llvm-project/llvm/lib/Target/Xtensa/XtensaISelLowering.cpp
Augie Fackler e0f5e2850f
[Xtensa] Fix function signature after e92b7e9641 (#153054)
Noticed this in the Rust/LLVM-HEAD CI, which for some obscure reason
bothers to build Xtensa.
2025-08-11 14:24:29 -04:00

1735 lines
62 KiB
C++

//===- XtensaISelLowering.cpp - Xtensa DAG Lowering Implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Xtensa uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "XtensaISelLowering.h"
#include "XtensaConstantPoolValue.h"
#include "XtensaInstrInfo.h"
#include "XtensaMachineFunctionInfo.h"
#include "XtensaSubtarget.h"
#include "XtensaTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <deque>
using namespace llvm;
#define DEBUG_TYPE "xtensa-lower"
// Return true if we must use long (in fact, indirect) function call.
// It's simplified version, production implimentation must
// resolve a functions in ROM (usually glibc functions)
static bool isLongCall(const char *str) {
// Currently always use long calls
return true;
}
// The calling conventions in XtensaCallingConv.td are described in terms of the
// callee's register window. This function translates registers to the
// corresponding caller window %o register.
static unsigned toCallerWindow(unsigned Reg) {
if (Reg >= Xtensa::A2 && Reg <= Xtensa::A7)
return Reg - Xtensa::A2 + Xtensa::A10;
return Reg;
}
XtensaTargetLowering::XtensaTargetLowering(const TargetMachine &TM,
const XtensaSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
MVT PtrVT = MVT::i32;
// Set up the register classes.
addRegisterClass(MVT::i32, &Xtensa::ARRegClass);
if (Subtarget.hasSingleFloat()) {
addRegisterClass(MVT::f32, &Xtensa::FPRRegClass);
}
if (Subtarget.hasBoolean()) {
addRegisterClass(MVT::v1i1, &Xtensa::BRRegClass);
}
// Set up special registers.
setStackPointerRegisterToSaveRestore(Xtensa::SP);
setSchedulingPreference(Sched::RegPressure);
setMinFunctionAlignment(Align(4));
setOperationAction(ISD::Constant, MVT::i32, Custom);
setOperationAction(ISD::Constant, MVT::i64, Expand);
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
setBooleanContents(ZeroOrOneBooleanContent);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16},
Subtarget.hasSEXT() ? Legal : Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand);
// No sign extend instructions for i1 and sign extend load i8
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
}
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
setOperationAction(ISD::JumpTable, PtrVT, Custom);
// Expand jump table branches as address arithmetic followed by an
// indirect jump.
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
setOperationAction(ISD::BR_CC, MVT::i32, Legal);
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
if (Subtarget.hasSingleFloat()) {
setOperationAction(ISD::BR_CC, MVT::f32, Legal);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
} else {
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
}
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setCondCodeAction(ISD::SETGT, MVT::i32, Expand);
setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::i32, Expand);
setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
if (Subtarget.hasMul32())
setOperationAction(ISD::MUL, MVT::i32, Legal);
else
setOperationAction(ISD::MUL, MVT::i32, Expand);
if (Subtarget.hasMul32High()) {
setOperationAction(ISD::MULHU, MVT::i32, Legal);
setOperationAction(ISD::MULHS, MVT::i32, Legal);
} else {
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
}
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
if (Subtarget.hasDiv32()) {
setOperationAction(ISD::SDIV, MVT::i32, Legal);
setOperationAction(ISD::UDIV, MVT::i32, Legal);
setOperationAction(ISD::SREM, MVT::i32, Legal);
setOperationAction(ISD::UREM, MVT::i32, Legal);
} else {
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
}
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTR, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Custom);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, MVT::i32,
Subtarget.hasMINMAX() ? Legal : Expand);
// Implement custom stack allocations
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
// Implement custom stack save and restore
setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
// VASTART, VAARG and VACOPY need to deal with the Xtensa-specific varargs
// structure, but VAEND is a no-op.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Handle floating-point types.
for (unsigned I = MVT::FIRST_FP_VALUETYPE; I <= MVT::LAST_FP_VALUETYPE; ++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
if (VT.getSizeInBits() == 32 && Subtarget.hasSingleFloat()) {
setOperationAction(ISD::FABS, VT, Legal);
setOperationAction(ISD::FADD, VT, Legal);
setOperationAction(ISD::FSUB, VT, Legal);
setOperationAction(ISD::FMA, VT, Legal);
setOperationAction(ISD::FMUL, VT, Legal);
setOperationAction(ISD::FNEG, VT, Legal);
} else {
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FADD, VT, Expand);
setOperationAction(ISD::FSUB, VT, Expand);
setOperationAction(ISD::FMA, VT, Expand);
setOperationAction(ISD::FMUL, VT, Expand);
setOperationAction(ISD::FNEG, VT, Expand);
}
// TODO: once implemented in InstrInfo uncomment
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
}
}
// Handle floating-point types.
if (Subtarget.hasSingleFloat()) {
setOperationAction(ISD::BITCAST, MVT::i32, Legal);
setOperationAction(ISD::BITCAST, MVT::f32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
} else {
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand);
}
// Floating-point truncation and stores need to be done separately.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
if (Subtarget.hasS32C1I()) {
setMaxAtomicSizeInBitsSupported(32);
setMinCmpXchgSizeInBits(32);
} else if (Subtarget.hasForcedAtomics()) {
setMaxAtomicSizeInBitsSupported(32);
} else {
setMaxAtomicSizeInBitsSupported(0);
}
// Compute derived properties from the register classes
computeRegisterProperties(STI.getRegisterInfo());
}
bool XtensaTargetLowering::isOffsetFoldingLegal(
const GlobalAddressSDNode *GA) const {
// The Xtensa target isn't yet aware of offsets.
return false;
}
bool XtensaTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const {
return false;
}
//===----------------------------------------------------------------------===//
// Inline asm support
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
XtensaTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return C_RegisterClass;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
TargetLowering::ConstraintWeight
XtensaTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &Info, const char *Constraint) const {
ConstraintWeight Weight = CW_Invalid;
Value *CallOperandVal = Info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *Ty = CallOperandVal->getType();
// Look at the constraint type.
