Lee Wei 1469d82e1c
Remove br i1 undef from some regression tests [NFC] (#115130)
As defined in LangRef, branching on `undef` is undefined behavior.
This PR aims to remove undefined behavior from tests. As UB tests break
Alive2 and may be the root cause of breaking future optimizations.

Here's an Alive2 proof for one of the examples:
https://alive2.llvm.org/ce/z/TncxhP
2024-11-07 08:11:15 +00:00

903 lines
83 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 5
; RUN: opt -disable-output "-passes=print<scalar-evolution>" < %s 2>&1 | FileCheck %s
; This test set ensures that we can correctly operate with recurrencies from
; different loops.
; Check that we can evaluate a sum of phis from two different loops in any
; order.
define void @test_00(i1 %arg) {
; CHECK-LABEL: 'test_00'
; CHECK-NEXT: Classifying expressions for: @test_00
; CHECK-NEXT: %phi1 = phi i32 [ 10, %entry ], [ %phi1.inc, %loop1 ]
; CHECK-NEXT: --> {10,+,1}<nuw><nsw><%loop1> U: [10,175) S: [10,175) Exits: 174 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi2 = phi i32 [ 4, %entry ], [ %phi2.inc, %loop1 ]
; CHECK-NEXT: --> {4,+,2}<nuw><nsw><%loop1> U: [4,333) S: [4,333) Exits: 332 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi3 = phi i32 [ 6, %entry ], [ %phi3.inc, %loop1 ]
; CHECK-NEXT: --> {6,+,3}<nuw><nsw><%loop1> U: [6,499) S: [6,499) Exits: 498 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi1.inc = add i32 %phi1, 1
; CHECK-NEXT: --> {11,+,1}<nuw><nsw><%loop1> U: [11,176) S: [11,176) Exits: 175 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi2.inc = add i32 %phi2, 2
; CHECK-NEXT: --> {6,+,2}<nuw><nsw><%loop1> U: [6,335) S: [6,335) Exits: 334 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi3.inc = add i32 %phi3, 3
; CHECK-NEXT: --> {9,+,3}<nuw><nsw><%loop1> U: [9,502) S: [9,502) Exits: 501 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %sum1 = add i32 %phi1, %phi2
; CHECK-NEXT: --> {14,+,3}<%loop1> U: [14,507) S: [14,507) Exits: 506 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %sum2 = add i32 %sum1, %phi3
; CHECK-NEXT: --> {20,+,6}<%loop1> U: [20,1005) S: [20,1005) Exits: 1004 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi4 = phi i32 [ 63, %loop1 ], [ %phi4.inc, %loop2 ]
; CHECK-NEXT: --> {63,+,1}<nuw><nsw><%loop2> U: [63,205) S: [63,205) Exits: 204 LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi5 = phi i32 [ 53, %loop1 ], [ %phi5.inc, %loop2 ]
; CHECK-NEXT: --> {53,+,2}<nuw><nsw><%loop2> U: [53,336) S: [53,336) Exits: 335 LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi6 = phi i32 [ 43, %loop1 ], [ %phi6.inc, %loop2 ]
; CHECK-NEXT: --> {43,+,3}<nuw><nsw><%loop2> U: [43,467) S: [43,467) Exits: 466 LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi4.inc = add i32 %phi4, 1
; CHECK-NEXT: --> {64,+,1}<nuw><nsw><%loop2> U: [64,206) S: [64,206) Exits: 205 LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi5.inc = add i32 %phi5, 2
; CHECK-NEXT: --> {55,+,2}<nuw><nsw><%loop2> U: [55,338) S: [55,338) Exits: 337 LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi6.inc = add i32 %phi6, 3
; CHECK-NEXT: --> {46,+,3}<nuw><nsw><%loop2> U: [46,470) S: [46,470) Exits: 469 LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %sum3 = add i32 %phi4, %phi5
; CHECK-NEXT: --> {116,+,3}<%loop2> U: [116,540) S: [116,540) Exits: 539 LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %sum4 = add i32 %sum3, %phi6
; CHECK-NEXT: --> {159,+,6}<%loop2> U: [159,1006) S: [159,1006) Exits: 1005 LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %s1 = add i32 %phi1, %phi4
; CHECK-NEXT: --> {{\{\{}}73,+,1}<nuw><nsw><%loop1>,+,1}<nw><%loop2> U: [73,379) S: [73,379) --> 378 U: [378,379) S: [378,379)
; CHECK-NEXT: %s2 = add i32 %phi5, %phi2
; CHECK-NEXT: --> {{\{\{}}57,+,2}<nuw><nsw><%loop1>,+,2}<nw><%loop2> U: [57,668) S: [57,668) --> 667 U: [667,668) S: [667,668)
; CHECK-NEXT: %s3 = add i32 %sum1, %sum3
; CHECK-NEXT: --> {{\{\{}}130,+,3}<%loop1>,+,3}<%loop2> U: [130,1046) S: [130,1046) --> 1045 U: [1045,1046) S: [1045,1046)
; CHECK-NEXT: %s4 = add i32 %sum4, %sum2
; CHECK-NEXT: --> {{\{\{}}179,+,6}<%loop1>,+,6}<%loop2> U: [179,2010) S: [179,2010) --> 2009 U: [2009,2010) S: [2009,2010)
; CHECK-NEXT: %s5 = add i32 %phi3, %sum3
; CHECK-NEXT: --> {{\{\{}}122,+,3}<nuw><nsw><%loop1>,+,3}<%loop2> U: [122,1038) S: [122,1038) --> 1037 U: [1037,1038) S: [1037,1038)
; CHECK-NEXT: %s6 = add i32 %sum2, %phi6
; CHECK-NEXT: --> {{\{\{}}63,+,6}<%loop1>,+,3}<nw><%loop2> U: [63,1471) S: [63,1471) --> 1470 U: [1470,1471) S: [1470,1471)
; CHECK-NEXT: Determining loop execution counts for: @test_00
; CHECK-NEXT: Loop %loop2: backedge-taken count is i32 141
; CHECK-NEXT: Loop %loop2: constant max backedge-taken count is i32 141
; CHECK-NEXT: Loop %loop2: symbolic max backedge-taken count is i32 141
; CHECK-NEXT: Loop %loop2: Trip multiple is 142
; CHECK-NEXT: Loop %loop1: backedge-taken count is i32 164
; CHECK-NEXT: Loop %loop1: constant max backedge-taken count is i32 164
; CHECK-NEXT: Loop %loop1: symbolic max backedge-taken count is i32 164
; CHECK-NEXT: Loop %loop1: Trip multiple is 165
;
entry:
br label %loop1
loop1:
%phi1 = phi i32 [ 10, %entry ], [ %phi1.inc, %loop1 ]
%phi2 = phi i32 [ 4, %entry ], [ %phi2.inc, %loop1 ]
%phi3 = phi i32 [ 6, %entry ], [ %phi3.inc, %loop1 ]
%phi1.inc = add i32 %phi1, 1
%phi2.inc = add i32 %phi2, 2
%phi3.inc = add i32 %phi3, 3
%sum1 = add i32 %phi1, %phi2
%sum2 = add i32 %sum1, %phi3
%cond1 = icmp ult i32 %sum2, 1000
br i1 %cond1, label %loop1, label %loop2
loop2:
%phi4 = phi i32 [ 63, %loop1 ], [ %phi4.inc, %loop2 ]
%phi5 = phi i32 [ 53, %loop1 ], [ %phi5.inc, %loop2 ]
%phi6 = phi i32 [ 43, %loop1 ], [ %phi6.inc, %loop2 ]
%phi4.inc = add i32 %phi4, 1
%phi5.inc = add i32 %phi5, 2
%phi6.inc = add i32 %phi6, 3
%sum3 = add i32 %phi4, %phi5
%sum4 = add i32 %sum3, %phi6
%cond2 = icmp ult i32 %sum4, 1000
br i1 %cond2, label %loop2, label %exit
exit:
%s1 = add i32 %phi1, %phi4
%s2 = add i32 %phi5, %phi2
%s3 = add i32 %sum1, %sum3
%s4 = add i32 %sum4, %sum2
%s5 = add i32 %phi3, %sum3
%s6 = add i32 %sum2, %phi6
ret void
}
; Check that we can evaluate a sum of phis+invariants from two different loops
; in any order.
