Philip Reames 8b5b294ec2 [SCEV] Print predicate backedge count only if new information available
When printing the result of SCEV's analysis, we can avoid printing
the predicated backedge taken count and the predicates if the predicates
are empty and no new information is provided.  This helps to reduce the
verbosity of the output.
2024-03-06 10:24:32 -08:00

609 lines
33 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt < %s --data-layout="e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128" -S -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck --check-prefixes=ALL,X64 %s
; RUN: opt < %s --data-layout="e-m:e-p:32:32-p270:32:32-p271:32:32-p272:64:64-f64:32:64-f80:32-n8:16:32-S128" -S -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck --check-prefixes=ALL,X32 %s
; While we can't treat inttoptr/ptrtoint casts as fully transparent,
; for ptrtoint cast, instead of modelling it as fully opaque (unknown),
; we can at least model it as zext/trunc/self of an unknown,
; iff it it's argument would be modelled as unknown anyways.
declare void @useptr(ptr)
; Simple ptrtoint of an argument, with casts to potentially different bit widths.
define void @ptrtoint(ptr %in, ptr %out0, ptr %out1, ptr %out2, ptr %out3) {
; X64-LABEL: 'ptrtoint'
; X64-NEXT: Classifying expressions for: @ptrtoint
; X64-NEXT: %p0 = ptrtoint ptr %in to i64
; X64-NEXT: --> (ptrtoint ptr %in to i64) U: full-set S: full-set
; X64-NEXT: %p1 = ptrtoint ptr %in to i32
; X64-NEXT: --> (trunc i64 (ptrtoint ptr %in to i64) to i32) U: full-set S: full-set
; X64-NEXT: %p2 = ptrtoint ptr %in to i16
; X64-NEXT: --> (trunc i64 (ptrtoint ptr %in to i64) to i16) U: full-set S: full-set
; X64-NEXT: %p3 = ptrtoint ptr %in to i128
; X64-NEXT: --> (zext i64 (ptrtoint ptr %in to i64) to i128) U: [0,18446744073709551616) S: [0,18446744073709551616)
; X64-NEXT: Determining loop execution counts for: @ptrtoint
;
; X32-LABEL: 'ptrtoint'
; X32-NEXT: Classifying expressions for: @ptrtoint
; X32-NEXT: %p0 = ptrtoint ptr %in to i64
; X32-NEXT: --> (zext i32 (ptrtoint ptr %in to i32) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: %p1 = ptrtoint ptr %in to i32
; X32-NEXT: --> (ptrtoint ptr %in to i32) U: full-set S: full-set
; X32-NEXT: %p2 = ptrtoint ptr %in to i16
; X32-NEXT: --> (trunc i32 (ptrtoint ptr %in to i32) to i16) U: full-set S: full-set
; X32-NEXT: %p3 = ptrtoint ptr %in to i128
; X32-NEXT: --> (zext i32 (ptrtoint ptr %in to i32) to i128) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint
;
%p0 = ptrtoint ptr %in to i64
%p1 = ptrtoint ptr %in to i32
%p2 = ptrtoint ptr %in to i16
%p3 = ptrtoint ptr %in to i128
store i64 %p0, ptr %out0
store i32 %p1, ptr %out1
store i16 %p2, ptr %out2
store i128 %p3, ptr %out3
ret void
}
; Same, but from non-zero/non-default address space.
define void @ptrtoint_as1(ptr addrspace(1) %in, ptr %out0, ptr %out1, ptr %out2, ptr %out3) {
; X64-LABEL: 'ptrtoint_as1'
; X64-NEXT: Classifying expressions for: @ptrtoint_as1
; X64-NEXT: %p0 = ptrtoint ptr addrspace(1) %in to i64
; X64-NEXT: --> (ptrtoint ptr addrspace(1) %in to i64) U: full-set S: full-set
; X64-NEXT: %p1 = ptrtoint ptr addrspace(1) %in to i32
; X64-NEXT: --> (trunc i64 (ptrtoint ptr addrspace(1) %in to i64) to i32) U: full-set S: full-set
; X64-NEXT: %p2 = ptrtoint ptr addrspace(1) %in to i16
; X64-NEXT: --> (trunc i64 (ptrtoint ptr addrspace(1) %in to i64) to i16) U: full-set S: full-set
; X64-NEXT: %p3 = ptrtoint ptr addrspace(1) %in to i128
; X64-NEXT: --> (zext i64 (ptrtoint ptr addrspace(1) %in to i64) to i128) U: [0,18446744073709551616) S: [0,18446744073709551616)
; X64-NEXT: Determining loop execution counts for: @ptrtoint_as1
;
; X32-LABEL: 'ptrtoint_as1'
; X32-NEXT: Classifying expressions for: @ptrtoint_as1
; X32-NEXT: %p0 = ptrtoint ptr addrspace(1) %in to i64
; X32-NEXT: --> (zext i32 (ptrtoint ptr addrspace(1) %in to i32) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: %p1 = ptrtoint ptr addrspace(1) %in to i32
; X32-NEXT: --> (ptrtoint ptr addrspace(1) %in to i32) U: full-set S: full-set
; X32-NEXT: %p2 = ptrtoint ptr addrspace(1) %in to i16
; X32-NEXT: --> (trunc i32 (ptrtoint ptr addrspace(1) %in to i32) to i16) U: full-set S: full-set
; X32-NEXT: %p3 = ptrtoint ptr addrspace(1) %in to i128
; X32-NEXT: --> (zext i32 (ptrtoint ptr addrspace(1) %in to i32) to i128) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_as1
;
%p0 = ptrtoint ptr addrspace(1) %in to i64
%p1 = ptrtoint ptr addrspace(1) %in to i32
%p2 = ptrtoint ptr addrspace(1) %in to i16
%p3 = ptrtoint ptr addrspace(1) %in to i128
store i64 %p0, ptr %out0
store i32 %p1, ptr %out1
store i16 %p2, ptr %out2
store i128 %p3, ptr %out3
ret void
}
; Likewise, ptrtoint of a bitcast is fine, we simply skip it.