switch (*Constraint) {
default:
Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
break;
case 'r':
if (Ty->isIntegerTy())
Weight = CW_Register;
break;
}
return Weight;
}
std::pair<unsigned, const TargetRegisterClass *>
XtensaTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default:
break;
case 'r': // General-purpose register
return std::make_pair(0U, &Xtensa::ARRegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
void XtensaTargetLowering::LowerAsmOperandForConstraint(
SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// Only support length 1 constraints for now.
if (Constraint.size() > 1)
return;
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
//===----------------------------------------------------------------------===//
// Calling conventions
//===----------------------------------------------------------------------===//
#include "XtensaGenCallingConv.inc"
static const MCPhysReg IntRegs[] = {Xtensa::A2, Xtensa::A3, Xtensa::A4,
Xtensa::A5, Xtensa::A6, Xtensa::A7};
static bool CC_Xtensa_Custom(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, Type *OrigTy,
CCState &State) {
if (ArgFlags.isByVal()) {
Align ByValAlign = ArgFlags.getNonZeroByValAlign();
unsigned ByValSize = ArgFlags.getByValSize();
if (ByValSize < 4) {
ByValSize = 4;
}
if (ByValAlign < Align(4)) {
ByValAlign = Align(4);
}
unsigned Offset = State.AllocateStack(ByValSize, ByValAlign);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
// Mark all unused registers as allocated to avoid misuse
// of such registers.
while (State.AllocateReg(IntRegs))
;
return false;
}
// Promote i8 and i16
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
LocVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
}
unsigned Register;
Align OrigAlign = ArgFlags.getNonZeroOrigAlign();
bool needs64BitAlign = (ValVT == MVT::i32 && OrigAlign == Align(8));
bool needs128BitAlign = (ValVT == MVT::i32 && OrigAlign == Align(16));
if (ValVT == MVT::i32) {
Register = State.AllocateReg(IntRegs);
// If this is the first part of an i64 arg,
// the allocated register must be either A2, A4 or A6.
if (needs64BitAlign && (Register == Xtensa::A3 || Register == Xtensa::A5 ||
Register == Xtensa::A7))
Register = State.AllocateReg(IntRegs);
// arguments with 16byte alignment must be passed in the first register or
// passed via stack
if (needs128BitAlign && (Register != Xtensa::A2))
while ((Register = State.AllocateReg(IntRegs)))
;
LocVT = MVT::i32;
} else if (ValVT == MVT::f64) {
// Allocate int register and shadow next int register.
Register = State.AllocateReg(IntRegs);
if (Register == Xtensa::A3 || Register == Xtensa::A5 ||
Register == Xtensa::A7)
Register = State.AllocateReg(IntRegs);
State.AllocateReg(IntRegs);
LocVT = MVT::i32;
} else {
report_fatal_error("Cannot handle this ValVT.");
}
if (!Register) {
unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
} else {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Register, LocVT, LocInfo));
}
return false;
}
/// Return the register type for a given MVT
MVT XtensaTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
if (VT.isFloatingPoint())
return MVT::i32;
return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
}
CCAssignFn *XtensaTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
bool IsVarArg) const {
return CC_Xtensa_Custom;
}
SDValue XtensaTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
XtensaMachineFunctionInfo *XtensaFI = MF.getInfo<XtensaMachineFunctionInfo>();
// Used with vargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, IsVarArg));
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// Arguments stored on registers
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
if (RegVT != MVT::i32)
report_fatal_error("RegVT not supported by FormalArguments Lowering");
// Transform the arguments stored on
// physical registers into virtual ones
Register Reg = 0;
MCRegister FrameReg = Subtarget.getRegisterInfo()->getFrameRegister(MF);
// Argument passed in FrameReg in Windowed ABI we save in A8 (in
// emitPrologue), so load argument from A8
if (Subtarget.isWindowedABI() && (VA.getLocReg() == FrameReg)) {
Reg = MF.addLiveIn(Xtensa::A8, &Xtensa::ARRegClass);
XtensaFI->setSaveFrameRegister();
} else {
Reg = MF.addLiveIn(VA.getLocReg(), &Xtensa::ARRegClass);
}
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
// If this is an 8 or 16-bit value, it has been passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
if (VA.getLocInfo() != CCValAssign::Full) {
unsigned Opcode = 0;
if (VA.getLocInfo() == CCValAssign::SExt)
Opcode = ISD::AssertSext;
else if (VA.getLocInfo() == CCValAssign::ZExt)
Opcode = ISD::AssertZext;
if (Opcode)
ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode((VA.getValVT() == MVT::f32) ? ISD::BITCAST
: ISD::TRUNCATE,
DL, VA.getValVT(), ArgValue);
}
InVals.push_back(ArgValue);
} else {
assert(VA.isMemLoc());
EVT ValVT = VA.getValVT();
// The stack pointer offset is relative to the caller stack frame.
int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
true);
if (Ins[VA.getValNo()].Flags.isByVal()) {
// Assume that in this case load operation is created
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
InVals.push_back(FIN);
} else {
// Create load nodes to retrieve arguments from the stack
SDValue FIN =
DAG.getFrameIndex(FI, getFrameIndexTy(DAG.getDataLayout()));
InVals.push_back(DAG.getLoad(
ValVT, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
}
}
}
if (IsVarArg) {
unsigned Idx = CCInfo.getFirstUnallocated(IntRegs);
unsigned ArgRegsNum = std::size(IntRegs);
const TargetRegisterClass *RC = &Xtensa::ARRegClass;
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
unsigned RegSize = 4;
MVT RegTy = MVT::i32;
MVT FITy = getFrameIndexTy(DAG.getDataLayout());
XtensaFI->setVarArgsFirstGPR(Idx + 2); // 2 - number of a2 register
XtensaFI->setVarArgsOnStackFrameIndex(
MFI.CreateFixedObject(4, CCInfo.getStackSize(), true));
// Offset of the first variable argument from stack pointer, and size of
// the vararg save area. For now, the varargs save area is either zero or
// large enough to hold a0-a7.
int VaArgOffset, VarArgsSaveSize;
// If all registers are allocated, then all varargs must be passed on the
// stack and we don't need to save any argregs.