define void @test_01(i32 %a, i32 %b) {
; CHECK-LABEL: 'test_01'
; CHECK-NEXT: Classifying expressions for: @test_01
; CHECK-NEXT: %phi1 = phi i32 [ %a, %entry ], [ %phi1.inc, %loop1 ]
; CHECK-NEXT: --> {%a,+,1}<nw><%loop1> U: full-set S: full-set Exits: (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))) + %a) LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi2 = phi i32 [ %b, %entry ], [ %phi2.inc, %loop1 ]
; CHECK-NEXT: --> {%b,+,2}<nw><%loop1> U: full-set S: full-set Exits: ((2 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))<nuw><nsw> + %b) LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi3 = phi i32 [ 6, %entry ], [ %phi3.inc, %loop1 ]
; CHECK-NEXT: --> {6,+,3}<nuw><nsw><%loop1> U: [6,508) S: [6,508) Exits: (6 + (3 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))<nuw>)<nuw> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi1.inc = add i32 %phi1, 1
; CHECK-NEXT: --> {(1 + %a),+,1}<nw><%loop1> U: full-set S: full-set Exits: (1 + ((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))) + %a) LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi2.inc = add i32 %phi2, 2
; CHECK-NEXT: --> {(2 + %b),+,2}<nw><%loop1> U: full-set S: full-set Exits: (2 + (2 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))<nuw><nsw> + %b) LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi3.inc = add i32 %phi3, 3
; CHECK-NEXT: --> {9,+,3}<nuw><nsw><%loop1> U: [9,511) S: [9,511) Exits: (9 + (3 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))<nuw>)<nuw> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %sum1 = add i32 %phi1, %phi2
; CHECK-NEXT: --> {(%a + %b),+,3}<%loop1> U: full-set S: full-set Exits: ((3 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))<nuw> + %a + %b) LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %sum2 = add i32 %sum1, %phi3
; CHECK-NEXT: --> {(6 + %a + %b),+,6}<%loop1> U: full-set S: full-set Exits: (6 + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + %a + %b) LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %is1 = add i32 %sum2, %a
; CHECK-NEXT: --> {(6 + (2 * %a) + %b),+,6}<%loop1> U: full-set S: full-set Exits: (6 + (2 * %a) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + %b) LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi4 = phi i32 [ 63, %loop1 ], [ %phi4.inc, %loop2 ]
; CHECK-NEXT: --> {63,+,1}<nuw><nsw><%loop2> U: [63,231) S: [63,231) Exits: (63 + ((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))) LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi5 = phi i32 [ 53, %loop1 ], [ %phi5.inc, %loop2 ]
; CHECK-NEXT: --> {53,+,2}<nuw><nsw><%loop2> U: [53,388) S: [53,388) Exits: (53 + (2 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))<nuw><nsw>)<nuw><nsw> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi6 = phi i32 [ 43, %loop1 ], [ %phi6.inc, %loop2 ]
; CHECK-NEXT: --> {43,+,3}<nuw><nsw><%loop2> U: [43,545) S: [43,545) Exits: (43 + (3 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))<nuw>)<nuw> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi4.inc = add i32 %phi4, 1
; CHECK-NEXT: --> {64,+,1}<nuw><nsw><%loop2> U: [64,232) S: [64,232) Exits: (64 + ((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))) LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi5.inc = add i32 %phi5, 2
; CHECK-NEXT: --> {55,+,2}<nuw><nsw><%loop2> U: [55,390) S: [55,390) Exits: (55 + (2 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))<nuw><nsw>)<nuw><nsw> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi6.inc = add i32 %phi6, 3
; CHECK-NEXT: --> {46,+,3}<nuw><nsw><%loop2> U: [46,548) S: [46,548) Exits: (46 + (3 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))<nuw>)<nuw> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %sum3 = add i32 %phi4, %phi5
; CHECK-NEXT: --> {116,+,3}<%loop2> U: [116,618) S: [116,618) Exits: (116 + (3 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))<nuw>)<nuw> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %sum4 = add i32 %sum3, %phi6
; CHECK-NEXT: --> {159,+,6}<%loop2> U: [159,1162) S: [159,1162) Exits: (159 + (6 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))) LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %is2 = add i32 %sum4, %b
; CHECK-NEXT: --> {(159 + %b),+,6}<%loop2> U: full-set S: full-set Exits: (159 + (6 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))) + %b) LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %ec2 = add i32 %is1, %is2
; CHECK-NEXT: --> {{\{\{}}(165 + (2 * %a) + (2 * %b)),+,6}<%loop1>,+,6}<%loop2> U: full-set S: full-set --> {(165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))),+,6}<%loop2> U: full-set S: full-set Exits: (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (6 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))) LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %s1 = add i32 %phi1, %is1
; CHECK-NEXT: --> {(6 + (3 * %a) + %b),+,7}<%loop1> U: full-set S: full-set --> (6 + (3 * %a) + (7 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + %b) U: full-set S: full-set
; CHECK-NEXT: %s2 = add i32 %is2, %phi4
; CHECK-NEXT: --> {(222 + %b),+,7}<%loop2> U: full-set S: full-set --> (222 + (7 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))) + %b) U: full-set S: full-set
; CHECK-NEXT: %s3 = add i32 %is1, %phi5
; CHECK-NEXT: --> {{\{\{}}(59 + (2 * %a) + %b),+,6}<%loop1>,+,2}<nw><%loop2> U: full-set S: full-set --> (59 + (2 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))<nuw><nsw> + (2 * %a) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + %b) U: full-set S: full-set
; CHECK-NEXT: %s4 = add i32 %phi2, %is2
; CHECK-NEXT: --> {{\{\{}}(159 + (2 * %b)),+,2}<nw><%loop1>,+,6}<%loop2> U: full-set S: full-set --> (159 + (2 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))<nuw><nsw> + (2 * %b) + (6 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))) U: full-set S: full-set
; CHECK-NEXT: %s5 = add i32 %is1, %is2
; CHECK-NEXT: --> {{\{\{}}(165 + (2 * %a) + (2 * %b)),+,6}<%loop1>,+,6}<%loop2> U: full-set S: full-set --> (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (6 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))) U: full-set S: full-set
; CHECK-NEXT: %s6 = add i32 %is2, %is1
; CHECK-NEXT: --> {{\{\{}}(165 + (2 * %a) + (2 * %b)),+,6}<%loop1>,+,6}<%loop2> U: full-set S: full-set --> (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (6 * (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))))))) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @test_01
; CHECK-NEXT: Loop %loop2: backedge-taken count is (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))
; CHECK-NEXT: Loop %loop2: constant max backedge-taken count is i32 167
; CHECK-NEXT: Loop %loop2: symbolic max backedge-taken count is (((-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (-1 * (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))<nuw><nsw> + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))))))))) /u 6) + (1 umin (-165 + (-6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))) + (-2 * %a) + (-2 * %b) + (1000 umax (165 + (2 * %a) + (2 * %b) + (6 * (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))))))))
; CHECK-NEXT: Loop %loop2: Trip multiple is 1
; CHECK-NEXT: Loop %loop1: backedge-taken count is (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))
; CHECK-NEXT: Loop %loop1: constant max backedge-taken count is i32 167
; CHECK-NEXT: Loop %loop1: symbolic max backedge-taken count is (((-6 + (-2 * %a) + (-1 * (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))<nuw><nsw> + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b))) /u 6) + (1 umin (-6 + (-2 * %a) + (-1 * %b) + (1000 umax (6 + (2 * %a) + %b)))))
; CHECK-NEXT: Loop %loop1: Trip multiple is 1
;
entry:
br label %loop1
loop1:
%phi1 = phi i32 [ %a, %entry ], [ %phi1.inc, %loop1 ]
%phi2 = phi i32 [ %b, %entry ], [ %phi2.inc, %loop1 ]
%phi3 = phi i32 [ 6, %entry ], [ %phi3.inc, %loop1 ]
%phi1.inc = add i32 %phi1, 1
%phi2.inc = add i32 %phi2, 2
%phi3.inc = add i32 %phi3, 3
%sum1 = add i32 %phi1, %phi2
%sum2 = add i32 %sum1, %phi3
%is1 = add i32 %sum2, %a
%cond1 = icmp ult i32 %is1, 1000
br i1 %cond1, label %loop1, label %loop2
loop2:
%phi4 = phi i32 [ 63, %loop1 ], [ %phi4.inc, %loop2 ]
%phi5 = phi i32 [ 53, %loop1 ], [ %phi5.inc, %loop2 ]
%phi6 = phi i32 [ 43, %loop1 ], [ %phi6.inc, %loop2 ]
%phi4.inc = add i32 %phi4, 1
%phi5.inc = add i32 %phi5, 2
%phi6.inc = add i32 %phi6, 3
%sum3 = add i32 %phi4, %phi5
%sum4 = add i32 %sum3, %phi6
%is2 = add i32 %sum4, %b
%ec2 = add i32 %is1, %is2
%cond2 = icmp ult i32 %ec2, 1000
br i1 %cond2, label %loop2, label %exit
exit:
%s1 = add i32 %phi1, %is1
%s2 = add i32 %is2, %phi4
%s3 = add i32 %is1, %phi5
%s4 = add i32 %phi2, %is2
%s5 = add i32 %is1, %is2
%s6 = add i32 %is2, %is1
ret void
}
; Check that we can correctly evaluate a sum of phis+variants from two different
; loops in any order.