define void @ptrtoint_of_bitcast(ptr %in, ptr %out0) {
; X64-LABEL: 'ptrtoint_of_bitcast'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_bitcast
; X64-NEXT: %in_casted = bitcast ptr %in to ptr
; X64-NEXT: --> %in U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint ptr %in_casted to i64
; X64-NEXT: --> (ptrtoint ptr %in to i64) U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_bitcast
;
; X32-LABEL: 'ptrtoint_of_bitcast'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_bitcast
; X32-NEXT: %in_casted = bitcast ptr %in to ptr
; X32-NEXT: --> %in U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint ptr %in_casted to i64
; X32-NEXT: --> (zext i32 (ptrtoint ptr %in to i32) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_bitcast
;
%in_casted = bitcast ptr %in to ptr
%p0 = ptrtoint ptr %in_casted to i64
store i64 %p0, ptr %out0
ret void
}
; addrspacecast is fine too, but We don't model addrspacecast, so we stop there.
define void @ptrtoint_of_addrspacecast(ptr %in, ptr %out0) {
; X64-LABEL: 'ptrtoint_of_addrspacecast'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_addrspacecast
; X64-NEXT: %in_casted = addrspacecast ptr %in to ptr addrspace(1)
; X64-NEXT: --> %in_casted U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint ptr addrspace(1) %in_casted to i64
; X64-NEXT: --> (ptrtoint ptr addrspace(1) %in_casted to i64) U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_addrspacecast
;
; X32-LABEL: 'ptrtoint_of_addrspacecast'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_addrspacecast
; X32-NEXT: %in_casted = addrspacecast ptr %in to ptr addrspace(1)
; X32-NEXT: --> %in_casted U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint ptr addrspace(1) %in_casted to i64
; X32-NEXT: --> (zext i32 (ptrtoint ptr addrspace(1) %in_casted to i32) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_addrspacecast
;
%in_casted = addrspacecast ptr %in to ptr addrspace(1)
%p0 = ptrtoint ptr addrspace(1) %in_casted to i64
store i64 %p0, ptr %out0
ret void
}
; inttoptr is fine too, but we don't (and can't) model inttoptr, so we stop there.
define void @ptrtoint_of_inttoptr(i64 %in, ptr %out0) {
; X64-LABEL: 'ptrtoint_of_inttoptr'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_inttoptr
; X64-NEXT: %in_casted = inttoptr i64 %in to ptr
; X64-NEXT: --> %in_casted U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint ptr %in_casted to i64
; X64-NEXT: --> (ptrtoint ptr %in_casted to i64) U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_inttoptr
;
; X32-LABEL: 'ptrtoint_of_inttoptr'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_inttoptr
; X32-NEXT: %in_casted = inttoptr i64 %in to ptr
; X32-NEXT: --> %in_casted U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint ptr %in_casted to i64
; X32-NEXT: --> (zext i32 (ptrtoint ptr %in_casted to i32) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_inttoptr
;
%in_casted = inttoptr i64 %in to ptr
%p0 = ptrtoint ptr %in_casted to i64
store i64 %p0, ptr %out0
ret void
}
; A constant pointer is fine
define void @ptrtoint_of_nullptr(ptr %out0) {
; ALL-LABEL: 'ptrtoint_of_nullptr'
; ALL-NEXT: Classifying expressions for: @ptrtoint_of_nullptr
; ALL-NEXT: %p0 = ptrtoint ptr null to i64
; ALL-NEXT: --> 0 U: [0,1) S: [0,1)
; ALL-NEXT: Determining loop execution counts for: @ptrtoint_of_nullptr
;
%p0 = ptrtoint ptr null to i64
store i64 %p0, ptr %out0
ret void
}
; A constant inttoptr argument of an ptrtoint is still bad.