if (ArgRegsNum == Idx) {
VaArgOffset = CCInfo.getStackSize();
VarArgsSaveSize = 0;
} else {
VarArgsSaveSize = RegSize * (ArgRegsNum - Idx);
VaArgOffset = -VarArgsSaveSize;
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
int FI = MFI.CreateFixedObject(RegSize, VaArgOffset, true);
XtensaFI->setVarArgsInRegsFrameIndex(FI);
// Copy the integer registers that may have been used for passing varargs
// to the vararg save area.
for (unsigned I = Idx; I < ArgRegsNum; ++I, VaArgOffset += RegSize) {
const Register Reg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(IntRegs[I], Reg);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
FI = MFI.CreateFixedObject(RegSize, VaArgOffset, true);
SDValue PtrOff = DAG.getFrameIndex(FI, FITy);
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
MachinePointerInfo::getFixedStack(MF, FI));
OutChains.push_back(Store);
}
}
}
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens when on varg functions
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
}
return Chain;
}
SDValue
XtensaTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
// TODO: Support tail call optimization.
IsTailCall = false;
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
CCAssignFn *CC = CCAssignFnForCall(CallConv, IsVarArg);
CCInfo.AnalyzeCallOperands(Outs, CC);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getStackSize();
Align StackAlignment = TFL->getStackAlign();
unsigned NextStackOffset = alignTo(NumBytes, StackAlignment);
Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
// Copy argument values to their designated locations.
std::deque<std::pair<unsigned, SDValue>> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
CCValAssign &VA = ArgLocs[I];
SDValue ArgValue = OutVals[I];
ISD::ArgFlagsTy Flags = Outs[I].Flags;
if (VA.isRegLoc())
// Queue up the argument copies and emit them at the end.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
else if (Flags.isByVal()) {
assert(VA.isMemLoc());
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
assert(!IsTailCall &&
"Do not tail-call optimize if there is a byval argument.");
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, Xtensa::SP, PtrVT);
unsigned Offset = VA.getLocMemOffset();
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(Offset, DL));
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), DL, MVT::i32);
SDValue Memcpy = DAG.getMemcpy(
Chain, DL, Address, ArgValue, SizeNode, Flags.getNonZeroByValAlign(),
/*isVolatile=*/false, /*AlwaysInline=*/false,
/*CI=*/nullptr, std::nullopt, MachinePointerInfo(),
MachinePointerInfo());
MemOpChains.push_back(Memcpy);
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
// Work out the address of the stack slot. Unpromoted ints and
// floats are passed as right-justified 8-byte values.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, Xtensa::SP, PtrVT);
unsigned Offset = VA.getLocMemOffset();
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(Offset, DL));
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
}
}
// Join the stores, which are independent of one another.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes, chained and glued together.
SDValue Glue;
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
unsigned Reg = RegsToPass[I].first;
if (Subtarget.isWindowedABI())
Reg = toCallerWindow(Reg);
Chain = DAG.getCopyToReg(Chain, DL, Reg, RegsToPass[I].second, Glue);
Glue = Chain.getValue(1);
}
std::string name;
unsigned char TF = 0;
// Accept direct calls by converting symbolic call addresses to the
// associated Target* opcodes.
if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
name = E->getSymbol();
TF = E->getTargetFlags();
if (isPositionIndependent()) {
report_fatal_error("PIC relocations is not supported");
} else
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
} else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
name = GV->getName().str();
}
if ((!name.empty()) && isLongCall(name.c_str())) {
// Create a constant pool entry for the callee address
XtensaCP::XtensaCPModifier Modifier = XtensaCP::no_modifier;
XtensaMachineFunctionInfo *XtensaFI =
MF.getInfo<XtensaMachineFunctionInfo>();
unsigned LabelId = XtensaFI->createCPLabelId();
XtensaConstantPoolValue *CPV = XtensaConstantPoolSymbol::Create(
*DAG.getContext(), name.c_str(), LabelId, false, Modifier);
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4), 0, TF);
SDValue CPWrap = getAddrPCRel(CPAddr, DAG);
Callee = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), CPWrap,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
// The first call operand is the chain and the second is the target address.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
unsigned Reg = RegsToPass[I].first;
if (Subtarget.isWindowedABI())
Reg = toCallerWindow(Reg);
Ops.push_back(DAG.getRegister(Reg, RegsToPass[I].second.getValueType()));
}
// Glue the call to the argument copies, if any.
if (Glue.getNode())
Ops.push_back(Glue);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(Subtarget.isWindowedABI() ? XtensaISD::CALLW8
: XtensaISD::CALL,
DL, NodeTys, Ops);
Glue = Chain.getValue(1);
// Mark the end of the call, which is glued to the call itself.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, DL, PtrVT, true),
DAG.getConstant(0, DL, PtrVT, true), Glue, DL);
Glue = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeCallResult(Ins, Subtarget.isWindowedABI() ? RetCCW8_Xtensa
: RetCC_Xtensa);
// Copy all of the result registers out of their specified physreg.
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
// Copy the value out, gluing the copy to the end of the call sequence.
unsigned Reg = VA.getLocReg();
SDValue RetValue = DAG.getCopyFromReg(Chain, DL, Reg, VA.getLocVT(), Glue);
Chain = RetValue.getValue(1);
Glue = RetValue.getValue(2);
InVals.push_back(RetValue);
}
return Chain;
}
bool XtensaTargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context,
const Type *RetTy) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_Xtensa);
}
SDValue
XtensaTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// Assign locations to each returned value.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeReturn(Outs, RetCC_Xtensa);
SDValue Glue;
// Quick exit for void returns
if (RetLocs.empty())
return DAG.getNode(Subtarget.isWindowedABI() ? XtensaISD::RETW
: XtensaISD::RET,
DL, MVT::Other, Chain);
// Copy the result values into the output registers.
SmallVector<SDValue, 4> RetOps;
RetOps.push_back(Chain);
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
SDValue RetValue = OutVals[I];
// Make the return register live on exit.
assert(VA.isRegLoc() && "Can only return in registers!");
// Chain and glue the copies together.
unsigned Register = VA.getLocReg();
Chain = DAG.getCopyToReg(Chain, DL, Register, RetValue, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(Register, VA.getLocVT()));
}
// Update chain and glue.
