Nikita Popov a105877646
[InstCombine] Remove some of the complexity-based canonicalization (#91185)
The idea behind this canonicalization is that it allows us to handle less
patterns, because we know that some will be canonicalized away. This is
indeed very useful to e.g. know that constants are always on the right.

However, this is only useful if the canonicalization is actually
reliable. This is the case for constants, but not for arguments: Moving
these to the right makes it look like the "more complex" expression is
guaranteed to be on the left, but this is not actually the case in
practice. It fails as soon as you replace the argument with another
instruction.

The end result is that it looks like things correctly work in tests,
while they actually don't. We use the "thwart complexity-based
canonicalization" trick to handle this in tests, but it's often a
challenge for new contributors to get this right, and based on the
regressions this PR originally exposed, we clearly don't get this right
in many cases.

For this reason, I think that it's better to remove this complexity
canonicalization. It will make it much easier to write tests for
commuted cases and make sure that they are handled.
2024-08-21 12:02:54 +02:00

808 lines
27 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -passes=instcombine < %s | FileCheck %s
; If we have a umin feeding an unsigned or equality icmp that shares an
; operand with the umin, the compare should always be folded.
; Test all 4 foldable predicates (eq,ne,uge,ult) * 4 commutation
; possibilities for each predicate. Note that folds to true/false
; (predicate is ule/ugt) or folds to an existing instruction should be
; handled by InstSimplify.
; umin(X, Y) == X --> X <= Y
define i1 @eq_umin1(i32 %x, i32 %y) {
; CHECK-LABEL: @eq_umin1(
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%cmp1 = icmp ult i32 %x, %y
%sel = select i1 %cmp1, i32 %x, i32 %y
%cmp2 = icmp eq i32 %sel, %x
ret i1 %cmp2
}
; Commute min operands.
define i1 @eq_umin2(i32 %x, i32 %y) {
; CHECK-LABEL: @eq_umin2(
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%cmp1 = icmp ult i32 %y, %x
%sel = select i1 %cmp1, i32 %y, i32 %x
%cmp2 = icmp eq i32 %sel, %x
ret i1 %cmp2
}
; Disguise the icmp predicate by commuting the min op to the RHS.
define i1 @eq_umin3(i32 %a, i32 %y) {
; CHECK-LABEL: @eq_umin3(
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
%cmp1 = icmp ult i32 %x, %y
%sel = select i1 %cmp1, i32 %x, i32 %y
%cmp2 = icmp eq i32 %x, %sel
ret i1 %cmp2
}
; Commute min operands.
define i1 @eq_umin4(i32 %a, i32 %y) {
; CHECK-LABEL: @eq_umin4(
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
%cmp1 = icmp ult i32 %y, %x
%sel = select i1 %cmp1, i32 %y, i32 %x
%cmp2 = icmp eq i32 %x, %sel
ret i1 %cmp2
}
; umin(X, Y) >= X --> Y >= X
define i1 @uge_umin1(i32 %x, i32 %y) {
; CHECK-LABEL: @uge_umin1(
; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[Y:%.*]], [[X:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%cmp1 = icmp ult i32 %x, %y
%sel = select i1 %cmp1, i32 %x, i32 %y
%cmp2 = icmp uge i32 %sel, %x
ret i1 %cmp2
}
; Commute min operands.
define i1 @uge_umin2(i32 %x, i32 %y) {
; CHECK-LABEL: @uge_umin2(
; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[Y:%.*]], [[X:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%cmp1 = icmp ult i32 %y, %x
%sel = select i1 %cmp1, i32 %y, i32 %x
%cmp2 = icmp uge i32 %sel, %x
ret i1 %cmp2
}
; Disguise the icmp predicate by commuting the min op to the RHS.
define i1 @uge_umin3(i32 %a, i32 %y) {
; CHECK-LABEL: @uge_umin3(
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[Y:%.*]], [[X]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
%cmp1 = icmp ult i32 %x, %y
%sel = select i1 %cmp1, i32 %x, i32 %y
%cmp2 = icmp ule i32 %x, %sel
ret i1 %cmp2
}
; Commute min operands.