define void @ptrtoint_of_constantexpr_inttoptr(ptr %out0) {
; X64-LABEL: 'ptrtoint_of_constantexpr_inttoptr'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_constantexpr_inttoptr
; X64-NEXT: %p0 = ptrtoint ptr inttoptr (i64 42 to ptr) to i64
; X64-NEXT: --> (ptrtoint ptr inttoptr (i64 42 to ptr) to i64) U: [42,43) S: [42,43)
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_constantexpr_inttoptr
;
; X32-LABEL: 'ptrtoint_of_constantexpr_inttoptr'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_constantexpr_inttoptr
; X32-NEXT: %p0 = ptrtoint ptr inttoptr (i64 42 to ptr) to i64
; X32-NEXT: --> (zext i32 (ptrtoint ptr inttoptr (i64 42 to ptr) to i32) to i64) U: [42,43) S: [42,43)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_constantexpr_inttoptr
;
%p0 = ptrtoint ptr inttoptr (i64 42 to ptr) to i64
store i64 %p0, ptr %out0
ret void
}
; ptrtoint of GEP is fine.
define void @ptrtoint_of_gep(ptr %in, ptr %out0) {
; X64-LABEL: 'ptrtoint_of_gep'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_gep
; X64-NEXT: %in_adj = getelementptr inbounds i8, ptr %in, i64 42
; X64-NEXT: --> (42 + %in) U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint ptr %in_adj to i64
; X64-NEXT: --> (42 + (ptrtoint ptr %in to i64)) U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_gep
;
; X32-LABEL: 'ptrtoint_of_gep'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_gep
; X32-NEXT: %in_adj = getelementptr inbounds i8, ptr %in, i64 42
; X32-NEXT: --> (42 + %in) U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint ptr %in_adj to i64
; X32-NEXT: --> (zext i32 (42 + (ptrtoint ptr %in to i32)) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_gep
;
%in_adj = getelementptr inbounds i8, ptr %in, i64 42
%p0 = ptrtoint ptr %in_adj to i64
store i64 %p0, ptr %out0
ret void
}
; It seems, we can't get ptrtoint of mul/udiv, or at least it's hard to come up with a test case.
; ptrtoint of AddRec
define void @ptrtoint_of_addrec(ptr %in, i32 %count) {
; X64-LABEL: 'ptrtoint_of_addrec'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_addrec
; X64-NEXT: %i3 = zext i32 %count to i64
; X64-NEXT: --> (zext i32 %count to i64) U: [0,4294967296) S: [0,4294967296)
; X64-NEXT: %i6 = phi i64 [ 0, %entry ], [ %i9, %loop ]
; X64-NEXT: --> {0,+,1}<nuw><nsw><%loop> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: (-1 + (zext i32 %count to i64))<nsw> LoopDispositions: { %loop: Computable }
; X64-NEXT: %i7 = getelementptr inbounds i32, ptr %in, i64 %i6
; X64-NEXT: --> {%in,+,4}<%loop> U: full-set S: full-set Exits: (-4 + (4 * (zext i32 %count to i64))<nuw><nsw> + %in) LoopDispositions: { %loop: Computable }
; X64-NEXT: %i8 = ptrtoint ptr %i7 to i64
; X64-NEXT: --> {(ptrtoint ptr %in to i64),+,4}<%loop> U: full-set S: full-set Exits: (-4 + (4 * (zext i32 %count to i64))<nuw><nsw> + (ptrtoint ptr %in to i64)) LoopDispositions: { %loop: Computable }
; X64-NEXT: %i9 = add nuw nsw i64 %i6, 1
; X64-NEXT: --> {1,+,1}<nuw><%loop> U: [1,0) S: [1,0) Exits: (zext i32 %count to i64) LoopDispositions: { %loop: Computable }
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_addrec
; X64-NEXT: Loop %loop: backedge-taken count is (-1 + (zext i32 %count to i64))<nsw>
; X64-NEXT: Loop %loop: constant max backedge-taken count is i64 -1
; X64-NEXT: Loop %loop: symbolic max backedge-taken count is (-1 + (zext i32 %count to i64))<nsw>
; X64-NEXT: Loop %loop: Trip multiple is 1
;
; X32-LABEL: 'ptrtoint_of_addrec'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_addrec
; X32-NEXT: %i3 = zext i32 %count to i64
; X32-NEXT: --> (zext i32 %count to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: %i6 = phi i64 [ 0, %entry ], [ %i9, %loop ]
; X32-NEXT: --> {0,+,1}<nuw><nsw><%loop> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: (-1 + (zext i32 %count to i64))<nsw> LoopDispositions: { %loop: Computable }
; X32-NEXT: %i7 = getelementptr inbounds i32, ptr %in, i64 %i6
; X32-NEXT: --> {%in,+,4}<%loop> U: full-set S: full-set Exits: (-4 + (4 * %count) + %in) LoopDispositions: { %loop: Computable }