RetOps[0] = Chain;
if (Glue.getNode())
RetOps.push_back(Glue);
return DAG.getNode(Subtarget.isWindowedABI() ? XtensaISD::RETW
: XtensaISD::RET,
DL, MVT::Other, RetOps);
}
static unsigned getBranchOpcode(ISD::CondCode Cond) {
switch (Cond) {
case ISD::SETEQ:
return Xtensa::BEQ;
case ISD::SETNE:
return Xtensa::BNE;
case ISD::SETLT:
return Xtensa::BLT;
case ISD::SETLE:
return Xtensa::BGE;
case ISD::SETGT:
return Xtensa::BLT;
case ISD::SETGE:
return Xtensa::BGE;
case ISD::SETULT:
return Xtensa::BLTU;
case ISD::SETULE:
return Xtensa::BGEU;
case ISD::SETUGT:
return Xtensa::BLTU;
case ISD::SETUGE:
return Xtensa::BGEU;
default:
llvm_unreachable("Unknown branch kind");
}
}
static std::pair<unsigned, unsigned> getFPBranchKind(ISD::CondCode Cond) {
switch (Cond) {
case ISD::SETUNE:
return std::make_pair(Xtensa::BF, Xtensa::OEQ_S);
case ISD::SETUO:
return std::make_pair(Xtensa::BT, Xtensa::UN_S);
case ISD::SETO:
return std::make_pair(Xtensa::BF, Xtensa::UN_S);
case ISD::SETUEQ:
return std::make_pair(Xtensa::BT, Xtensa::UEQ_S);
case ISD::SETULE:
return std::make_pair(Xtensa::BT, Xtensa::ULE_S);
case ISD::SETULT:
return std::make_pair(Xtensa::BT, Xtensa::ULT_S);
case ISD::SETEQ:
case ISD::SETOEQ:
return std::make_pair(Xtensa::BT, Xtensa::OEQ_S);
case ISD::SETNE:
return std::make_pair(Xtensa::BF, Xtensa::OEQ_S);
case ISD::SETLE:
case ISD::SETOLE:
return std::make_pair(Xtensa::BT, Xtensa::OLE_S);
case ISD::SETLT:
case ISD::SETOLT:
return std::make_pair(Xtensa::BT, Xtensa::OLT_S);
case ISD::SETGE:
return std::make_pair(Xtensa::BF, Xtensa::OLT_S);
case ISD::SETGT:
return std::make_pair(Xtensa::BF, Xtensa::OLE_S);
default:
llvm_unreachable("Invalid condition!");
}
}
SDValue XtensaTargetLowering::LowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue TrueValue = Op.getOperand(2);
SDValue FalseValue = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op->getOperand(4))->get();
if (LHS.getValueType() == MVT::i32) {
unsigned BrOpcode = getBranchOpcode(CC);
SDValue TargetCC = DAG.getConstant(BrOpcode, DL, MVT::i32);
SDValue Res = DAG.getNode(XtensaISD::SELECT_CC, DL, Ty, LHS, RHS, TrueValue,
FalseValue, TargetCC, Op->getFlags());
return Res;
}
assert(LHS.getValueType() == MVT::f32 &&
"We expect MVT::f32 type of the LHS Operand in SELECT_CC");
unsigned BrOpcode;
unsigned CmpOpCode;
std::tie(BrOpcode, CmpOpCode) = getFPBranchKind(CC);
SDValue TargetCC = DAG.getConstant(CmpOpCode, DL, MVT::i32);
SDValue TargetBC = DAG.getConstant(BrOpcode, DL, MVT::i32);
return DAG.getNode(XtensaISD::SELECT_CC_FP, DL, Ty,
{LHS, RHS, TrueValue, FalseValue, TargetCC, TargetBC},
Op->getFlags());
}
SDValue XtensaTargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
// This nodes represent llvm.returnaddress on the DAG.
// It takes one operand, the index of the return address to return.
// An index of zero corresponds to the current function's return address.
// An index of one to the parent's return address, and so on.
// Depths > 0 not supported yet!
if (Op.getConstantOperandVal(0) != 0)
return SDValue();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
EVT VT = Op.getValueType();
MFI.setReturnAddressIsTaken(true);
// Return RA, which contains the return address. Mark it an implicit
// live-in.
Register RA = MF.addLiveIn(Xtensa::A0, getRegClassFor(MVT::i32));
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), RA, VT);
}
SDValue XtensaTargetLowering::LowerImmediate(SDValue Op,
SelectionDAG &DAG) const {
const ConstantSDNode *CN = cast<ConstantSDNode>(Op);
SDLoc DL(CN);
APInt APVal = CN->getAPIntValue();
int64_t Value = APVal.getSExtValue();
if (Op.getValueType() == MVT::i32) {
// Check if use node maybe lowered to the MOVI instruction
if (Value > -2048 && Value <= 2047)
return Op;
// Check if use node maybe lowered to the ADDMI instruction
SDNode &OpNode = *Op.getNode();
if ((OpNode.hasOneUse() && OpNode.user_begin()->getOpcode() == ISD::ADD) &&
isShiftedInt<8, 8>(Value))
return Op;
Type *Ty = Type::getInt32Ty(*DAG.getContext());
Constant *CV = ConstantInt::get(Ty, Value);
SDValue CP = DAG.getConstantPool(CV, MVT::i32);
SDValue Res =
DAG.getLoad(MVT::i32, DL, DAG.getEntryNode(), CP, MachinePointerInfo());
return Res;
}
return Op;
}
SDValue XtensaTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
SDLoc DL(Op);
auto PtrVT = Op.getValueType();
const GlobalValue *GV = G->getGlobal();
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
SDValue CPWrap = getAddrPCRel(CPAddr, DAG);
SDValue Res = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), CPWrap,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
return Res;
}
SDValue XtensaTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
SDLoc DL(Op);
EVT PtrVT = Op.getValueType();
const GlobalValue *GV = G->getGlobal();
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(G, DAG);
TLSModel::Model model = getTargetMachine().getTLSModel(GV);
if (!Subtarget.hasTHREADPTR()) {
DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
DAG.getMachineFunction().getFunction(), "only emulated TLS supported",
DL.getDebugLoc()));
return DAG.getPOISON(Op->getValueType(0));
}
if (model == TLSModel::LocalExec || model == TLSModel::InitialExec) {
bool Priv = GV->isPrivateLinkage(GV->getLinkage());
MachineFunction &MF = DAG.getMachineFunction();
XtensaMachineFunctionInfo *XtensaFI =
MF.getInfo<XtensaMachineFunctionInfo>();
unsigned LabelId = XtensaFI->createCPLabelId();
// Create a constant pool entry for the callee address
XtensaConstantPoolValue *CPV = XtensaConstantPoolSymbol::Create(
*DAG.getContext(), GV->getName().str().c_str(), LabelId, Priv,
XtensaCP::TPOFF);
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
SDValue CPWrap = getAddrPCRel(CPAddr, DAG);
SDValue Addr = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), CPWrap,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
SDValue TPRegister = DAG.getRegister(Xtensa::THREADPTR, MVT::i32);
SDValue ThreadPointer =
DAG.getNode(XtensaISD::RUR, DL, MVT::i32, TPRegister);