define i1 @uge_umin4(i32 %a, i32 %y) {
; CHECK-LABEL: @uge_umin4(
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[Y:%.*]], [[X]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
%cmp1 = icmp ult i32 %y, %x
%sel = select i1 %cmp1, i32 %y, i32 %x
%cmp2 = icmp ule i32 %x, %sel
ret i1 %cmp2
}
; umin(X, Y) != X --> X > Y
define i1 @ne_umin1(i32 %x, i32 %y) {
; CHECK-LABEL: @ne_umin1(
; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%cmp1 = icmp ult i32 %x, %y
%sel = select i1 %cmp1, i32 %x, i32 %y
%cmp2 = icmp ne i32 %sel, %x
ret i1 %cmp2
}
; Commute min operands.
define i1 @ne_umin2(i32 %x, i32 %y) {
; CHECK-LABEL: @ne_umin2(
; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%cmp1 = icmp ult i32 %y, %x
%sel = select i1 %cmp1, i32 %y, i32 %x
%cmp2 = icmp ne i32 %sel, %x
ret i1 %cmp2
}
; Disguise the icmp predicate by commuting the min op to the RHS.
define i1 @ne_umin3(i32 %a, i32 %y) {
; CHECK-LABEL: @ne_umin3(
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 [[X]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
%cmp1 = icmp ult i32 %x, %y
%sel = select i1 %cmp1, i32 %x, i32 %y
%cmp2 = icmp ne i32 %x, %sel
ret i1 %cmp2
}
; Commute min operands.
define i1 @ne_umin4(i32 %a, i32 %y) {
; CHECK-LABEL: @ne_umin4(
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 [[X]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
%cmp1 = icmp ult i32 %y, %x
%sel = select i1 %cmp1, i32 %y, i32 %x
%cmp2 = icmp ne i32 %x, %sel
ret i1 %cmp2
}
; umin(X, Y) < X --> Y < X
define i1 @ult_umin1(i32 %x, i32 %y) {
; CHECK-LABEL: @ult_umin1(
; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i32 [[Y:%.*]], [[X:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%cmp1 = icmp ult i32 %x, %y
%sel = select i1 %cmp1, i32 %x, i32 %y
%cmp2 = icmp ult i32 %sel, %x
ret i1 %cmp2
}
; Commute min operands.
define i1 @ult_umin2(i32 %x, i32 %y) {
; CHECK-LABEL: @ult_umin2(
; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i32 [[Y:%.*]], [[X:%.*]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%cmp1 = icmp ult i32 %y, %x
%sel = select i1 %cmp1, i32 %y, i32 %x
%cmp2 = icmp ult i32 %sel, %x
ret i1 %cmp2
}
; Disguise the icmp predicate by commuting the min op to the RHS.
define i1 @ult_umin3(i32 %a, i32 %y) {
; CHECK-LABEL: @ult_umin3(
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i32 [[Y:%.*]], [[X]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
%cmp1 = icmp ult i32 %x, %y
%sel = select i1 %cmp1, i32 %x, i32 %y
%cmp2 = icmp ugt i32 %x, %sel
ret i1 %cmp2
}
; Commute min operands.