define void @test_02(i32 %a, i32 %b, ptr %p) {
; CHECK-LABEL: 'test_02'
; CHECK-NEXT: Classifying expressions for: @test_02
; CHECK-NEXT: %phi1 = phi i32 [ %a, %entry ], [ %phi1.inc, %loop1 ]
; CHECK-NEXT: --> {%a,+,1}<%loop1> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi2 = phi i32 [ %b, %entry ], [ %phi2.inc, %loop1 ]
; CHECK-NEXT: --> {%b,+,2}<%loop1> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi3 = phi i32 [ 6, %entry ], [ %phi3.inc, %loop1 ]
; CHECK-NEXT: --> {6,+,3}<%loop1> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi1.inc = add i32 %phi1, 1
; CHECK-NEXT: --> {(1 + %a),+,1}<%loop1> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi2.inc = add i32 %phi2, 2
; CHECK-NEXT: --> {(2 + %b),+,2}<%loop1> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi3.inc = add i32 %phi3, 3
; CHECK-NEXT: --> {9,+,3}<%loop1> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %v1 = load i32, ptr %p, align 4
; CHECK-NEXT: --> %v1 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Variant }
; CHECK-NEXT: %sum1 = add i32 %phi1, %phi2
; CHECK-NEXT: --> {(%a + %b),+,3}<%loop1> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %sum2 = add i32 %sum1, %phi3
; CHECK-NEXT: --> {(6 + %a + %b),+,6}<%loop1> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %is1 = add i32 %sum2, %v1
; CHECK-NEXT: --> ({(6 + %a + %b),+,6}<%loop1> + %v1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Variant }
; CHECK-NEXT: %phi4 = phi i32 [ %a, %loop1 ], [ %phi4.inc, %loop2 ]
; CHECK-NEXT: --> {%a,+,1}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi5 = phi i32 [ %b, %loop1 ], [ %phi5.inc, %loop2 ]
; CHECK-NEXT: --> {%b,+,2}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi6 = phi i32 [ 43, %loop1 ], [ %phi6.inc, %loop2 ]
; CHECK-NEXT: --> {43,+,3}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi4.inc = add i32 %phi4, 1
; CHECK-NEXT: --> {(1 + %a),+,1}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi5.inc = add i32 %phi5, 2
; CHECK-NEXT: --> {(2 + %b),+,2}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi6.inc = add i32 %phi6, 3
; CHECK-NEXT: --> {46,+,3}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %v2 = load i32, ptr %p, align 4
; CHECK-NEXT: --> %v2 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %sum3 = add i32 %phi4, %phi5
; CHECK-NEXT: --> {(%a + %b),+,3}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %sum4 = add i32 %sum3, %phi6
; CHECK-NEXT: --> {(43 + %a + %b),+,6}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %is2 = add i32 %sum4, %v2
; CHECK-NEXT: --> ({(43 + %a + %b),+,6}<%loop2> + %v2) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %is3 = add i32 %v1, %sum2
; CHECK-NEXT: --> ({(6 + %a + %b),+,6}<%loop1> + %v1) U: full-set S: full-set Exits: ({(6 + %a + %b),+,6}<%loop1> + %v1) LoopDispositions: { %loop2: Invariant }
; CHECK-NEXT: %ec2 = add i32 %is1, %is3
; CHECK-NEXT: --> (2 * ({(6 + %a + %b),+,6}<%loop1> + %v1)) U: [0,-1) S: [-2147483648,2147483647) Exits: (2 * ({(6 + %a + %b),+,6}<%loop1> + %v1)) LoopDispositions: { %loop2: Invariant }
; CHECK-NEXT: %s1 = add i32 %phi1, %is1
; CHECK-NEXT: --> ({(6 + (2 * %a) + %b),+,7}<%loop1> + %v1) U: full-set S: full-set
; CHECK-NEXT: %s2 = add i32 %is2, %phi4
; CHECK-NEXT: --> ({(43 + (2 * %a) + %b),+,7}<%loop2> + %v2) U: full-set S: full-set
; CHECK-NEXT: %s3 = add i32 %is1, %phi5
; CHECK-NEXT: --> {({(6 + (2 * %b) + %a),+,6}<%loop1> + %v1),+,2}<%loop2> U: full-set S: full-set
; CHECK-NEXT: %s4 = add i32 %phi2, %is2
; CHECK-NEXT: --> ({{\{\{}}(43 + (2 * %b) + %a),+,2}<%loop1>,+,6}<%loop2> + %v2) U: full-set S: full-set
; CHECK-NEXT: %s5 = add i32 %is1, %is2
; CHECK-NEXT: --> ({({(49 + (2 * %a) + (2 * %b)),+,6}<%loop1> + %v1),+,6}<%loop2> + %v2) U: full-set S: full-set
; CHECK-NEXT: %s6 = add i32 %is2, %is1
; CHECK-NEXT: --> ({({(49 + (2 * %a) + (2 * %b)),+,6}<%loop1> + %v1),+,6}<%loop2> + %v2) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @test_02
; CHECK-NEXT: Loop %loop2: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop2: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %loop2: Unpredictable symbolic max backedge-taken count.
; CHECK-NEXT: Loop %loop1: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop1: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %loop1: Unpredictable symbolic max backedge-taken count.
;
entry:
br label %loop1
loop1:
%phi1 = phi i32 [ %a, %entry ], [ %phi1.inc, %loop1 ]
%phi2 = phi i32 [ %b, %entry ], [ %phi2.inc, %loop1 ]
%phi3 = phi i32 [ 6, %entry ], [ %phi3.inc, %loop1 ]
%phi1.inc = add i32 %phi1, 1
%phi2.inc = add i32 %phi2, 2
%phi3.inc = add i32 %phi3, 3
%v1 = load i32, ptr %p
%sum1 = add i32 %phi1, %phi2
%sum2 = add i32 %sum1, %phi3
%is1 = add i32 %sum2, %v1
%cond1 = icmp ult i32 %is1, 1000
br i1 %cond1, label %loop1, label %loop2
loop2:
%phi4 = phi i32 [ %a, %loop1 ], [ %phi4.inc, %loop2 ]
%phi5 = phi i32 [ %b, %loop1 ], [ %phi5.inc, %loop2 ]
%phi6 = phi i32 [ 43, %loop1 ], [ %phi6.inc, %loop2 ]
%phi4.inc = add i32 %phi4, 1
%phi5.inc = add i32 %phi5, 2
%phi6.inc = add i32 %phi6, 3
%v2 = load i32, ptr %p
%sum3 = add i32 %phi4, %phi5
%sum4 = add i32 %sum3, %phi6
%is2 = add i32 %sum4, %v2
%is3 = add i32 %v1, %sum2
%ec2 = add i32 %is1, %is3
%cond2 = icmp ult i32 %ec2, 1000
br i1 %cond2, label %loop2, label %exit
exit:
%s1 = add i32 %phi1, %is1
%s2 = add i32 %is2, %phi4
%s3 = add i32 %is1, %phi5
%s4 = add i32 %phi2, %is2
%s5 = add i32 %is1, %is2
%s6 = add i32 %is2, %is1
ret void
}
; Mix of previous use cases that demonstrates %s3 can be incorrectly treated as
; a recurrence of loop1 because of operands order if we pick recurrencies in an
; incorrect order. It also shows that we cannot safely fold v1 (SCEVUnknown)
; because we cannot prove for sure that it doesn't use Phis of loop 2.