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Addr);
}
DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
DAG.getMachineFunction().getFunction(),
"only local-exec and initial-exec TLS mode supported", DL.getDebugLoc()));
return DAG.getPOISON(Op->getValueType(0));
}
SDValue XtensaTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
BlockAddressSDNode *Node = cast<BlockAddressSDNode>(Op);
SDLoc DL(Op);
const BlockAddress *BA = Node->getBlockAddress();
EVT PtrVT = Op.getValueType();
MachineFunction &MF = DAG.getMachineFunction();
XtensaMachineFunctionInfo *XtensaFI = MF.getInfo<XtensaMachineFunctionInfo>();
unsigned LabelId = XtensaFI->createCPLabelId();
XtensaConstantPoolValue *CPV =
XtensaConstantPoolConstant::Create(BA, LabelId, XtensaCP::CPBlockAddress);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
SDValue CPWrap = getAddrPCRel(CPAddr, DAG);
SDValue Res = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), CPWrap,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
return Res;
}
SDValue XtensaTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
SDLoc DL(Op);
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
MachineFunction &MF = DAG.getMachineFunction();
const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
const DataLayout &TD = DAG.getDataLayout();
EVT PtrVT = Table.getValueType();
unsigned EntrySize = MJTI->getEntrySize(TD);
assert((MJTI->getEntrySize(TD) == 4) && "Unsupported jump-table entry size");
Index = DAG.getNode(
ISD::SHL, DL, Index.getValueType(), Index,
DAG.getConstant(Log2_32(EntrySize), DL, Index.getValueType()));
SDValue Addr = DAG.getNode(ISD::ADD, DL, Index.getValueType(), Index, Table);
SDValue LD =
DAG.getLoad(PtrVT, DL, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
return DAG.getNode(XtensaISD::BR_JT, DL, MVT::Other, LD.getValue(1), LD,
TargetJT);
}
SDValue XtensaTargetLowering::LowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
EVT PtrVT = Op.getValueType();
SDLoc DL(Op);
// Create a constant pool entry for the jumptable address
XtensaConstantPoolValue *CPV =
XtensaConstantPoolJumpTable::Create(*DAG.getContext(), JT->getIndex());
// Get the address of the jumptable into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
SDValue Res = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), getAddrPCRel(CPAddr, DAG),
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
return Res;
}
SDValue XtensaTargetLowering::getAddrPCRel(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
return DAG.getNode(XtensaISD::PCREL_WRAPPER, DL, Ty, Op);
}
SDValue XtensaTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDValue Result;
if (!CP->isMachineConstantPoolEntry()) {
Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
CP->getOffset());
} else {
report_fatal_error("This constantpool type is not supported yet");
}
return getAddrPCRel(Result, DAG);
}
SDValue XtensaTargetLowering::LowerSTACKSAVE(SDValue Op,
SelectionDAG &DAG) const {
return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), Xtensa::SP,
Op.getValueType());
}
SDValue XtensaTargetLowering::LowerSTACKRESTORE(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue NewSP = Op.getOperand(1);
if (Subtarget.isWindowedABI()) {
return DAG.getNode(XtensaISD::MOVSP, SDLoc(Op), MVT::Other, Chain, NewSP);
}
return DAG.getCopyToReg(Chain, SDLoc(Op), Xtensa::SP, NewSP);
}
SDValue XtensaTargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
// This nodes represent llvm.frameaddress on the DAG.
// It takes one operand, the index of the frame address to return.
// An index of zero corresponds to the current function's frame address.
// An index of one to the parent's frame address, and so on.
// Depths > 0 not supported yet!
if (Op.getConstantOperandVal(0) != 0)
return SDValue();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
MCRegister FrameRegister = Subtarget.getRegisterInfo()->getFrameRegister(MF);
SDValue FrameAddr =
DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameRegister, VT);
return FrameAddr;
}
SDValue XtensaTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0); // Legalize the chain.
SDValue Size = Op.getOperand(1); // Legalize the size.
EVT VT = Size->getValueType(0);
SDLoc DL(Op);
// Round up Size to 32
SDValue SizeTmp =
DAG.getNode(ISD::ADD, DL, VT, Size, DAG.getConstant(31, DL, MVT::i32));
SDValue SizeRoundUp = DAG.getNode(ISD::AND, DL, VT, SizeTmp,
DAG.getSignedConstant(~31, DL, MVT::i32));
MCRegister SPReg = Xtensa::SP;
SDValue SP = DAG.getCopyFromReg(Chain, DL, SPReg, VT);
SDValue NewSP = DAG.getNode(ISD::SUB, DL, VT, SP, SizeRoundUp); // Value
if (Subtarget.isWindowedABI()) {
Chain = DAG.getNode(XtensaISD::MOVSP, SDLoc(Op), MVT::Other, SP.getValue(1),
NewSP);
} else {
Chain = DAG.getCopyToReg(SP.getValue(1), DL, SPReg, NewSP); // Output chain
}
SDValue NewVal = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
Chain = NewVal.getValue(1);
SDValue Ops[2] = {NewVal, Chain};
return DAG.getMergeValues(Ops, DL);
}
SDValue XtensaTargetLowering::LowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
XtensaMachineFunctionInfo *XtensaFI = MF.getInfo<XtensaMachineFunctionInfo>();
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
EVT PtrVT = Addr.getValueType();
SDLoc DL(Op);
// Struct va_list_tag
// int32 *va_stk - points to the arguments passed in memory
// int32 *va_reg - points to the registers with arguments saved in memory
// int32 va_ndx - offset from va_stk or va_reg pointers which points to the
// next variable argument
SDValue VAIndex;
SDValue StackOffsetFI =
DAG.getFrameIndex(XtensaFI->getVarArgsOnStackFrameIndex(), PtrVT);
unsigned ArgWords = XtensaFI->getVarArgsFirstGPR() - 2;
// If first variable argument passed in registers (maximum words in registers
// is 6) then set va_ndx to the position of this argument in registers area
// stored in memory (va_reg pointer). Otherwise va_ndx should point to the
// position of the first variable argument on stack (va_stk pointer).