; X32-NEXT: %i8 = ptrtoint ptr %i7 to i64
; X32-NEXT: --> (zext i32 {(ptrtoint ptr %in to i32),+,4}<%loop> to i64) U: [0,4294967296) S: [0,4294967296) Exits: (zext i32 (-4 + (4 * %count) + (ptrtoint ptr %in to i32)) to i64) LoopDispositions: { %loop: Computable }
; X32-NEXT: %i9 = add nuw nsw i64 %i6, 1
; X32-NEXT: --> {1,+,1}<nuw><%loop> U: [1,0) S: [1,0) Exits: (zext i32 %count to i64) LoopDispositions: { %loop: Computable }
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_addrec
; X32-NEXT: Loop %loop: backedge-taken count is (-1 + (zext i32 %count to i64))<nsw>
; X32-NEXT: Loop %loop: constant max backedge-taken count is i64 -1
; X32-NEXT: Loop %loop: symbolic max backedge-taken count is (-1 + (zext i32 %count to i64))<nsw>
; X32-NEXT: Loop %loop: Trip multiple is 1
;
entry:
%i3 = zext i32 %count to i64
br label %loop
loop:
%i6 = phi i64 [ 0, %entry ], [ %i9, %loop ]
%i7 = getelementptr inbounds i32, ptr %in, i64 %i6
%i8 = ptrtoint ptr %i7 to i64
tail call void @use(i64 %i8)
%i9 = add nuw nsw i64 %i6, 1
%i10 = icmp eq i64 %i9, %i3
br i1 %i10, label %end, label %loop
end:
ret void
}
declare void @use(i64)
; ptrtoint of UMax
define void @ptrtoint_of_umax(ptr %in0, ptr %in1, ptr %out0) {
; X64-LABEL: 'ptrtoint_of_umax'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_umax
; X64-NEXT: %s = select i1 %c, ptr %in0, ptr %in1
; X64-NEXT: --> (%in0 umax %in1) U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint ptr %s to i64
; X64-NEXT: --> ((ptrtoint ptr %in0 to i64) umax (ptrtoint ptr %in1 to i64)) U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_umax
;
; X32-LABEL: 'ptrtoint_of_umax'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_umax
; X32-NEXT: %s = select i1 %c, ptr %in0, ptr %in1
; X32-NEXT: --> (%in0 umax %in1) U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint ptr %s to i64
; X32-NEXT: --> ((zext i32 (ptrtoint ptr %in0 to i32) to i64) umax (zext i32 (ptrtoint ptr %in1 to i32) to i64)) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_umax
;
%c = icmp uge ptr %in0, %in1
%s = select i1 %c, ptr %in0, ptr %in1
%p0 = ptrtoint ptr %s to i64
store i64 %p0, ptr %out0
ret void
}
; ptrtoint of SMax
define void @ptrtoint_of_smax(ptr %in0, ptr %in1, ptr %out0) {
; X64-LABEL: 'ptrtoint_of_smax'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_smax
; X64-NEXT: %s = select i1 %c, ptr %in0, ptr %in1
; X64-NEXT: --> (%in0 smax %in1) U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint ptr %s to i64
; X64-NEXT: --> ((ptrtoint ptr %in0 to i64) smax (ptrtoint ptr %in1 to i64)) U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_smax
;
; X32-LABEL: 'ptrtoint_of_smax'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_smax
; X32-NEXT: %s = select i1 %c, ptr %in0, ptr %in1
; X32-NEXT: --> (%in0 smax %in1) U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint ptr %s to i64
; X32-NEXT: --> (zext i32 ((ptrtoint ptr %in0 to i32) smax (ptrtoint ptr %in1 to i32)) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_smax
;
%c = icmp sge ptr %in0, %in1
%s = select i1 %c, ptr %in0, ptr %in1
%p0 = ptrtoint ptr %s to i64
store i64 %p0, ptr %out0
ret void
}
; ptrtoint of UMin
define void @ptrtoint_of_umin(ptr %in0, ptr %in1, ptr %out0) {
; X64-LABEL: 'ptrtoint_of_umin'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_umin
; X64-NEXT: %s = select i1 %c, ptr %in0, ptr %in1
; X64-NEXT: --> (%in0 umin %in1) U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint ptr %s to i64
; X64-NEXT: --> ((ptrtoint ptr %in0 to i64) umin (ptrtoint ptr %in1 to i64)) U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_umin
;
; X32-LABEL: 'ptrtoint_of_umin'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_umin
; X32-NEXT: %s = select i1 %c, ptr %in0, ptr %in1
; X32-NEXT: --> (%in0 umin %in1) U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint ptr %s to i64
; X32-NEXT: --> ((zext i32 (ptrtoint ptr %in0 to i32) to i64) umin (zext i32 (ptrtoint ptr %in1 to i32) to i64)) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_umin
