|
|
|
|
case MachineOperand::MO_GlobalAddress:
|
|
PrintSymbolOperand(MO, O);
|
|
break;
|
|
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
MO.getMBB()->getSymbol()->print(O, MAI);
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("Operand type not supported.");
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, unsigned OpNum,
|
|
raw_ostream &O, const char *Modifier) {
|
|
printOperand(MI, OpNum, O);
|
|
|
|
if (Modifier && strcmp(Modifier, "add") == 0) {
|
|
O << ", ";
|
|
printOperand(MI, OpNum + 1, O);
|
|
} else {
|
|
if (MI->getOperand(OpNum + 1).isImm() &&
|
|
MI->getOperand(OpNum + 1).getImm() == 0)
|
|
return; // don't print ',0' or '+0'
|
|
O << "+";
|
|
printOperand(MI, OpNum + 1, O);
|
|
}
|
|
}
|
|
|
|
char NVPTXAsmPrinter::ID = 0;
|
|
|
|
INITIALIZE_PASS(NVPTXAsmPrinter, "nvptx-asm-printer", "NVPTX Assembly Printer",
|
|
false, false)
|
|
|
|
// Force static initialization.
|
|
extern "C" LLVM_ABI LLVM_EXTERNAL_VISIBILITY void
|
|
LLVMInitializeNVPTXAsmPrinter() {
|
|
RegisterAsmPrinter<NVPTXAsmPrinter> X(getTheNVPTXTarget32());
|
|
RegisterAsmPrinter<NVPTXAsmPrinter> Y(getTheNVPTXTarget64());
|
|
}
|