Nikita Popov 4ab87ffd1e
[SCCP] Enable PredicateInfo for non-interprocedural SCCP (#153003)
SCCP can use PredicateInfo to constrain ranges based on assume and
branch conditions. Currently, this is only enabled during IPSCCP.

This enables it for SCCP as well, which runs after functions have
already been simplified, while IPSCCP runs pre-inline. To a large
degree, CVP already handles range-based optimizations, but SCCP is more
reliable for the cases it can handle. In particular, SCCP works reliably
inside loops, which is something that CVP struggles with due to LVI
cycles.

I have made various optimizations to make PredicateInfo more efficient,
but unfortunately this still has significant compile-time cost (around
0.1-0.2%).
2025-08-19 10:59:38 +02:00

281 lines
10 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -passes=sccp -S < %s | FileCheck %s
; PR6940
define double @test1() {
; CHECK-LABEL: @test1(
; CHECK-NEXT: [[T:%.*]] = sitofp i32 undef to double
; CHECK-NEXT: ret double [[T]]
;
%t = sitofp i32 undef to double
ret double %t
}
; rdar://7832370
; Check that lots of stuff doesn't get turned into undef.
define i32 @test2() nounwind readnone ssp {
; CHECK-LABEL: @test2(
; CHECK-NEXT: init:
; CHECK-NEXT: br label [[CONTROL_OUTER_OUTER:%.*]]
; CHECK: control.outer.loopexit.us-lcssa:
; CHECK-NEXT: br label [[CONTROL_OUTER_LOOPEXIT:%.*]]
; CHECK: control.outer.loopexit:
; CHECK-NEXT: br label [[CONTROL_OUTER_OUTER_BACKEDGE:%.*]]
; CHECK: control.outer.outer:
; CHECK-NEXT: [[SWITCHCOND_0_PH_PH:%.*]] = phi i32 [ 2, [[INIT:%.*]] ], [ 3, [[CONTROL_OUTER_OUTER_BACKEDGE]] ]
; CHECK-NEXT: [[I_0_PH_PH:%.*]] = phi i32 [ undef, [[INIT]] ], [ [[I_0_PH_PH_BE:%.*]], [[CONTROL_OUTER_OUTER_BACKEDGE]] ]
; CHECK-NEXT: [[TMP4:%.*]] = icmp eq i32 [[I_0_PH_PH]], 0
; CHECK-NEXT: br i1 [[TMP4]], label [[CONTROL_OUTER_OUTER_SPLIT_US:%.*]], label [[CONTROL_OUTER_OUTER_CONTROL_OUTER_OUTER_SPLIT_CRIT_EDGE:%.*]]
; CHECK: control.outer.outer.control.outer.outer.split_crit_edge:
; CHECK-NEXT: br label [[CONTROL_OUTER:%.*]]
; CHECK: control.outer.outer.split.us:
; CHECK-NEXT: br label [[CONTROL_OUTER_US:%.*]]
; CHECK: control.outer.us:
; CHECK-NEXT: [[A_0_PH_US:%.*]] = phi i32 [ 3, [[BB3_US:%.*]] ], [ 4, [[CONTROL_OUTER_OUTER_SPLIT_US]] ]
; CHECK-NEXT: [[SWITCHCOND_0_PH_US:%.*]] = phi i32 [ [[A_0_PH_US]], [[BB3_US]] ], [ [[SWITCHCOND_0_PH_PH]], [[CONTROL_OUTER_OUTER_SPLIT_US]] ]
; CHECK-NEXT: br label [[CONTROL_US:%.*]]
; CHECK: bb3.us:
; CHECK-NEXT: br label [[CONTROL_OUTER_US]]
; CHECK: bb0.us:
; CHECK-NEXT: br label [[CONTROL_US]]
; CHECK: control.us:
; CHECK-NEXT: [[SWITCHCOND_0_US:%.*]] = phi i32 [ [[A_0_PH_US]], [[BB0_US:%.*]] ], [ [[SWITCHCOND_0_PH_US]], [[CONTROL_OUTER_US]] ]
; CHECK-NEXT: switch i32 [[SWITCHCOND_0_US]], label [[CONTROL_OUTER_LOOPEXIT_US_LCSSA_US:%.*]] [
; CHECK-NEXT: i32 0, label [[BB0_US]]
; CHECK-NEXT: i32 1, label [[BB1_US_LCSSA_US:%.*]]
; CHECK-NEXT: i32 3, label [[BB3_US]]
; CHECK-NEXT: i32 4, label [[BB4_US_LCSSA_US:%.*]]
; CHECK-NEXT: ]
; CHECK: control.outer.loopexit.us-lcssa.us:
; CHECK-NEXT: br label [[CONTROL_OUTER_LOOPEXIT]]
; CHECK: bb1.us-lcssa.us:
; CHECK-NEXT: br label [[BB1:%.*]]
; CHECK: bb4.us-lcssa.us:
; CHECK-NEXT: br label [[BB4:%.*]]
; CHECK: control.outer:
; CHECK-NEXT: [[A_0_PH:%.*]] = phi i32 [ 1, [[BB3:%.*]] ], [ 4, [[CONTROL_OUTER_OUTER_CONTROL_OUTER_OUTER_SPLIT_CRIT_EDGE]] ]
; CHECK-NEXT: [[SWITCHCOND_0_PH:%.*]] = phi i32 [ 0, [[BB3]] ], [ [[SWITCHCOND_0_PH_PH]], [[CONTROL_OUTER_OUTER_CONTROL_OUTER_OUTER_SPLIT_CRIT_EDGE]] ]
; CHECK-NEXT: br label [[CONTROL:%.*]]
; CHECK: control:
; CHECK-NEXT: [[SWITCHCOND_0:%.*]] = phi i32 [ [[A_0_PH]], [[BB0:%.*]] ], [ [[SWITCHCOND_0_PH]], [[CONTROL_OUTER]] ]
; CHECK-NEXT: switch i32 [[SWITCHCOND_0]], label [[CONTROL_OUTER_LOOPEXIT_US_LCSSA:%.*]] [
; CHECK-NEXT: i32 0, label [[BB0]]
; CHECK-NEXT: i32 1, label [[BB1_US_LCSSA:%.*]]
; CHECK-NEXT: i32 3, label [[BB3]]
; CHECK-NEXT: i32 4, label [[BB4_US_LCSSA:%.*]]
; CHECK-NEXT: ]
; CHECK: bb4.us-lcssa:
; CHECK-NEXT: br label [[BB4]]
; CHECK: bb4:
; CHECK-NEXT: br label [[CONTROL_OUTER_OUTER_BACKEDGE]]
; CHECK: control.outer.outer.backedge:
; CHECK-NEXT: [[I_0_PH_PH_BE]] = phi i32 [ 1, [[BB4]] ], [ 0, [[CONTROL_OUTER_LOOPEXIT]] ]
; CHECK-NEXT: br label [[CONTROL_OUTER_OUTER]]
; CHECK: bb3:
; CHECK-NEXT: br label [[CONTROL_OUTER]]
; CHECK: bb0:
; CHECK-NEXT: br label [[CONTROL]]
; CHECK: bb1.us-lcssa:
; CHECK-NEXT: br label [[BB1]]
; CHECK: bb1:
; CHECK-NEXT: ret i32 0
;
init:
br label %control.outer.outer
control.outer.loopexit.us-lcssa: ; preds = %control
br label %control.outer.loopexit
control.outer.loopexit: ; preds = %control.outer.loopexit.us-lcssa.us, %control.outer.loopexit.us-lcssa
br label %control.outer.outer.backedge
control.outer.outer: ; preds = %control.outer.outer.backedge, %init
%switchCond.0.ph.ph = phi i32 [ 2, %init ], [ 3, %control.outer.outer.backedge ] ; <i32> [#uses=2]
%i.0.ph.ph = phi i32 [ undef, %init ], [ %i.0.ph.ph.be, %control.outer.outer.backedge ] ; <i32> [#uses=1]
%tmp4 = icmp eq i32 %i.0.ph.ph, 0 ; <i1> [#uses=1]
br i1 %tmp4, label %control.outer.outer.split.us, label %control.outer.outer.control.outer.outer.split_crit_edge
control.outer.outer.control.outer.outer.split_crit_edge: ; preds = %control.outer.outer
br label %control.outer
control.outer.outer.split.us: ; preds = %control.outer.outer
br label %control.outer.us
control.outer.us: ; preds = %bb3.us, %control.outer.outer.split.us
%A.0.ph.us = phi i32 [ %switchCond.0.us, %bb3.us ], [ 4, %control.outer.outer.split.us ] ; <i32> [#uses=2]
%switchCond.0.ph.us = phi i32 [ %A.0.ph.us, %bb3.us ], [ %switchCond.0.ph.ph, %control.outer.outer.split.us ] ; <i32> [#uses=1]
br label %control.us
bb3.us: ; preds = %control.us
br label %control.outer.us
bb0.us: ; preds = %control.us
br label %control.us
control.us: ; preds = %bb0.us, %control.outer.us
%switchCond.0.us = phi i32 [ %A.0.ph.us, %bb0.us ], [ %switchCond.0.ph.us, %control.outer.us ] ; <i32> [#uses=2]
switch i32 %switchCond.0.us, label %control.outer.loopexit.us-lcssa.us [
i32 0, label %bb0.us
i32 1, label %bb1.us-lcssa.us
i32 3, label %bb3.us
i32 4, label %bb4.us-lcssa.us
]
control.outer.loopexit.us-lcssa.us: ; preds = %control.us
br label %control.outer.loopexit
bb1.us-lcssa.us: ; preds = %control.us
br label %bb1
bb4.us-lcssa.us: ; preds = %control.us
br label %bb4
control.outer: ; preds = %bb3, %control.outer.outer.control.outer.outer.split_crit_edge
%A.0.ph = phi i32 [ %nextId17, %bb3 ], [ 4, %control.outer.outer.control.outer.outer.split_crit_edge ] ; <i32> [#uses=1]