if (ArgWords < 6) {
VAIndex = DAG.getConstant(ArgWords * 4, DL, MVT::i32);
} else {
VAIndex = DAG.getConstant(32, DL, MVT::i32);
}
SDValue FrameIndex =
DAG.getFrameIndex(XtensaFI->getVarArgsInRegsFrameIndex(), PtrVT);
uint64_t FrameOffset = PtrVT.getStoreSize();
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
// Store pointer to arguments given on stack (va_stk)
SDValue StackPtr = DAG.getNode(ISD::SUB, DL, PtrVT, StackOffsetFI,
DAG.getConstant(32, DL, PtrVT));
SDValue StoreStackPtr =
DAG.getStore(Chain, DL, StackPtr, Addr, MachinePointerInfo(SV));
uint64_t NextOffset = FrameOffset;
SDValue NextPtr =
DAG.getObjectPtrOffset(DL, Addr, TypeSize::getFixed(NextOffset));
// Store pointer to arguments given on registers (va_reg)
SDValue StoreRegPtr = DAG.getStore(StoreStackPtr, DL, FrameIndex, NextPtr,
MachinePointerInfo(SV, NextOffset));
NextOffset += FrameOffset;
NextPtr = DAG.getObjectPtrOffset(DL, Addr, TypeSize::getFixed(NextOffset));
// Store third word : position in bytes of the first VA argument (va_ndx)
return DAG.getStore(StoreRegPtr, DL, VAIndex, NextPtr,
MachinePointerInfo(SV, NextOffset));
}
SDValue XtensaTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
// Size of the va_list_tag structure
constexpr unsigned VAListSize = 3 * 4;
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
SDLoc DL(Op);
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
DAG.getConstant(VAListSize, SDLoc(Op), MVT::i32),
Align(4), /*isVolatile*/ false, /*AlwaysInline*/ true,
/*CI=*/nullptr, std::nullopt, MachinePointerInfo(DstSV),
MachinePointerInfo(SrcSV));
}
SDValue XtensaTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
EVT PtrVT = Op.getValueType();
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc DL(Node);
auto &TD = DAG.getDataLayout();
Align ArgAlignment = TD.getABITypeAlign(Ty);
unsigned ArgAlignInBytes = ArgAlignment.value();
unsigned ArgSizeInBytes = TD.getTypeAllocSize(Ty);
unsigned VASizeInBytes = llvm::alignTo(ArgSizeInBytes, 4);
// va_stk
SDValue VAStack =
DAG.getLoad(MVT::i32, DL, InChain, VAListPtr, MachinePointerInfo());
InChain = VAStack.getValue(1);
// va_reg
SDValue VARegPtr =
DAG.getObjectPtrOffset(DL, VAListPtr, TypeSize::getFixed(4));
SDValue VAReg =
DAG.getLoad(MVT::i32, DL, InChain, VARegPtr, MachinePointerInfo());
InChain = VAReg.getValue(1);
// va_ndx
SDValue VarArgIndexPtr =
DAG.getObjectPtrOffset(DL, VARegPtr, TypeSize::getFixed(4));
SDValue VAIndex =
DAG.getLoad(MVT::i32, DL, InChain, VarArgIndexPtr, MachinePointerInfo());
InChain = VAIndex.getValue(1);
SDValue OrigIndex = VAIndex;
if (ArgAlignInBytes > 4) {
OrigIndex = DAG.getNode(ISD::ADD, DL, PtrVT, OrigIndex,
DAG.getConstant(ArgAlignInBytes - 1, DL, MVT::i32));
OrigIndex =
DAG.getNode(ISD::AND, DL, PtrVT, OrigIndex,
DAG.getSignedConstant(-ArgAlignInBytes, DL, MVT::i32));
}
VAIndex = DAG.getNode(ISD::ADD, DL, PtrVT, OrigIndex,
DAG.getConstant(VASizeInBytes, DL, MVT::i32));
SDValue CC = DAG.getSetCC(DL, MVT::i32, OrigIndex,
DAG.getConstant(6 * 4, DL, MVT::i32), ISD::SETLE);
SDValue StkIndex =
DAG.getNode(ISD::ADD, DL, PtrVT, VAIndex,
DAG.getConstant(32 + VASizeInBytes, DL, MVT::i32));
CC = DAG.getSetCC(DL, MVT::i32, VAIndex, DAG.getConstant(6 * 4, DL, MVT::i32),
ISD::SETLE);
SDValue Array = DAG.getNode(ISD::SELECT, DL, MVT::i32, CC, VAReg, VAStack);
VAIndex = DAG.getNode(ISD::SELECT, DL, MVT::i32, CC, VAIndex, StkIndex);
CC = DAG.getSetCC(DL, MVT::i32, VAIndex, DAG.getConstant(6 * 4, DL, MVT::i32),
ISD::SETLE);
SDValue VAIndexStore = DAG.getStore(InChain, DL, VAIndex, VarArgIndexPtr,
MachinePointerInfo(SV));
InChain = VAIndexStore;
SDValue Addr = DAG.getNode(ISD::SUB, DL, PtrVT, VAIndex,
DAG.getConstant(VASizeInBytes, DL, MVT::i32));
Addr = DAG.getNode(ISD::ADD, DL, PtrVT, Array, Addr);
return DAG.getLoad(VT, DL, InChain, Addr, MachinePointerInfo());
}
SDValue XtensaTargetLowering::LowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT VT = MVT::i32;
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
// if Shamt - register size < 0: // Shamt < register size
// Lo = Lo << Shamt
// Hi = (Hi << Shamt) | (Lo >>u (register size - Shamt))
// else:
// Lo = 0
// Hi = Lo << (Shamt - register size)
SDValue MinusRegisterSize = DAG.getSignedConstant(-32, DL, VT);
SDValue ShamtMinusRegisterSize =
DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusRegisterSize);
SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
SDValue HiTrue = DAG.getNode(XtensaISD::SRCL, DL, VT, Hi, Lo, Shamt);
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusRegisterSize);
SDValue Cond = DAG.getSetCC(DL, VT, ShamtMinusRegisterSize, Zero, ISD::SETLT);
Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, LoTrue, Zero);
Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, HiTrue, HiFalse);
return DAG.getMergeValues({Lo, Hi}, DL);
}
SDValue XtensaTargetLowering::LowerShiftRightParts(SDValue Op,
SelectionDAG &DAG,
bool IsSRA) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
MVT VT = MVT::i32;
// SRA expansion:
// if Shamt - register size < 0: // Shamt < register size
// Lo = (Lo >>u Shamt) | (Hi << u (register size - Shamt))
// Hi = Hi >>s Shamt
// else:
// Lo = Hi >>s (Shamt - register size);
// Hi = Hi >>s (register size - 1)
//
// SRL expansion:
// if Shamt - register size < 0: // Shamt < register size
// Lo = (Lo >>u Shamt) | (Hi << u (register size - Shamt))
// Hi = Hi >>u Shamt
// else:
// Lo = Hi >>u (Shamt - register size);
// Hi = 0;
unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
SDValue MinusRegisterSize = DAG.getSignedConstant(-32, DL, VT);
SDValue RegisterSizeMinus1 = DAG.getConstant(32 - 1, DL, VT);
SDValue ShamtMinusRegisterSize =
DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusRegisterSize);
SDValue LoTrue = DAG.getNode(XtensaISD::SRCR, DL, VT, Hi, Lo, Shamt);
SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue LoFalse =
DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusRegisterSize);
SDValue HiFalse;
if (IsSRA) {
HiFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, RegisterSizeMinus1);
} else {
HiFalse = Zero;
}
SDValue Cond = DAG.getSetCC(DL, VT, ShamtMinusRegisterSize, Zero, ISD::SETLT);
Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, LoTrue, LoFalse);
Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, HiTrue, HiFalse);
return DAG.getMergeValues({Lo, Hi}, DL);
}
SDValue XtensaTargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
auto &TLI = DAG.getTargetLoweringInfo();
return TLI.expandCTPOP(Op.getNode(), DAG);
}
bool XtensaTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
SDValue C) const {
APInt Imm;
unsigned EltSizeInBits;
if (ISD::isConstantSplatVector(C.getNode(), Imm)) {
EltSizeInBits = VT.getScalarSizeInBits();
} else if (VT.isScalarInteger()) {
EltSizeInBits = VT.getSizeInBits();
if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode()))
Imm = ConstNode->getAPIntValue();
else
return false;
} else {
return false;
}
// Omit if data size exceeds.
if (EltSizeInBits > 32)
return false;
// Convert MULT to LSL.
if (Imm.isPowerOf2() && Imm.isIntN(5))
return true;
return false;
}
SDValue XtensaTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::BR_JT:
return LowerBR_JT(Op, DAG);
case ISD::Constant:
return LowerImmediate(Op, DAG);
case ISD::RETURNADDR:
return LowerRETURNADDR(Op, DAG);
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress:
return LowerGlobalTLSAddress(Op, DAG);
case ISD::BlockAddress:
return LowerBlockAddress(Op, DAG);
case ISD::JumpTable:
return LowerJumpTable(Op, DAG);
case ISD::CTPOP:
return LowerCTPOP(Op, DAG);
case ISD::ConstantPool:
return LowerConstantPool(Op, DAG);
case ISD::SELECT_CC:
return LowerSELECT_CC(Op, DAG);
case ISD::STACKSAVE:
return LowerSTACKSAVE(Op, DAG);
case ISD::STACKRESTORE:
return LowerSTACKRESTORE(Op, DAG);
case ISD::FRAMEADDR:
return LowerFRAMEADDR(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::VASTART:
return LowerVASTART(Op, DAG);
case ISD::VAARG:
return LowerVAARG(Op, DAG);
case ISD::VACOPY:
return LowerVACOPY(Op, DAG);
case ISD::SHL_PARTS:
return LowerShiftLeftParts(Op, DAG);
case ISD::SRA_PARTS:
return LowerShiftRightParts(Op, DAG, true);
case ISD::SRL_PARTS:
return LowerShiftRightParts(Op, DAG, false);
default:
report_fatal_error("Unexpected node to lower");
}
}
const char *XtensaTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
case XtensaISD::BR_JT:
return "XtensaISD::BR_JT";
case XtensaISD::CALL:
return "XtensaISD::CALL";
case XtensaISD::CALLW8:
return "XtensaISD::CALLW8";
case XtensaISD::EXTUI:
return "XtensaISD::EXTUI";
case XtensaISD::MOVSP:
return "XtensaISD::MOVSP";
case XtensaISD::PCREL_WRAPPER:
return "XtensaISD::PCREL_WRAPPER";
case XtensaISD::RET:
return "XtensaISD::RET";
case XtensaISD::RETW:
return "XtensaISD::RETW";
case XtensaISD::RUR:
return "XtensaISD::RUR";
case XtensaISD::SELECT_CC:
return "XtensaISD::SELECT_CC";
case XtensaISD::SELECT_CC_FP:
return "XtensaISD::SELECT_CC_FP";
case XtensaISD::SRCL:
return "XtensaISD::SRCL";
case XtensaISD::SRCR:
return "XtensaISD::SRCR";
case XtensaISD::CMPUO:
return "XtensaISD::CMPUO";
case XtensaISD::CMPUEQ:
return "XtensaISD::CMPUEQ";
case XtensaISD::CMPULE:
return "XtensaISD::CMPULE";
case XtensaISD::CMPULT:
return "XtensaISD::CMPULT";
case XtensaISD::CMPOEQ:
return "XtensaISD::CMPOEQ";
case XtensaISD::CMPOLE:
return "XtensaISD::CMPOLE";
case XtensaISD::CMPOLT:
return "XtensaISD::CMPOLT";
case XtensaISD::MADD:
return "XtensaISD::MADD";
case XtensaISD::MSUB:
return "XtensaISD::MSUB";
case XtensaISD::MOVS:
return "XtensaISD::MOVS";
}
return nullptr;
}
TargetLowering::AtomicExpansionKind
XtensaTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
return AtomicExpansionKind::CmpXChg;
}
//===----------------------------------------------------------------------===//
// Custom insertion
//===----------------------------------------------------------------------===//
MachineBasicBlock *
XtensaTargetLowering::emitSelectCC(MachineInstr &MI,
MachineBasicBlock *MBB) const {
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
MachineOperand &LHS = MI.getOperand(1);
MachineOperand &RHS = MI.getOperand(2);
MachineOperand &TrueValue = MI.getOperand(3);
MachineOperand &FalseValue = MI.getOperand(4);
// To "insert" a SELECT_CC instruction, we actually have to insert
// CopyMBB and SinkMBB blocks and add branch to MBB. We build phi
// operation in SinkMBB like phi (TrueVakue,FalseValue), where TrueValue
// is passed from MMB and FalseValue is passed from CopyMBB.