define i1 @ult_umin4(i32 %a, i32 %y) {
; CHECK-LABEL: @ult_umin4(
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i32 [[Y:%.*]], [[X]]
; CHECK-NEXT: ret i1 [[CMP2]]
;
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
%cmp1 = icmp ult i32 %y, %x
%sel = select i1 %cmp1, i32 %y, i32 %x
%cmp2 = icmp ugt i32 %x, %sel
ret i1 %cmp2
}
declare void @use(i1 %c)
define void @eq_umin_contextual(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @eq_umin_contextual(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[IF:%.*]], label [[END:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[X]], i32 [[Y:%.*]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: [[CMP5:%.*]] = icmp ult i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP5]])
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: [[CMP8:%.*]] = icmp uge i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP8]])
; CHECK-NEXT: [[CMP9:%.*]] = icmp ule i32 [[X]], [[Y]]
; CHECK-NEXT: call void @use(i1 [[CMP9]])
; CHECK-NEXT: [[CMP10:%.*]] = icmp ugt i32 [[X]], [[Y]]
; CHECK-NEXT: call void @use(i1 [[CMP10]])
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp eq i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %x, i32 %y)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
define void @eq_umin_contextual_commuted(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @eq_umin_contextual_commuted(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[IF:%.*]], label [[END:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[Y:%.*]], i32 [[X]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: [[CMP5:%.*]] = icmp ult i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP5]])
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: [[CMP8:%.*]] = icmp uge i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP8]])
; CHECK-NEXT: [[CMP9:%.*]] = icmp ule i32 [[X]], [[Y]]
; CHECK-NEXT: call void @use(i1 [[CMP9]])
; CHECK-NEXT: [[CMP10:%.*]] = icmp ugt i32 [[X]], [[Y]]
; CHECK-NEXT: call void @use(i1 [[CMP10]])
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp eq i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %y, i32 %x)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
define void @ult_umin_contextual(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @ult_umin_contextual(
; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[IF:%.*]], label [[END:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[X]], i32 [[Y:%.*]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp ult i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %x, i32 %y)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
define void @ult_umin_contextual_commuted(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @ult_umin_contextual_commuted(
; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[IF:%.*]], label [[END:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[Y:%.*]], i32 [[X]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp ult i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %y, i32 %x)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
define void @ule_umin_contextual(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @ule_umin_contextual(
; CHECK-NEXT: [[CMP_NOT:%.*]] = icmp ugt i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP_NOT]], label [[END:%.*]], label [[IF:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[X]], i32 [[Y:%.*]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: [[CMP5:%.*]] = icmp ult i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP5]])
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: [[CMP8:%.*]] = icmp uge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP8]])
; CHECK-NEXT: [[CMP9:%.*]] = icmp eq i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP9]])
; CHECK-NEXT: [[CMP10:%.*]] = icmp ne i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP10]])
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp ule i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %x, i32 %y)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
define void @ule_umin_contextual_commuted(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @ule_umin_contextual_commuted(
; CHECK-NEXT: [[CMP_NOT:%.*]] = icmp ugt i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP_NOT]], label [[END:%.*]], label [[IF:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[Y:%.*]], i32 [[X]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: [[CMP5:%.*]] = icmp ult i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP5]])
; CHECK-NEXT: call void @use(i1 true)
; CHECK-NEXT: call void @use(i1 false)
; CHECK-NEXT: [[CMP8:%.*]] = icmp uge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP8]])
; CHECK-NEXT: [[CMP9:%.*]] = icmp eq i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP9]])
; CHECK-NEXT: [[CMP10:%.*]] = icmp ne i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP10]])
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp ule i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %y, i32 %x)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
define void @ugt_umin_contextual(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @ugt_umin_contextual(