%switchCond.0.ph = phi i32 [ 0, %bb3 ], [ %switchCond.0.ph.ph, %control.outer.outer.control.outer.outer.split_crit_edge ] ; <i32> [#uses=1]
br label %control
control: ; preds = %bb0, %control.outer
%switchCond.0 = phi i32 [ %A.0.ph, %bb0 ], [ %switchCond.0.ph, %control.outer ] ; <i32> [#uses=2]
switch i32 %switchCond.0, label %control.outer.loopexit.us-lcssa [
i32 0, label %bb0
i32 1, label %bb1.us-lcssa
i32 3, label %bb3
i32 4, label %bb4.us-lcssa
]
bb4.us-lcssa: ; preds = %control
br label %bb4
bb4: ; preds = %bb4.us-lcssa, %bb4.us-lcssa.us
br label %control.outer.outer.backedge
control.outer.outer.backedge: ; preds = %bb4, %control.outer.loopexit
%i.0.ph.ph.be = phi i32 [ 1, %bb4 ], [ 0, %control.outer.loopexit ] ; <i32> [#uses=1]
br label %control.outer.outer
bb3: ; preds = %control
%nextId17 = add i32 %switchCond.0, -2 ; <i32> [#uses=1]
br label %control.outer
bb0: ; preds = %control
br label %control
bb1.us-lcssa: ; preds = %control
br label %bb1
bb1: ; preds = %bb1.us-lcssa, %bb1.us-lcssa.us
ret i32 0
}
; Make sure SCCP honors the xor "idiom"
; rdar://9956541
define i32 @test3() {
; CHECK-LABEL: @test3(
; CHECK-NEXT: [[T:%.*]] = xor i32 undef, undef
; CHECK-NEXT: ret i32 [[T]]
;
%t = xor i32 undef, undef
ret i32 %t
}
; Be conservative with FP ops
define double @test4(double %x) {
; CHECK-LABEL: @test4(
; CHECK-NEXT: [[T:%.*]] = fadd double [[X:%.*]], undef
; CHECK-NEXT: ret double [[T]]
;
%t = fadd double %x, undef
ret double %t
}
; Make sure casts produce a possible value
define i32 @test5() {
; CHECK-LABEL: @test5(
; CHECK-NEXT: [[T:%.*]] = sext i8 undef to i32
; CHECK-NEXT: ret i32 [[T]]
;
%t = sext i8 undef to i32
ret i32 %t
}
; Make sure ashr produces a possible value
define i32 @test6() {
; CHECK-LABEL: @test6(
; CHECK-NEXT: [[T:%.*]] = ashr i32 undef, 31
; CHECK-NEXT: ret i32 [[T]]
;
%t = ashr i32 undef, 31
ret i32 %t
}
; Make sure lshr produces a possible value
define i32 @test7() {
; CHECK-LABEL: @test7(
; CHECK-NEXT: [[T:%.*]] = lshr i32 undef, 31
; CHECK-NEXT: ret i32 [[T]]
;
%t = lshr i32 undef, 31
ret i32 %t
}
; icmp eq with undef simplifies to undef
define i1 @test8() {
; CHECK-LABEL: @test8(
; CHECK-NEXT: [[T:%.*]] = icmp eq i32 undef, -1
; CHECK-NEXT: ret i1 [[T]]
;
%t = icmp eq i32 undef, -1
ret i1 %t
}
; Make sure we don't conclude that relational comparisons simplify to undef
define i1 @test9() {
; CHECK-LABEL: @test9(
; CHECK-NEXT: [[T:%.*]] = icmp ugt i32 undef, -1
; CHECK-NEXT: ret i1 [[T]]
;
%t = icmp ugt i32 undef, -1
ret i1 %t
}
; Make sure we handle extractvalue
define i64 @test10() {
; CHECK-LABEL: @test10(
; CHECK-NEXT: entry:
; CHECK-NEXT: ret i64 undef
;
entry:
%e = extractvalue { i64, i64 } undef, 1
ret i64 %e
}
@GV = common global i32 0, align 4
define i32 @test11(i1 %tobool) {
; CHECK-LABEL: @test11(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr @test11, @GV
; CHECK-NEXT: [[EXT:%.*]] = zext i1 [[CMP]] to i32
; CHECK-NEXT: [[SHR4:%.*]] = ashr i32 undef, [[EXT]]
; CHECK-NEXT: ret i32 [[SHR4]]
;
entry:
%cmp = icmp eq ptr @test11, @GV
%ext = zext i1 %cmp to i32
%shr4 = ashr i32 undef, %ext
ret i32 %shr4
}
; Test unary ops
define double @test12(double %x) {
; CHECK-LABEL: @test12(
; CHECK-NEXT: [[T:%.*]] = fneg double undef
; CHECK-NEXT: ret double [[T]]
;
%t = fneg double undef
ret double %t
}