define void @test_03(i32 %a, i32 %b, i32 %c, ptr %p) {
; CHECK-LABEL: 'test_03'
; CHECK-NEXT: Classifying expressions for: @test_03
; CHECK-NEXT: %phi1 = phi i32 [ %a, %entry ], [ %phi1.inc, %loop1 ]
; CHECK-NEXT: --> {%a,+,1}<%loop1> U: full-set S: full-set Exits: (%a umax %c) LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi1.inc = add i32 %phi1, 1
; CHECK-NEXT: --> {(1 + %a),+,1}<%loop1> U: full-set S: full-set Exits: (1 + (%a umax %c)) LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %phi2 = phi i32 [ %a, %loop1 ], [ %phi2.inc, %loop2 ]
; CHECK-NEXT: --> {%a,+,2}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %phi2.inc = add i32 %phi2, 2
; CHECK-NEXT: --> {(2 + %a),+,2}<%loop2> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %v1 = load i32, ptr %p, align 4
; CHECK-NEXT: --> %v1 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %s1 = add i32 %phi1, %v1
; CHECK-NEXT: --> ({%a,+,1}<%loop1> + %v1) U: full-set S: full-set --> ((%a umax %c) + %v1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %s2 = add i32 %s1, %b
; CHECK-NEXT: --> ({(%a + %b),+,1}<%loop1> + %v1) U: full-set S: full-set --> ((%a umax %c) + %b + %v1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %s3 = add i32 %s2, %phi2
; CHECK-NEXT: --> ({{\{\{}}((2 * %a) + %b),+,1}<%loop1>,+,2}<%loop2> + %v1) U: full-set S: full-set --> ({((%a umax %c) + %a + %b),+,2}<%loop2> + %v1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: Determining loop execution counts for: @test_03
; CHECK-NEXT: Loop %loop2: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop2: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %loop2: Unpredictable symbolic max backedge-taken count.
; CHECK-NEXT: Loop %loop1: backedge-taken count is ((-1 * %a) + (%a umax %c))
; CHECK-NEXT: Loop %loop1: constant max backedge-taken count is i32 -1
; CHECK-NEXT: Loop %loop1: symbolic max backedge-taken count is ((-1 * %a) + (%a umax %c))
; CHECK-NEXT: Loop %loop1: Trip multiple is 1
;
entry:
br label %loop1
loop1:
%phi1 = phi i32 [ %a, %entry ], [ %phi1.inc, %loop1 ]
%phi1.inc = add i32 %phi1, 1
%cond1 = icmp ult i32 %phi1, %c
br i1 %cond1, label %loop1, label %loop2
loop2:
%phi2 = phi i32 [ %a, %loop1 ], [ %phi2.inc, %loop2 ]
%phi2.inc = add i32 %phi2, 2
%v1 = load i32, ptr %p
%s1 = add i32 %phi1, %v1
%s2 = add i32 %s1, %b
%s3 = add i32 %s2, %phi2
%cond2 = icmp ult i32 %s3, %c
br i1 %cond2, label %loop2, label %exit
exit:
ret void
}
; Another mix of previous use cases that demonstrates that incorrect picking of
; a loop for a recurrence may cause a crash of SCEV analysis.
define void @test_04(i1 %arg) {
; CHECK-LABEL: 'test_04'
; CHECK-NEXT: Classifying expressions for: @test_04
; CHECK-NEXT: %tmp = phi i64 [ 2, %bb ], [ %tmp4, %bb3 ]
; CHECK-NEXT: --> {2,+,1}<nuw><nsw><%loop1> U: [2,-9223372036854775808) S: [2,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %tmp2 = trunc i64 %tmp to i32
; CHECK-NEXT: --> {2,+,1}<%loop1> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %tmp4 = add nuw nsw i64 %tmp, 1
; CHECK-NEXT: --> {3,+,1}<nuw><%loop1> U: [3,0) S: [3,0) Exits: <<Unknown>> LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %tmp7 = phi i64 [ %tmp15, %loop2 ], [ 2, %loop1 ]
; CHECK-NEXT: --> {2,+,1}<nuw><nsw><%loop2> U: [2,9223372036854775807) S: [2,9223372036854775807) Exits: (-1 + (3 smax {2,+,1}<nuw><nsw><%loop1>))<nsw> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %tmp8 = load i8, ptr addrspace(1) undef, align 1
; CHECK-NEXT: --> %tmp8 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %tmp9 = sext i8 %tmp8 to i64
; CHECK-NEXT: --> (sext i8 %tmp8 to i64) U: [-128,128) S: [-128,128) Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %tmp10 = sub i64 %tmp9, %tmp7
; CHECK-NEXT: --> ((sext i8 %tmp8 to i64) + {-2,+,-1}<nsw><%loop2>) U: [9223372036854775682,126) S: [9223372036854775682,126) Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %tmp11 = add i64 %tmp10, undef
; CHECK-NEXT: --> ((sext i8 %tmp8 to i64) + {(-2 + undef),+,-1}<nw><%loop2>) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %tmp13 = trunc i64 %tmp11 to i32
; CHECK-NEXT: --> ((sext i8 %tmp8 to i32) + {(-2 + (trunc i64 undef to i32)),+,-1}<%loop2>) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %tmp14 = sub i32 %tmp13, %tmp2
; CHECK-NEXT: --> ((sext i8 %tmp8 to i32) + {{\{\{}}(-4 + (trunc i64 undef to i32)),+,-1}<%loop1>,+,-1}<%loop2>) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop2: Variant }
; CHECK-NEXT: %tmp15 = add nuw nsw i64 %tmp7, 1
; CHECK-NEXT: --> {3,+,1}<nuw><nsw><%loop2> U: [3,-9223372036854775808) S: [3,-9223372036854775808) Exits: (3 smax {2,+,1}<nuw><nsw><%loop1>) LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test_04
; CHECK-NEXT: Loop %loop2: backedge-taken count is (-3 + (3 smax {2,+,1}<nuw><nsw><%loop1>))<nsw>
; CHECK-NEXT: Loop %loop2: constant max backedge-taken count is i64 9223372036854775804
; CHECK-NEXT: Loop %loop2: symbolic max backedge-taken count is (-3 + (3 smax {2,+,1}<nuw><nsw><%loop1>))<nsw>
; CHECK-NEXT: Loop %loop2: Trip multiple is 1
; CHECK-NEXT: Loop %loop1: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop1: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %loop1: Unpredictable symbolic max backedge-taken count.
;
; `{{[{][{]}}` is the ugliness needed to match `{{`
bb:
br label %loop1
loop1:
%tmp = phi i64 [ 2, %bb ], [ %tmp4, %bb3 ]
%tmp2 = trunc i64 %tmp to i32
br i1 %arg, label %loop2, label %bb3
bb3:
%tmp4 = add nuw nsw i64 %tmp, 1
br label %loop1
bb5:
ret void
loop2:
%tmp7 = phi i64 [ %tmp15, %loop2 ], [ 2, %loop1 ]
%tmp8 = load i8, ptr addrspace(1) undef, align 1
%tmp9 = sext i8 %tmp8 to i64
%tmp10 = sub i64 %tmp9, %tmp7
%tmp11 = add i64 %tmp10, undef
%tmp13 = trunc i64 %tmp11 to i32
%tmp14 = sub i32 %tmp13, %tmp2
%tmp15 = add nuw nsw i64 %tmp7, 1
%tmp16 = icmp slt i64 %tmp15, %tmp
br i1 %tmp16, label %loop2, label %bb5
}
@A = weak global [1000 x i32] zeroinitializer, align 32
; Demonstrate a situation when we can add two recs with different degrees from
; the same loop.