; CHECK-NEXT: [[CMP:%.*]] = icmp ugt i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[IF:%.*]], label [[END:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[X]], i32 [[Y:%.*]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: [[CMP5:%.*]] = icmp ult i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP5]])
; CHECK-NEXT: [[CMP6:%.*]] = icmp ule i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP6]])
; CHECK-NEXT: [[CMP7:%.*]] = icmp ugt i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP7]])
; CHECK-NEXT: [[CMP8:%.*]] = icmp uge i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP8]])
; CHECK-NEXT: [[CMP9:%.*]] = icmp eq i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP9]])
; CHECK-NEXT: [[CMP10:%.*]] = icmp ne i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP10]])
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp ugt i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %x, i32 %y)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
define void @ugt_umin_contextual_commuted(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @ugt_umin_contextual_commuted(
; CHECK-NEXT: [[CMP:%.*]] = icmp ugt i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[IF:%.*]], label [[END:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[Y:%.*]], i32 [[X]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: [[CMP5:%.*]] = icmp ult i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP5]])
; CHECK-NEXT: [[CMP6:%.*]] = icmp ule i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP6]])
; CHECK-NEXT: [[CMP7:%.*]] = icmp ugt i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP7]])
; CHECK-NEXT: [[CMP8:%.*]] = icmp uge i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP8]])
; CHECK-NEXT: [[CMP9:%.*]] = icmp eq i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP9]])
; CHECK-NEXT: [[CMP10:%.*]] = icmp ne i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP10]])
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp ugt i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %y, i32 %x)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
define void @uge_umin_contextual(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @uge_umin_contextual(
; CHECK-NEXT: [[CMP_NOT:%.*]] = icmp ult i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP_NOT]], label [[END:%.*]], label [[IF:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[X]], i32 [[Y:%.*]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: [[CMP5:%.*]] = icmp ult i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP5]])
; CHECK-NEXT: [[CMP6:%.*]] = icmp ule i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP6]])
; CHECK-NEXT: [[CMP7:%.*]] = icmp ugt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP7]])
; CHECK-NEXT: [[CMP8:%.*]] = icmp uge i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP8]])
; CHECK-NEXT: [[CMP9:%.*]] = icmp eq i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP9]])
; CHECK-NEXT: [[CMP10:%.*]] = icmp ne i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP10]])
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp uge i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %x, i32 %y)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
define void @uge_umin_contextual_commuted(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @uge_umin_contextual_commuted(
; CHECK-NEXT: [[CMP_NOT:%.*]] = icmp ult i32 [[X:%.*]], [[Z:%.*]]
; CHECK-NEXT: br i1 [[CMP_NOT]], label [[END:%.*]], label [[IF:%.*]]
; CHECK: if:
; CHECK-NEXT: [[COND:%.*]] = call i32 @llvm.umin.i32(i32 [[Y:%.*]], i32 [[X]])
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP1]])
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP2]])
; CHECK-NEXT: [[CMP3:%.*]] = icmp sgt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP3]])
; CHECK-NEXT: [[CMP4:%.*]] = icmp sge i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP4]])
; CHECK-NEXT: [[CMP5:%.*]] = icmp ult i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP5]])
; CHECK-NEXT: [[CMP6:%.*]] = icmp ule i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP6]])
; CHECK-NEXT: [[CMP7:%.*]] = icmp ugt i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP7]])
; CHECK-NEXT: [[CMP8:%.*]] = icmp uge i32 [[Y]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP8]])
; CHECK-NEXT: [[CMP9:%.*]] = icmp eq i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP9]])
; CHECK-NEXT: [[CMP10:%.*]] = icmp ne i32 [[COND]], [[Z]]
; CHECK-NEXT: call void @use(i1 [[CMP10]])
; CHECK-NEXT: ret void
; CHECK: end:
; CHECK-NEXT: ret void
;
%cmp = icmp uge i32 %x, %z
br i1 %cmp, label %if, label %end
if:
%cond = call i32 @llvm.umin.i32(i32 %y, i32 %x)
%cmp1 = icmp slt i32 %cond, %z
call void @use(i1 %cmp1)
%cmp2 = icmp sle i32 %cond, %z
call void @use(i1 %cmp2)
%cmp3 = icmp sgt i32 %cond, %z
call void @use(i1 %cmp3)
%cmp4 = icmp sge i32 %cond, %z
call void @use(i1 %cmp4)
%cmp5 = icmp ult i32 %cond, %z
call void @use(i1 %cmp5)
%cmp6 = icmp ule i32 %cond, %z
call void @use(i1 %cmp6)
%cmp7 = icmp ugt i32 %cond, %z
call void @use(i1 %cmp7)
%cmp8 = icmp uge i32 %cond, %z
call void @use(i1 %cmp8)
%cmp9 = icmp eq i32 %cond, %z
call void @use(i1 %cmp9)
%cmp10 = icmp ne i32 %cond, %z
call void @use(i1 %cmp10)
ret void
end:
ret void
}
declare i32 @llvm.umin.i32(i32, i32)