;
%c = icmp ule ptr %in0, %in1
%s = select i1 %c, ptr %in0, ptr %in1
%p0 = ptrtoint ptr %s to i64
store i64 %p0, ptr %out0
ret void
}
; ptrtoint of SMin
define void @ptrtoint_of_smin(ptr %in0, ptr %in1, ptr %out0) {
; X64-LABEL: 'ptrtoint_of_smin'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_smin
; X64-NEXT: %s = select i1 %c, ptr %in0, ptr %in1
; X64-NEXT: --> (%in0 smin %in1) U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint ptr %s to i64
; X64-NEXT: --> ((ptrtoint ptr %in0 to i64) smin (ptrtoint ptr %in1 to i64)) U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_smin
;
; X32-LABEL: 'ptrtoint_of_smin'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_smin
; X32-NEXT: %s = select i1 %c, ptr %in0, ptr %in1
; X32-NEXT: --> (%in0 smin %in1) U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint ptr %s to i64
; X32-NEXT: --> (zext i32 ((ptrtoint ptr %in0 to i32) smin (ptrtoint ptr %in1 to i32)) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_smin
;
%c = icmp sle ptr %in0, %in1
%s = select i1 %c, ptr %in0, ptr %in1
%p0 = ptrtoint ptr %s to i64
store i64 %p0, ptr %out0
ret void
}
; void pr46786_c26_char(char* start, char *end, char *other) {
; for (char* cur = start; cur != end; ++cur)
; other[cur - start] += *cur;
; }
define void @pr46786_c26_char(ptr %arg, ptr %arg1, ptr %arg2) {
; X64-LABEL: 'pr46786_c26_char'
; X64-NEXT: Classifying expressions for: @pr46786_c26_char
; X64-NEXT: %i4 = ptrtoint ptr %arg to i64
; X64-NEXT: --> (ptrtoint ptr %arg to i64) U: full-set S: full-set
; X64-NEXT: %i7 = phi ptr [ %arg, %bb3 ], [ %i14, %bb6 ]
; X64-NEXT: --> {%arg,+,1}<nuw><%bb6> U: full-set S: full-set Exits: (-1 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64) + %arg) LoopDispositions: { %bb6: Computable }
; X64-NEXT: %i8 = load i8, ptr %i7, align 1
; X64-NEXT: --> %i8 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X64-NEXT: %i9 = ptrtoint ptr %i7 to i64
; X64-NEXT: --> {(ptrtoint ptr %arg to i64),+,1}<nuw><%bb6> U: full-set S: full-set Exits: (-1 + (ptrtoint ptr %arg1 to i64)) LoopDispositions: { %bb6: Computable }
; X64-NEXT: %i10 = sub i64 %i9, %i4
; X64-NEXT: --> {0,+,1}<nuw><%bb6> U: full-set S: full-set Exits: (-1 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64)) LoopDispositions: { %bb6: Computable }
; X64-NEXT: %i11 = getelementptr inbounds i8, ptr %arg2, i64 %i10
; X64-NEXT: --> {%arg2,+,1}<nw><%bb6> U: full-set S: full-set Exits: (-1 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64) + %arg2) LoopDispositions: { %bb6: Computable }
; X64-NEXT: %i12 = load i8, ptr %i11, align 1
; X64-NEXT: --> %i12 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X64-NEXT: %i13 = add i8 %i12, %i8
; X64-NEXT: --> (%i12 + %i8) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X64-NEXT: %i14 = getelementptr inbounds i8, ptr %i7, i64 1
; X64-NEXT: --> {(1 + %arg),+,1}<nuw><%bb6> U: full-set S: full-set Exits: ((-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64) + %arg) LoopDispositions: { %bb6: Computable }
; X64-NEXT: Determining loop execution counts for: @pr46786_c26_char
; X64-NEXT: Loop %bb6: backedge-taken count is (-1 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64))
; X64-NEXT: Loop %bb6: constant max backedge-taken count is i64 -1
; X64-NEXT: Loop %bb6: symbolic max backedge-taken count is (-1 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64))
; X64-NEXT: Loop %bb6: Trip multiple is 1
;
; X32-LABEL: 'pr46786_c26_char'
; X32-NEXT: Classifying expressions for: @pr46786_c26_char
; X32-NEXT: %i4 = ptrtoint ptr %arg to i64
; X32-NEXT: --> (zext i32 (ptrtoint ptr %arg to i32) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: %i7 = phi ptr [ %arg, %bb3 ], [ %i14, %bb6 ]
; X32-NEXT: --> {%arg,+,1}<nuw><%bb6> U: full-set S: full-set Exits: (-1 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32) + %arg) LoopDispositions: { %bb6: Computable }
; X32-NEXT: %i8 = load i8, ptr %i7, align 1