define void @test_05(i32 %N) {
; CHECK-LABEL: 'test_05'
; CHECK-NEXT: Classifying expressions for: @test_05
; CHECK-NEXT: %"alloca point" = bitcast i32 0 to i32
; CHECK-NEXT: --> 0 U: [0,1) S: [0,1)
; CHECK-NEXT: %tmp = getelementptr [1000 x i32], ptr @A, i32 0, i32 %i.0
; CHECK-NEXT: --> {(8 + @A)<nuw><nsw>,+,4}<nw><%bb3> U: [40,-3623) S: [-9223372036854775808,9223372036854775805) Exits: (408 + @A)<nuw> LoopDispositions: { %bb3: Computable }
; CHECK-NEXT: %tmp2 = add i32 %i.0, 1
; CHECK-NEXT: --> {3,+,1}<nuw><nsw><%bb3> U: [3,104) S: [3,104) Exits: 103 LoopDispositions: { %bb3: Computable }
; CHECK-NEXT: %i.0 = phi i32 [ 2, %entry ], [ %tmp2, %bb ]
; CHECK-NEXT: --> {2,+,1}<nuw><nsw><%bb3> U: [2,103) S: [2,103) Exits: 102 LoopDispositions: { %bb3: Computable }
; CHECK-NEXT: %SQ = mul i32 %i.0, %i.0
; CHECK-NEXT: --> {4,+,5,+,2}<%bb3> U: full-set S: full-set Exits: 10404 LoopDispositions: { %bb3: Computable }
; CHECK-NEXT: %tmp4 = mul i32 %i.0, 2
; CHECK-NEXT: --> {4,+,2}<nuw><nsw><%bb3> U: [4,205) S: [4,205) Exits: 204 LoopDispositions: { %bb3: Computable }
; CHECK-NEXT: %tmp5 = sub i32 %SQ, %tmp4
; CHECK-NEXT: --> {0,+,3,+,2}<%bb3> U: full-set S: full-set Exits: 10200 LoopDispositions: { %bb3: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test_05
; CHECK-NEXT: Loop %bb3: backedge-taken count is i32 100
; CHECK-NEXT: Loop %bb3: constant max backedge-taken count is i32 100
; CHECK-NEXT: Loop %bb3: symbolic max backedge-taken count is i32 100
; CHECK-NEXT: Loop %bb3: Trip multiple is 101
;
entry:
%"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
br label %bb3
bb: ; preds = %bb3
%tmp = getelementptr [1000 x i32], ptr @A, i32 0, i32 %i.0 ; <ptr> [#uses=1]
store i32 123, ptr %tmp
%tmp2 = add i32 %i.0, 1 ; <i32> [#uses=1]
br label %bb3
bb3: ; preds = %bb, %entry
%i.0 = phi i32 [ 2, %entry ], [ %tmp2, %bb ] ; <i32> [#uses=3]
%SQ = mul i32 %i.0, %i.0
%tmp4 = mul i32 %i.0, 2
%tmp5 = sub i32 %SQ, %tmp4
%tmp3 = icmp sle i32 %tmp5, 9999 ; <i1> [#uses=1]
br i1 %tmp3, label %bb, label %bb5
bb5: ; preds = %bb3
br label %return
return: ; preds = %bb5
ret void
}
; Check that we can add Phis from different loops with different nesting, nested
; loop comes first.
define void @test_06() {
; CHECK-LABEL: 'test_06'
; CHECK-NEXT: Classifying expressions for: @test_06
; CHECK-NEXT: %phi1 = phi i32 [ 10, %entry ], [ %phi1.inc, %loop1.exit ]
; CHECK-NEXT: --> {10,+,1}<nuw><nsw><%loop1> U: [10,1000) S: [10,1000) Exits: 999 LoopDispositions: { %loop1: Computable, %loop2: Invariant }
; CHECK-NEXT: %phi2 = phi i32 [ 20, %loop1 ], [ %phi2.inc, %loop2 ]
; CHECK-NEXT: --> {20,+,2}<nuw><nsw><%loop2> U: [20,999) S: [20,999) Exits: 998 LoopDispositions: { %loop2: Computable, %loop1: Variant }
; CHECK-NEXT: %phi2.inc = add i32 %phi2, 2
; CHECK-NEXT: --> {22,+,2}<nuw><nsw><%loop2> U: [22,1001) S: [22,1001) Exits: 1000 LoopDispositions: { %loop2: Computable, %loop1: Variant }
; CHECK-NEXT: %phi1.inc = add i32 %phi1, 1
; CHECK-NEXT: --> {11,+,1}<nuw><nsw><%loop1> U: [11,1001) S: [11,1001) Exits: 1000 LoopDispositions: { %loop1: Computable, %loop2: Invariant }
; CHECK-NEXT: %phi3 = phi i32 [ 30, %loop1.exit ], [ %phi3.inc, %loop3 ]
; CHECK-NEXT: --> {30,+,3}<nuw><nsw><%loop3> U: [30,1000) S: [30,1000) Exits: 999 LoopDispositions: { %loop3: Computable }
; CHECK-NEXT: %phi3.inc = add i32 %phi3, 3
; CHECK-NEXT: --> {33,+,3}<nuw><nsw><%loop3> U: [33,1003) S: [33,1003) Exits: 1002 LoopDispositions: { %loop3: Computable }
; CHECK-NEXT: %s1 = add i32 %phi1, %phi2
; CHECK-NEXT: --> {{\{\{}}30,+,1}<nuw><nsw><%loop1>,+,2}<nw><%loop2> U: [30,1998) S: [30,1998) --> 1997 U: [1997,1998) S: [1997,1998)
; CHECK-NEXT: %s2 = add i32 %phi2, %phi1
; CHECK-NEXT: --> {{\{\{}}30,+,1}<nuw><nsw><%loop1>,+,2}<nw><%loop2> U: [30,1998) S: [30,1998) --> 1997 U: [1997,1998) S: [1997,1998)
; CHECK-NEXT: %s3 = add i32 %phi1, %phi3
; CHECK-NEXT: --> {{\{\{}}40,+,1}<nuw><nsw><%loop1>,+,3}<nw><%loop3> U: [40,1999) S: [40,1999) --> 1998 U: [1998,1999) S: [1998,1999)
; CHECK-NEXT: %s4 = add i32 %phi3, %phi1
; CHECK-NEXT: --> {{\{\{}}40,+,1}<nuw><nsw><%loop1>,+,3}<nw><%loop3> U: [40,1999) S: [40,1999) --> 1998 U: [1998,1999) S: [1998,1999)
; CHECK-NEXT: %s5 = add i32 %phi2, %phi3
; CHECK-NEXT: --> {{\{\{}}50,+,2}<nuw><nsw><%loop2>,+,3}<nw><%loop3> U: [50,1998) S: [50,1998) --> 1997 U: [1997,1998) S: [1997,1998)
; CHECK-NEXT: %s6 = add i32 %phi3, %phi2
; CHECK-NEXT: --> {{\{\{}}50,+,2}<nuw><nsw><%loop2>,+,3}<nw><%loop3> U: [50,1998) S: [50,1998) --> 1997 U: [1997,1998) S: [1997,1998)
; CHECK-NEXT: Determining loop execution counts for: @test_06
; CHECK-NEXT: Loop %loop3: backedge-taken count is i32 323
; CHECK-NEXT: Loop %loop3: constant max backedge-taken count is i32 323
; CHECK-NEXT: Loop %loop3: symbolic max backedge-taken count is i32 323
; CHECK-NEXT: Loop %loop3: Trip multiple is 324
; CHECK-NEXT: Loop %loop2: backedge-taken count is i32 489
; CHECK-NEXT: Loop %loop2: constant max backedge-taken count is i32 489
; CHECK-NEXT: Loop %loop2: symbolic max backedge-taken count is i32 489
; CHECK-NEXT: Loop %loop2: Trip multiple is 490
; CHECK-NEXT: Loop %loop1: backedge-taken count is i32 989
; CHECK-NEXT: Loop %loop1: constant max backedge-taken count is i32 989
; CHECK-NEXT: Loop %loop1: symbolic max backedge-taken count is i32 989
; CHECK-NEXT: Loop %loop1: Trip multiple is 990
;
entry:
br label %loop1
loop1:
%phi1 = phi i32 [ 10, %entry ], [ %phi1.inc, %loop1.exit ]
br label %loop2
loop2:
%phi2 = phi i32 [ 20, %loop1 ], [ %phi2.inc, %loop2 ]
%phi2.inc = add i32 %phi2, 2
%cond2 = icmp ult i32 %phi2.inc, 1000
br i1 %cond2, label %loop2, label %loop1.exit
loop1.exit:
%phi1.inc = add i32 %phi1, 1
%cond1 = icmp ult i32 %phi1.inc, 1000
br i1 %cond1, label %loop1, label %loop3
loop3:
%phi3 = phi i32 [ 30, %loop1.exit ], [ %phi3.inc, %loop3 ]
%phi3.inc = add i32 %phi3, 3
%cond3 = icmp ult i32 %phi3.inc, 1000
br i1 %cond3, label %loop3, label %exit
exit:
%s1 = add i32 %phi1, %phi2
%s2 = add i32 %phi2, %phi1
%s3 = add i32 %phi1, %phi3
%s4 = add i32 %phi3, %phi1
%s5 = add i32 %phi2, %phi3
%s6 = add i32 %phi3, %phi2
ret void
}
; Check that we can add Phis from different loops with different nesting, nested
; loop comes second.