// MBB
// | \
// | CopyMBB
// | /
// SinkMBB
// The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator It = ++MBB->getIterator();
MachineFunction *F = MBB->getParent();
MachineBasicBlock *CopyMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, CopyMBB);
F->insert(It, SinkMBB);
// Transfer the remainder of MBB and its successor edges to SinkMBB.
SinkMBB->splice(SinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
MBB->addSuccessor(CopyMBB);
MBB->addSuccessor(SinkMBB);
if (MI.getOpcode() == Xtensa::SELECT_CC_FP_FP ||
MI.getOpcode() == Xtensa::SELECT_CC_FP_INT) {
unsigned CmpKind = MI.getOperand(5).getImm();
unsigned BrKind = MI.getOperand(6).getImm();
MCPhysReg BReg = Xtensa::B0;
BuildMI(MBB, DL, TII.get(CmpKind), BReg)
.addReg(LHS.getReg())
.addReg(RHS.getReg());
BuildMI(MBB, DL, TII.get(BrKind))
.addReg(BReg, RegState::Kill)
.addMBB(SinkMBB);
} else {
unsigned BrKind = MI.getOperand(5).getImm();
BuildMI(MBB, DL, TII.get(BrKind))
.addReg(LHS.getReg())
.addReg(RHS.getReg())
.addMBB(SinkMBB);
}
CopyMBB->addSuccessor(SinkMBB);
// SinkMBB:
// %Result = phi [ %FalseValue, CopyMBB ], [ %TrueValue, MBB ]
// ...
BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(Xtensa::PHI),
MI.getOperand(0).getReg())
.addReg(FalseValue.getReg())
.addMBB(CopyMBB)
.addReg(TrueValue.getReg())
.addMBB(MBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return SinkMBB;
}
MachineBasicBlock *XtensaTargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
const XtensaInstrInfo &TII = *Subtarget.getInstrInfo();
switch (MI.getOpcode()) {
case Xtensa::BRCC_FP: {
MachineOperand &Cond = MI.getOperand(0);
MachineOperand &LHS = MI.getOperand(1);
MachineOperand &RHS = MI.getOperand(2);
MachineBasicBlock *TargetBB = MI.getOperand(3).getMBB();
unsigned BrKind = 0;
unsigned CmpKind = 0;
ISD::CondCode CondCode = (ISD::CondCode)Cond.getImm();
MCPhysReg BReg = Xtensa::B0;
std::tie(BrKind, CmpKind) = getFPBranchKind(CondCode);
BuildMI(*MBB, MI, DL, TII.get(CmpKind), BReg)
.addReg(LHS.getReg())
.addReg(RHS.getReg());
BuildMI(*MBB, MI, DL, TII.get(BrKind))
.addReg(BReg, RegState::Kill)
.addMBB(TargetBB);
MI.eraseFromParent();
return MBB;
}
case Xtensa::SELECT_CC_FP_FP:
case Xtensa::SELECT_CC_FP_INT:
case Xtensa::SELECT_CC_INT_FP:
case Xtensa::SELECT:
return emitSelectCC(MI, MBB);
case Xtensa::S8I:
case Xtensa::S16I:
case Xtensa::S32I:
case Xtensa::S32I_N:
case Xtensa::SSI:
case Xtensa::SSIP:
case Xtensa::SSX:
case Xtensa::SSXP:
case Xtensa::L8UI:
case Xtensa::L16SI:
case Xtensa::L16UI:
case Xtensa::L32I:
case Xtensa::L32I_N:
case Xtensa::LSI:
case Xtensa::LSIP:
case Xtensa::LSX:
case Xtensa::LSXP: {
// Insert memory wait instruction "memw" before volatile load/store as it is
// implemented in gcc. If memoperands is empty then assume that it aslo
// maybe volatile load/store and insert "memw".
if (MI.memoperands_empty() || (*MI.memoperands_begin())->isVolatile()) {
BuildMI(*MBB, MI, DL, TII.get(Xtensa::MEMW));
}
return MBB;
}
case Xtensa::MOVSP_P: {
MachineOperand &NewSP = MI.getOperand(0);
BuildMI(*MBB, MI, DL, TII.get(Xtensa::MOVSP), Xtensa::SP)
.addReg(NewSP.getReg());
MI.eraseFromParent();
return MBB;
}
case Xtensa::ATOMIC_CMP_SWAP_32_P: {
MachineOperand &R = MI.getOperand(0);
MachineOperand &Addr = MI.getOperand(1);
MachineOperand &Cmp = MI.getOperand(2);
MachineOperand &Swap = MI.getOperand(3);
BuildMI(*MBB, MI, DL, TII.get(Xtensa::WSR), Xtensa::SCOMPARE1)
.addReg(Cmp.getReg());
BuildMI(*MBB, MI, DL, TII.get(Xtensa::S32C1I), R.getReg())
.addReg(Swap.getReg())
.addReg(Addr.getReg())
.addImm(0);
MI.eraseFromParent();
return MBB;
}
default:
llvm_unreachable("Unexpected instr type to insert");
}
}