; X32-NEXT: --> %i8 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X32-NEXT: %i9 = ptrtoint ptr %i7 to i64
; X32-NEXT: --> {(zext i32 (ptrtoint ptr %arg to i32) to i64),+,1}<nuw><%bb6> U: [0,8589934591) S: [0,8589934591) Exits: ((zext i32 (-1 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32)) to i64) + (zext i32 (ptrtoint ptr %arg to i32) to i64)) LoopDispositions: { %bb6: Computable }
; X32-NEXT: %i10 = sub i64 %i9, %i4
; X32-NEXT: --> {0,+,1}<nuw><%bb6> U: [0,4294967296) S: [0,4294967296) Exits: (zext i32 (-1 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32)) to i64) LoopDispositions: { %bb6: Computable }
; X32-NEXT: %i11 = getelementptr inbounds i8, ptr %arg2, i64 %i10
; X32-NEXT: --> {%arg2,+,1}<%bb6> U: full-set S: full-set Exits: (-1 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32) + %arg2) LoopDispositions: { %bb6: Computable }
; X32-NEXT: %i12 = load i8, ptr %i11, align 1
; X32-NEXT: --> %i12 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X32-NEXT: %i13 = add i8 %i12, %i8
; X32-NEXT: --> (%i12 + %i8) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X32-NEXT: %i14 = getelementptr inbounds i8, ptr %i7, i64 1
; X32-NEXT: --> {(1 + %arg),+,1}<nuw><%bb6> U: full-set S: full-set Exits: ((-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32) + %arg) LoopDispositions: { %bb6: Computable }
; X32-NEXT: Determining loop execution counts for: @pr46786_c26_char
; X32-NEXT: Loop %bb6: backedge-taken count is (-1 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32))
; X32-NEXT: Loop %bb6: constant max backedge-taken count is i32 -1
; X32-NEXT: Loop %bb6: symbolic max backedge-taken count is (-1 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32))
; X32-NEXT: Loop %bb6: Trip multiple is 1
;
%i = icmp eq ptr %arg, %arg1
br i1 %i, label %bb5, label %bb3
bb3:
%i4 = ptrtoint ptr %arg to i64
br label %bb6
bb6:
%i7 = phi ptr [ %arg, %bb3 ], [ %i14, %bb6 ]
%i8 = load i8, ptr %i7
%i9 = ptrtoint ptr %i7 to i64
%i10 = sub i64 %i9, %i4
%i11 = getelementptr inbounds i8, ptr %arg2, i64 %i10
%i12 = load i8, ptr %i11
%i13 = add i8 %i12, %i8
store i8 %i13, ptr %i11
%i14 = getelementptr inbounds i8, ptr %i7, i64 1
%i15 = icmp eq ptr %i14, %arg1
br i1 %i15, label %bb5, label %bb6
bb5:
ret void
}
; void pr46786_c26_int(int* start, int *end, int *other) {
; for (int* cur = start; cur != end; ++cur)
; other[cur - start] += *cur;
; }
;
; FIXME: 4 * (%i10 EXACT/s 4) is just %i10
define void @pr46786_c26_int(ptr %arg, ptr %arg1, ptr %arg2) {
; X64-LABEL: 'pr46786_c26_int'
; X64-NEXT: Classifying expressions for: @pr46786_c26_int
; X64-NEXT: %i4 = ptrtoint ptr %arg to i64
; X64-NEXT: --> (ptrtoint ptr %arg to i64) U: full-set S: full-set
; X64-NEXT: %i7 = phi ptr [ %arg, %bb3 ], [ %i15, %bb6 ]
; X64-NEXT: --> {%arg,+,4}<nuw><%bb6> U: full-set S: full-set Exits: ((4 * ((-4 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64)) /u 4))<nuw> + %arg) LoopDispositions: { %bb6: Computable }
; X64-NEXT: %i8 = load i32, ptr %i7, align 4
; X64-NEXT: --> %i8 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X64-NEXT: %i9 = ptrtoint ptr %i7 to i64
; X64-NEXT: --> {(ptrtoint ptr %arg to i64),+,4}<nuw><%bb6> U: full-set S: full-set Exits: ((4 * ((-4 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64)) /u 4))<nuw> + (ptrtoint ptr %arg to i64)) LoopDispositions: { %bb6: Computable }
; X64-NEXT: %i10 = sub i64 %i9, %i4
; X64-NEXT: --> {0,+,4}<nuw><%bb6> U: [0,-3) S: [-9223372036854775808,9223372036854775805) Exits: (4 * ((-4 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64)) /u 4))<nuw> LoopDispositions: { %bb6: Computable }
; X64-NEXT: %i11 = ashr exact i64 %i10, 2
; X64-NEXT: --> %i11 U: [-2305843009213693952,2305843009213693952) S: [-2305843009213693952,2305843009213693952) Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X64-NEXT: %i12 = getelementptr inbounds i32, ptr %arg2, i64 %i11
; X64-NEXT: --> ((4 * %i11)<nsw> + %arg2) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X64-NEXT: %i13 = load i32, ptr %i12, align 4