define void @test_07() {
; CHECK-LABEL: 'test_07'
; CHECK-NEXT: Classifying expressions for: @test_07
; CHECK-NEXT: %phi3 = phi i32 [ 30, %entry ], [ %phi3.inc, %loop3 ]
; CHECK-NEXT: --> {30,+,3}<nuw><nsw><%loop3> U: [30,1000) S: [30,1000) Exits: 999 LoopDispositions: { %loop3: Computable }
; CHECK-NEXT: %phi3.inc = add i32 %phi3, 3
; CHECK-NEXT: --> {33,+,3}<nuw><nsw><%loop3> U: [33,1003) S: [33,1003) Exits: 1002 LoopDispositions: { %loop3: Computable }
; CHECK-NEXT: %phi1 = phi i32 [ 10, %loop3 ], [ %phi1.inc, %loop1.exit ]
; CHECK-NEXT: --> {10,+,1}<nuw><nsw><%loop1> U: [10,11) S: [10,11) Exits: 10 LoopDispositions: { %loop1: Computable, %loop2: Invariant }
; CHECK-NEXT: %phi2 = phi i32 [ 20, %loop1 ], [ %phi2.inc, %loop2 ]
; CHECK-NEXT: --> {20,+,2}<nuw><nsw><%loop2> U: [20,999) S: [20,999) Exits: 998 LoopDispositions: { %loop2: Computable, %loop1: Variant }
; CHECK-NEXT: %phi2.inc = add i32 %phi2, 2
; CHECK-NEXT: --> {22,+,2}<nuw><nsw><%loop2> U: [22,1001) S: [22,1001) Exits: 1000 LoopDispositions: { %loop2: Computable, %loop1: Variant }
; CHECK-NEXT: %phi1.inc = add i32 %phi1, 1
; CHECK-NEXT: --> {11,+,1}<nuw><nsw><%loop1> U: [11,12) S: [11,12) Exits: 11 LoopDispositions: { %loop1: Computable, %loop2: Invariant }
; CHECK-NEXT: %s1 = add i32 %phi1, %phi2
; CHECK-NEXT: --> {{\{\{}}30,+,1}<nuw><nsw><%loop1>,+,2}<nw><%loop2> U: [30,1009) S: [30,1009) --> 1008 U: [1008,1009) S: [1008,1009)
; CHECK-NEXT: %s2 = add i32 %phi2, %phi1
; CHECK-NEXT: --> {{\{\{}}30,+,1}<nuw><nsw><%loop1>,+,2}<nw><%loop2> U: [30,1009) S: [30,1009) --> 1008 U: [1008,1009) S: [1008,1009)
; CHECK-NEXT: %s3 = add i32 %phi1, %phi3
; CHECK-NEXT: --> {{\{\{}}40,+,3}<nuw><nsw><%loop3>,+,1}<nw><%loop1> U: [40,1010) S: [40,1010) --> 1009 U: [1009,1010) S: [1009,1010)
; CHECK-NEXT: %s4 = add i32 %phi3, %phi1
; CHECK-NEXT: --> {{\{\{}}40,+,3}<nuw><nsw><%loop3>,+,1}<nw><%loop1> U: [40,1010) S: [40,1010) --> 1009 U: [1009,1010) S: [1009,1010)
; CHECK-NEXT: %s5 = add i32 %phi2, %phi3
; CHECK-NEXT: --> {{\{\{}}50,+,3}<nuw><nsw><%loop3>,+,2}<nw><%loop2> U: [50,1998) S: [50,1998) --> 1997 U: [1997,1998) S: [1997,1998)
; CHECK-NEXT: %s6 = add i32 %phi3, %phi2
; CHECK-NEXT: --> {{\{\{}}50,+,3}<nuw><nsw><%loop3>,+,2}<nw><%loop2> U: [50,1998) S: [50,1998) --> 1997 U: [1997,1998) S: [1997,1998)
; CHECK-NEXT: Determining loop execution counts for: @test_07
; CHECK-NEXT: Loop %loop2: backedge-taken count is i32 489
; CHECK-NEXT: Loop %loop2: constant max backedge-taken count is i32 489
; CHECK-NEXT: Loop %loop2: symbolic max backedge-taken count is i32 489
; CHECK-NEXT: Loop %loop2: Trip multiple is 490
; CHECK-NEXT: Loop %loop1: backedge-taken count is i32 0
; CHECK-NEXT: Loop %loop1: constant max backedge-taken count is i32 0
; CHECK-NEXT: Loop %loop1: symbolic max backedge-taken count is i32 0
; CHECK-NEXT: Loop %loop1: Trip multiple is 1
; CHECK-NEXT: Loop %loop3: backedge-taken count is i32 323
; CHECK-NEXT: Loop %loop3: constant max backedge-taken count is i32 323
; CHECK-NEXT: Loop %loop3: symbolic max backedge-taken count is i32 323
; CHECK-NEXT: Loop %loop3: Trip multiple is 324
;
entry:
br label %loop3
loop3:
%phi3 = phi i32 [ 30, %entry ], [ %phi3.inc, %loop3 ]
%phi3.inc = add i32 %phi3, 3
%cond3 = icmp ult i32 %phi3.inc, 1000
br i1 %cond3, label %loop3, label %loop1
loop1:
%phi1 = phi i32 [ 10, %loop3 ], [ %phi1.inc, %loop1.exit ]
br label %loop2
loop2:
%phi2 = phi i32 [ 20, %loop1 ], [ %phi2.inc, %loop2 ]
%phi2.inc = add i32 %phi2, 2
%cond2 = icmp ult i32 %phi2.inc, 1000
br i1 %cond2, label %loop2, label %loop1.exit
loop1.exit:
%phi1.inc = add i32 %phi1, 1
%cond1 = icmp ult i32 %phi1.inc, 1000
br i1 %cond1, label %exit, label %loop1
exit:
%s1 = add i32 %phi1, %phi2
%s2 = add i32 %phi2, %phi1
%s3 = add i32 %phi1, %phi3
%s4 = add i32 %phi3, %phi1
%s5 = add i32 %phi2, %phi3
%s6 = add i32 %phi3, %phi2
ret void
}
; Make sure that a complicated Phi does not get folded with rec's start value
; of a loop which is above.