; X64-NEXT: --> %i13 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X64-NEXT: %i14 = add nsw i32 %i13, %i8
; X64-NEXT: --> (%i13 + %i8) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X64-NEXT: %i15 = getelementptr inbounds i32, ptr %i7, i64 1
; X64-NEXT: --> {(4 + %arg),+,4}<nuw><%bb6> U: full-set S: full-set Exits: (4 + (4 * ((-4 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64)) /u 4))<nuw> + %arg) LoopDispositions: { %bb6: Computable }
; X64-NEXT: Determining loop execution counts for: @pr46786_c26_int
; X64-NEXT: Loop %bb6: backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64)) /u 4)
; X64-NEXT: Loop %bb6: constant max backedge-taken count is i64 4611686018427387903
; X64-NEXT: Loop %bb6: symbolic max backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %arg to i64)) + (ptrtoint ptr %arg1 to i64)) /u 4)
; X64-NEXT: Loop %bb6: Trip multiple is 1
;
; X32-LABEL: 'pr46786_c26_int'
; X32-NEXT: Classifying expressions for: @pr46786_c26_int
; X32-NEXT: %i4 = ptrtoint ptr %arg to i64
; X32-NEXT: --> (zext i32 (ptrtoint ptr %arg to i32) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: %i7 = phi ptr [ %arg, %bb3 ], [ %i15, %bb6 ]
; X32-NEXT: --> {%arg,+,4}<nuw><%bb6> U: full-set S: full-set Exits: ((4 * ((-4 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32)) /u 4))<nuw> + %arg) LoopDispositions: { %bb6: Computable }
; X32-NEXT: %i8 = load i32, ptr %i7, align 4
; X32-NEXT: --> %i8 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X32-NEXT: %i9 = ptrtoint ptr %i7 to i64
; X32-NEXT: --> {(zext i32 (ptrtoint ptr %arg to i32) to i64),+,4}<nuw><%bb6> U: [0,8589934588) S: [0,8589934588) Exits: ((zext i32 (ptrtoint ptr %arg to i32) to i64) + (4 * ((zext i32 (-4 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32)) to i64) /u 4))<nuw><nsw>) LoopDispositions: { %bb6: Computable }
; X32-NEXT: %i10 = sub i64 %i9, %i4
; X32-NEXT: --> {0,+,4}<nuw><%bb6> U: [0,4294967293) S: [0,4294967293) Exits: (4 * ((zext i32 (-4 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32)) to i64) /u 4))<nuw><nsw> LoopDispositions: { %bb6: Computable }
; X32-NEXT: %i11 = ashr exact i64 %i10, 2
; X32-NEXT: --> %i11 U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X32-NEXT: %i12 = getelementptr inbounds i32, ptr %arg2, i64 %i11
; X32-NEXT: --> ((4 * (trunc i64 %i11 to i32))<nsw> + %arg2) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X32-NEXT: %i13 = load i32, ptr %i12, align 4
; X32-NEXT: --> %i13 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X32-NEXT: %i14 = add nsw i32 %i13, %i8
; X32-NEXT: --> (%i13 + %i8) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb6: Variant }
; X32-NEXT: %i15 = getelementptr inbounds i32, ptr %i7, i64 1
; X32-NEXT: --> {(4 + %arg),+,4}<nuw><%bb6> U: full-set S: full-set Exits: (4 + (4 * ((-4 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32)) /u 4))<nuw> + %arg) LoopDispositions: { %bb6: Computable }
; X32-NEXT: Determining loop execution counts for: @pr46786_c26_int
; X32-NEXT: Loop %bb6: backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32)) /u 4)
; X32-NEXT: Loop %bb6: constant max backedge-taken count is i32 1073741823
; X32-NEXT: Loop %bb6: symbolic max backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %arg to i32)) + (ptrtoint ptr %arg1 to i32)) /u 4)
; X32-NEXT: Loop %bb6: Trip multiple is 1
;
%i = icmp eq ptr %arg, %arg1
br i1 %i, label %bb5, label %bb3
bb3:
%i4 = ptrtoint ptr %arg to i64
br label %bb6
bb6:
%i7 = phi ptr [ %arg, %bb3 ], [ %i15, %bb6 ]
%i8 = load i32, ptr %i7
%i9 = ptrtoint ptr %i7 to i64
%i10 = sub i64 %i9, %i4
%i11 = ashr exact i64 %i10, 2
%i12 = getelementptr inbounds i32, ptr %arg2, i64 %i11
%i13 = load i32, ptr %i12
%i14 = add nsw i32 %i13, %i8
store i32 %i14, ptr %i12
%i15 = getelementptr inbounds i32, ptr %i7, i64 1
%i16 = icmp eq ptr %i15, %arg1
br i1 %i16, label %bb5, label %bb6
bb5:
ret void
}
; During SCEV rewrites, we could end up calling `ScalarEvolution::getPtrToIntExpr()`
; on an integer. Make sure we handle that case gracefully.