define void @test_08() {
; CHECK-LABEL: 'test_08'
; CHECK-NEXT: Classifying expressions for: @test_08
; CHECK-NEXT: %iv.1.1 = phi i64 [ 2, %entry ], [ %iv.1.1.next, %loop_1_back_branch ]
; CHECK-NEXT: --> {2,+,1}<nuw><nsw><%loop_1> U: [2,4) S: [2,4) Exits: 3 LoopDispositions: { %loop_1: Computable }
; CHECK-NEXT: %iv.1.2 = phi i32 [ -1, %entry ], [ %iv.1.2.next, %loop_1_back_branch ]
; CHECK-NEXT: --> {-1,+,1}<nsw><%loop_1> U: [-1,1) S: [-1,1) Exits: 0 LoopDispositions: { %loop_1: Computable }
; CHECK-NEXT: %iv.1.1.next = add nuw nsw i64 %iv.1.1, 1
; CHECK-NEXT: --> {3,+,1}<nuw><nsw><%loop_1> U: [3,5) S: [3,5) Exits: 4 LoopDispositions: { %loop_1: Computable }
; CHECK-NEXT: %iv.1.2.next = add nsw i32 %iv.1.2, 1
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop_1> U: [0,2) S: [0,2) Exits: 1 LoopDispositions: { %loop_1: Computable }
; CHECK-NEXT: %tmp6 = sub i64 1, %iv.1.1
; CHECK-NEXT: --> {-1,+,-1}<nsw><%loop_1> U: [-2,0) S: [-2,0) --> -2 U: [-2,-1) S: [-2,-1)
; CHECK-NEXT: %tmp7 = trunc i64 %tmp6 to i32
; CHECK-NEXT: --> {-1,+,-1}<%loop_1> U: [-2,0) S: [-2,0) --> -2 U: [-2,-1) S: [-2,-1)
; CHECK-NEXT: %iv.2.1 = phi i64 [ 0, %loop_2_preheader ], [ %tmp16, %loop_2 ]
; CHECK-NEXT: --> %iv.2.1 U: full-set S: full-set Exits: 0 LoopDispositions: { %loop_2: Variant }
; CHECK-NEXT: %iv.2.2 = phi i64 [ 0, %loop_2_preheader ], [ %iv.2.2.next, %loop_2 ]
; CHECK-NEXT: --> {0,+,-1}<nuw><nsw><%loop_2> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop_2: Computable }
; CHECK-NEXT: %iv.2.3 = phi i64 [ 2, %loop_2_preheader ], [ %iv.2.3.next, %loop_2 ]
; CHECK-NEXT: --> {2,+,1}<nuw><nsw><%loop_2> U: [2,3) S: [2,3) Exits: 2 LoopDispositions: { %loop_2: Computable }
; CHECK-NEXT: %tmp11 = add i64 %iv.2.2, %iv.2.1
; CHECK-NEXT: --> ({0,+,-1}<nuw><nsw><%loop_2> + %iv.2.1) U: full-set S: full-set Exits: 0 LoopDispositions: { %loop_2: Variant }
; CHECK-NEXT: %tmp12 = trunc i64 %tmp11 to i32
; CHECK-NEXT: --> ((trunc i64 %iv.2.1 to i32) + {0,+,-1}<%loop_2>) U: full-set S: full-set Exits: 0 LoopDispositions: { %loop_2: Variant }
; CHECK-NEXT: %tmp14 = mul i32 %tmp12, %tmp7
; CHECK-NEXT: --> (((trunc i64 %iv.2.1 to i32) + {0,+,-1}<%loop_2>) * {-1,+,-1}<%loop_1>) U: full-set S: full-set --> (-2 * ((trunc i64 %iv.2.1 to i32) + {0,+,-1}<%loop_2>)) U: [0,-1) S: [-2147483648,2147483647) Exits: 0 LoopDispositions: { %loop_2: Variant }
; CHECK-NEXT: %tmp16 = mul i64 %iv.2.1, %iv.1.1
; CHECK-NEXT: --> ({2,+,1}<nuw><nsw><%loop_1> * %iv.2.1) U: full-set S: full-set --> (3 * %iv.2.1) U: full-set S: full-set Exits: 0 LoopDispositions: { %loop_2: Variant }
; CHECK-NEXT: %iv.2.3.next = add nuw nsw i64 %iv.2.3, 1
; CHECK-NEXT: --> {3,+,1}<nuw><nsw><%loop_2> U: [3,4) S: [3,4) Exits: 3 LoopDispositions: { %loop_2: Computable }
; CHECK-NEXT: %iv.2.2.next = add nsw i64 %iv.2.2, -1
; CHECK-NEXT: --> {-1,+,-1}<nuw><nsw><%loop_2> U: [-1,0) S: [-1,0) Exits: -1 LoopDispositions: { %loop_2: Computable }
; CHECK-NEXT: %tmp10 = add i32 %iv.1.2, 3
; CHECK-NEXT: --> {2,+,1}<nuw><nsw><%loop_1> U: [2,4) S: [2,4) --> 3 U: [3,4) S: [3,4)
; CHECK-NEXT: Determining loop execution counts for: @test_08
; CHECK-NEXT: Loop %loop_2: backedge-taken count is i64 0
; CHECK-NEXT: Loop %loop_2: constant max backedge-taken count is i64 0
; CHECK-NEXT: Loop %loop_2: symbolic max backedge-taken count is i64 0
; CHECK-NEXT: Loop %loop_2: Trip multiple is 1
; CHECK-NEXT: Loop %loop_1: backedge-taken count is i64 1
; CHECK-NEXT: Loop %loop_1: constant max backedge-taken count is i64 1
; CHECK-NEXT: Loop %loop_1: symbolic max backedge-taken count is i64 1
; CHECK-NEXT: Loop %loop_1: Trip multiple is 2
;
entry:
br label %loop_1
loop_1:
%iv.1.1 = phi i64 [ 2, %entry ], [ %iv.1.1.next, %loop_1_back_branch ]
%iv.1.2 = phi i32 [ -1, %entry ], [ %iv.1.2.next, %loop_1_back_branch ]
br label %loop_1_exit
dead:
br label %loop_1_exit
loop_1_exit:
%tmp5 = icmp sgt i64 %iv.1.1, 2
br i1 %tmp5, label %loop_2_preheader, label %loop_1_back_branch
loop_1_back_branch:
%iv.1.1.next = add nuw nsw i64 %iv.1.1, 1
%iv.1.2.next = add nsw i32 %iv.1.2, 1
br label %loop_1
loop_2_preheader:
%tmp6 = sub i64 1, %iv.1.1
%tmp7 = trunc i64 %tmp6 to i32
br label %loop_2
loop_2:
%iv.2.1 = phi i64 [ 0, %loop_2_preheader ], [ %tmp16, %loop_2 ]
%iv.2.2 = phi i64 [ 0, %loop_2_preheader ], [ %iv.2.2.next, %loop_2 ]
%iv.2.3 = phi i64 [ 2, %loop_2_preheader ], [ %iv.2.3.next, %loop_2 ]
%tmp11 = add i64 %iv.2.2, %iv.2.1
%tmp12 = trunc i64 %tmp11 to i32
%tmp14 = mul i32 %tmp12, %tmp7
%tmp16 = mul i64 %iv.2.1, %iv.1.1
%iv.2.3.next = add nuw nsw i64 %iv.2.3, 1
%iv.2.2.next = add nsw i64 %iv.2.2, -1
%tmp17 = icmp slt i64 %iv.2.3.next, %iv.1.1
br i1 %tmp17, label %loop_2, label %exit
exit:
%tmp10 = add i32 %iv.1.2, 3
ret void
}
define i64 @test_09(i32 %param) {
; CHECK-LABEL: 'test_09'
; CHECK-NEXT: Classifying expressions for: @test_09
; CHECK-NEXT: %iv1 = phi i64 [ %iv1.next, %guarded ], [ 0, %outer.loop ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop1> U: [0,3) S: [0,3) Exits: 2 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %iv1.trunc = trunc i64 %iv1 to i32
; CHECK-NEXT: --> {0,+,1}<%loop1> U: [0,3) S: [0,3) Exits: 2 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %iv1.next = add nuw nsw i64 %iv1, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%loop1> U: [1,4) S: [1,4) Exits: 3 LoopDispositions: { %loop1: Computable }
; CHECK-NEXT: %iv2 = phi i32 [ %iv2.next, %loop2 ], [ %param, %loop2.preheader ]
; CHECK-NEXT: --> {%param,+,1}<%loop2> U: full-set S: full-set Exits: (2 smax %param) LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %iv2.next = add i32 %iv2, 1
; CHECK-NEXT: --> {(1 + %param),+,1}<%loop2> U: full-set S: full-set Exits: (1 + (2 smax %param))<nuw> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %iv2.ext = sext i32 %iv2.next to i64
; CHECK-NEXT: --> (sext i32 {(1 + %param),+,1}<%loop2> to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) --> (sext i32 (1 + (2 smax %param))<nuw> to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648)
; CHECK-NEXT: %ret = mul i64 %iv1, %iv2.ext
; CHECK-NEXT: --> ((sext i32 {(1 + %param),+,1}<%loop2> to i64) * {0,+,1}<nuw><nsw><%loop1>) U: [-4294967296,4294967295) S: [-4294967296,4294967295) --> (2 * (sext i32 (1 + (2 smax %param))<nuw> to i64))<nsw> U: [0,-1) S: [-4294967296,4294967295)