define void @ptrtoint_of_integer(ptr %arg, i64 %arg1, i1 %arg2) local_unnamed_addr {
; X64-LABEL: 'ptrtoint_of_integer'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_integer
; X64-NEXT: %i4 = ptrtoint ptr %arg to i64
; X64-NEXT: --> (ptrtoint ptr %arg to i64) U: full-set S: full-set
; X64-NEXT: %i6 = sub i64 %i4, %arg1
; X64-NEXT: --> ((-1 * %arg1) + (ptrtoint ptr %arg to i64)) U: full-set S: full-set
; X64-NEXT: %i9 = phi i64 [ 1, %bb7 ], [ %i11, %bb10 ]
; X64-NEXT: --> {1,+,1}<nuw><%bb8> U: [1,0) S: [1,0) Exits: <<Unknown>> LoopDispositions: { %bb8: Computable }
; X64-NEXT: %i11 = add nuw i64 %i9, 1
; X64-NEXT: --> {2,+,1}<nw><%bb8> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb8: Computable }
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_integer
; X64-NEXT: Loop %bb8: <multiple exits> Unpredictable backedge-taken count.
; X64-NEXT: exit count for bb8: ***COULDNOTCOMPUTE***
; X64-NEXT: exit count for bb10: (-2 + (-1 * %arg1) + (ptrtoint ptr %arg to i64))
; X64-NEXT: Loop %bb8: constant max backedge-taken count is i64 -1
; X64-NEXT: Loop %bb8: symbolic max backedge-taken count is (-2 + (-1 * %arg1) + (ptrtoint ptr %arg to i64))
; X64-NEXT: symbolic max exit count for bb8: ***COULDNOTCOMPUTE***
; X64-NEXT: symbolic max exit count for bb10: (-2 + (-1 * %arg1) + (ptrtoint ptr %arg to i64))
;
; X32-LABEL: 'ptrtoint_of_integer'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_integer
; X32-NEXT: %i4 = ptrtoint ptr %arg to i64
; X32-NEXT: --> (zext i32 (ptrtoint ptr %arg to i32) to i64) U: [0,4294967296) S: [0,4294967296)
; X32-NEXT: %i6 = sub i64 %i4, %arg1
; X32-NEXT: --> ((zext i32 (ptrtoint ptr %arg to i32) to i64) + (-1 * %arg1)) U: full-set S: full-set
; X32-NEXT: %i9 = phi i64 [ 1, %bb7 ], [ %i11, %bb10 ]
; X32-NEXT: --> {1,+,1}<nuw><%bb8> U: [1,0) S: [1,0) Exits: <<Unknown>> LoopDispositions: { %bb8: Computable }
; X32-NEXT: %i11 = add nuw i64 %i9, 1
; X32-NEXT: --> {2,+,1}<nw><%bb8> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb8: Computable }
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_integer
; X32-NEXT: Loop %bb8: <multiple exits> Unpredictable backedge-taken count.
; X32-NEXT: exit count for bb8: ***COULDNOTCOMPUTE***
; X32-NEXT: exit count for bb10: (-2 + (zext i32 (ptrtoint ptr %arg to i32) to i64) + (-1 * %arg1))
; X32-NEXT: Loop %bb8: constant max backedge-taken count is i64 -1
; X32-NEXT: Loop %bb8: symbolic max backedge-taken count is (-2 + (zext i32 (ptrtoint ptr %arg to i32) to i64) + (-1 * %arg1))
; X32-NEXT: symbolic max exit count for bb8: ***COULDNOTCOMPUTE***
; X32-NEXT: symbolic max exit count for bb10: (-2 + (zext i32 (ptrtoint ptr %arg to i32) to i64) + (-1 * %arg1))
;
bb:
%i = icmp eq ptr %arg, null
br i1 %i, label %bb14, label %bb3
bb3: ; preds = %bb
%i4 = ptrtoint ptr %arg to i64
br label %bb5
bb5: ; preds = %bb3
%i6 = sub i64 %i4, %arg1
br label %bb7
bb7: ; preds = %bb5
br label %bb8
bb8: ; preds = %bb10, %bb7
%i9 = phi i64 [ 1, %bb7 ], [ %i11, %bb10 ]
br i1 %arg2, label %bb10, label %bb13
bb10: ; preds = %bb8
%i11 = add nuw i64 %i9, 1
%i12 = icmp eq i64 %i11, %i6
br i1 %i12, label %bb13, label %bb8
bb13: ; preds = %bb10, %bb8
ret void
bb14: ; preds = %bb
ret void
}