; CHECK-NEXT: Determining loop execution counts for: @test_09
; CHECK-NEXT: Loop %loop2: backedge-taken count is ((-1 * %param) + (2 smax %param))
; CHECK-NEXT: Loop %loop2: constant max backedge-taken count is i32 -2147483646
; CHECK-NEXT: Loop %loop2: symbolic max backedge-taken count is ((-1 * %param) + (2 smax %param))
; CHECK-NEXT: Loop %loop2: Trip multiple is 1
; CHECK-NEXT: Loop %loop1: <multiple exits> backedge-taken count is i64 2
; CHECK-NEXT: exit count for loop1: i64 100
; CHECK-NEXT: exit count for guarded: i32 2
; CHECK-NEXT: Loop %loop1: constant max backedge-taken count is i64 2
; CHECK-NEXT: Loop %loop1: symbolic max backedge-taken count is i64 2
; CHECK-NEXT: symbolic max exit count for loop1: i64 100
; CHECK-NEXT: symbolic max exit count for guarded: i32 2
; CHECK-NEXT: Loop %loop1: Trip multiple is 1
;
entry:
br label %outer.loop
outer.loop: ; preds = %loop2.exit, %entry
br label %loop1
loop1: ; preds = %guarded, %outer.loop
%iv1 = phi i64 [ %iv1.next, %guarded ], [ 0, %outer.loop ]
%iv1.trunc = trunc i64 %iv1 to i32
%cond1 = icmp ult i64 %iv1, 100
br i1 %cond1, label %guarded, label %deopt
guarded: ; preds = %loop1
%iv1.next = add nuw nsw i64 %iv1, 1
%tmp16 = icmp slt i32 %iv1.trunc, 2
br i1 %tmp16, label %loop1, label %loop2.preheader
deopt: ; preds = %loop1
unreachable
loop2.preheader: ; preds = %guarded
br label %loop2
loop2: ; preds = %loop2, %loop2.preheader
%iv2 = phi i32 [ %iv2.next, %loop2 ], [ %param, %loop2.preheader ]
%iv2.next = add i32 %iv2, 1
%cond2 = icmp slt i32 %iv2, %iv1.trunc
br i1 %cond2, label %loop2, label %exit
exit: ; preds = %loop2.exit
%iv2.ext = sext i32 %iv2.next to i64
%ret = mul i64 %iv1, %iv2.ext
ret i64 %ret
}
define i64 @test_10(i32 %param) {
; CHECK-LABEL: 'test_10'
; CHECK-NEXT: Classifying expressions for: @test_10
; CHECK-NEXT: %uncle = phi i64 [ %uncle.outer.next, %uncle.loop.backedge ], [ 0, %outer.loop ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%uncle.loop> U: [0,1) S: [0,1) Exits: <<Unknown>> LoopDispositions: { %uncle.loop: Computable, %loop1: Invariant }
; CHECK-NEXT: %iv1 = phi i64 [ %iv1.next, %guarded ], [ 0, %uncle.loop ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop1> U: [0,3) S: [0,3) Exits: 2 LoopDispositions: { %loop1: Computable, %uncle.loop: Variant }
; CHECK-NEXT: %iv1.trunc = trunc i64 %iv1 to i32
; CHECK-NEXT: --> {0,+,1}<%loop1> U: [0,3) S: [0,3) Exits: 2 LoopDispositions: { %loop1: Computable, %uncle.loop: Variant }
; CHECK-NEXT: %iv1.next = add nuw nsw i64 %iv1, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%loop1> U: [1,4) S: [1,4) Exits: 3 LoopDispositions: { %loop1: Computable, %uncle.loop: Variant }
; CHECK-NEXT: %uncle.outer.next = add i64 %uncle, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%uncle.loop> U: [1,2) S: [1,2) Exits: <<Unknown>> LoopDispositions: { %uncle.loop: Computable, %loop1: Invariant }
; CHECK-NEXT: %iv2 = phi i32 [ %iv2.next, %loop2 ], [ %param, %loop2.preheader ]
; CHECK-NEXT: --> {%param,+,1}<%loop2> U: full-set S: full-set Exits: (2 smax %param) LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %iv2.next = add i32 %iv2, 1
; CHECK-NEXT: --> {(1 + %param),+,1}<%loop2> U: full-set S: full-set Exits: (1 + (2 smax %param))<nuw> LoopDispositions: { %loop2: Computable }
; CHECK-NEXT: %iv2.ext = sext i32 %iv2.next to i64
; CHECK-NEXT: --> (sext i32 {(1 + %param),+,1}<%loop2> to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) --> (sext i32 (1 + (2 smax %param))<nuw> to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648)
; CHECK-NEXT: %ret = mul i64 %iv1, %iv2.ext
; CHECK-NEXT: --> ((sext i32 {(1 + %param),+,1}<%loop2> to i64) * {0,+,1}<nuw><nsw><%loop1>) U: [-4294967296,4294967295) S: [-4294967296,4294967295) --> (2 * (sext i32 (1 + (2 smax %param))<nuw> to i64))<nsw> U: [0,-1) S: [-4294967296,4294967295)
; CHECK-NEXT: Determining loop execution counts for: @test_10
; CHECK-NEXT: Loop %loop2: backedge-taken count is ((-1 * %param) + (2 smax %param))
; CHECK-NEXT: Loop %loop2: constant max backedge-taken count is i32 -2147483646
; CHECK-NEXT: Loop %loop2: symbolic max backedge-taken count is ((-1 * %param) + (2 smax %param))
; CHECK-NEXT: Loop %loop2: Trip multiple is 1
; CHECK-NEXT: Loop %loop1: <multiple exits> backedge-taken count is i64 2
; CHECK-NEXT: exit count for loop1: i64 100
; CHECK-NEXT: exit count for guarded: i32 2
; CHECK-NEXT: Loop %loop1: constant max backedge-taken count is i64 2
; CHECK-NEXT: Loop %loop1: symbolic max backedge-taken count is i64 2
; CHECK-NEXT: symbolic max exit count for loop1: i64 100
; CHECK-NEXT: symbolic max exit count for guarded: i32 2
; CHECK-NEXT: Loop %loop1: Trip multiple is 1
; CHECK-NEXT: Loop %uncle.loop: <multiple exits> Unpredictable backedge-taken count.
; CHECK-NEXT: exit count for loop1: ***COULDNOTCOMPUTE***
; CHECK-NEXT: exit count for uncle.loop.backedge: i64 0
; CHECK-NEXT: Loop %uncle.loop: constant max backedge-taken count is i64 0
; CHECK-NEXT: Loop %uncle.loop: symbolic max backedge-taken count is i64 0
; CHECK-NEXT: symbolic max exit count for loop1: ***COULDNOTCOMPUTE***
; CHECK-NEXT: symbolic max exit count for uncle.loop.backedge: i64 0
;
entry:
br label %outer.loop
outer.loop: ; preds = %entry
br label %uncle.loop
uncle.loop: ; preds = %uncle.loop.backedge, %outer.loop
%uncle = phi i64 [ %uncle.outer.next, %uncle.loop.backedge ], [ 0, %outer.loop ]
br label %loop1
loop1: ; preds = %guarded, %uncle.loop
%iv1 = phi i64 [ %iv1.next, %guarded ], [ 0, %uncle.loop ]
%iv1.trunc = trunc i64 %iv1 to i32
%cond1 = icmp ult i64 %iv1, 100
br i1 %cond1, label %guarded, label %deopt
guarded: ; preds = %loop1
%iv1.next = add nuw nsw i64 %iv1, 1
%tmp16 = icmp slt i32 %iv1.trunc, 2
br i1 %tmp16, label %loop1, label %uncle.loop.backedge
uncle.loop.backedge: ; preds = %guarded
%uncle.outer.next = add i64 %uncle, 1
%cond.uncle = icmp ult i64 %uncle, 120
br i1 %cond.uncle, label %loop2.preheader, label %uncle.loop
deopt: ; preds = %loop1
unreachable
loop2.preheader: ; preds = %uncle.loop.backedge
br label %loop2
loop2: ; preds = %loop2, %loop2.preheader
%iv2 = phi i32 [ %iv2.next, %loop2 ], [ %param, %loop2.preheader ]
%iv2.next = add i32 %iv2, 1
%cond2 = icmp slt i32 %iv2, %iv1.trunc
br i1 %cond2, label %loop2, label %exit
exit: ; preds = %loop2
%iv2.ext = sext i32 %iv2.next to i64
%ret = mul i64 %iv1, %iv2.ext
ret i64 %ret
}