
Record the number of function invocations from external code - code outside the binary, which may include JIT code and DSOs. Accounting external entry counts improves the fidelity of call graph flow conservation analysis. Test Plan: updated shrinkwrapping.test
690 lines
27 KiB
C++
690 lines
27 KiB
C++
//===- bolt/Passes/ProfileQualityStats.cpp ----------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the profile quality stats calculation pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Passes/ProfileQualityStats.h"
|
|
#include "bolt/Core/BinaryBasicBlock.h"
|
|
#include "bolt/Core/BinaryFunction.h"
|
|
#include "bolt/Utils/CommandLineOpts.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <queue>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
|
|
using namespace llvm;
|
|
using namespace bolt;
|
|
|
|
namespace opts {
|
|
extern cl::opt<unsigned> Verbosity;
|
|
static cl::opt<unsigned> TopFunctionsForProfileQualityCheck(
|
|
"top-functions-for-profile-quality-check",
|
|
cl::desc("number of hottest functions to print aggregated "
|
|
"profile quality stats of."),
|
|
cl::init(1000), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory));
|
|
static cl::opt<unsigned> PercentileForProfileQualityCheck(
|
|
"percentile-for-profile-quality-check",
|
|
cl::desc("Percentile of profile quality distributions over hottest "
|
|
"functions to report."),
|
|
cl::init(95), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory));
|
|
} // namespace opts
|
|
|
|
namespace {
|
|
using FunctionListType = std::vector<const BinaryFunction *>;
|
|
using function_iterator = FunctionListType::iterator;
|
|
|
|
// Function number -> vector of flows for BBs in the function
|
|
using TotalFlowMapTy = std::unordered_map<uint64_t, std::vector<uint64_t>>;
|
|
// Function number -> flow count
|
|
using FunctionFlowMapTy = std::unordered_map<uint64_t, uint64_t>;
|
|
struct FlowInfo {
|
|
TotalFlowMapTy TotalIncomingFlows;
|
|
TotalFlowMapTy TotalOutgoingFlows;
|
|
TotalFlowMapTy TotalMaxCountMaps;
|
|
TotalFlowMapTy TotalMinCountMaps;
|
|
FunctionFlowMapTy CallGraphIncomingFlows;
|
|
};
|
|
|
|
// When reporting exception handling stats, we only consider functions with at
|
|
// least MinLPECSum counts in landing pads to avoid false positives due to
|
|
// sampling noise
|
|
const uint16_t MinLPECSum = 50;
|
|
|
|
// When reporting CFG flow conservation stats, we only consider blocks with
|
|
// execution counts > MinBlockCount when reporting the distribution of worst
|
|
// gaps.
|
|
const uint16_t MinBlockCount = 500;
|
|
|
|
template <typename T>
|
|
void printDistribution(raw_ostream &OS, std::vector<T> &values,
|
|
bool Fraction = false) {
|
|
// Assume values are sorted.
|
|
if (values.empty())
|
|
return;
|
|
|
|
OS << " Length : " << values.size() << "\n";
|
|
|
|
auto printLine = [&](std::string Text, double Percent) {
|
|
int Rank = int(values.size() * (100 - Percent) / 100);
|
|
if (Percent == 0)
|
|
Rank = values.size() - 1;
|
|
if (Fraction)
|
|
OS << " " << Text << std::string(11 - Text.length(), ' ') << ": "
|
|
<< formatv("{0:P}", values[Rank]) << "\n";
|
|
else
|
|
OS << " " << Text << std::string(11 - Text.length(), ' ') << ": "
|
|
<< values[Rank] << "\n";
|
|
};
|
|
|
|
printLine("MAX", 0);
|
|
const int percentages[] = {1, 5, 10, 20, 50, 80};
|
|
for (size_t i = 0; i < sizeof(percentages) / sizeof(percentages[0]); ++i) {
|
|
printLine("TOP " + std::to_string(percentages[i]) + "%", percentages[i]);
|
|
}
|
|
printLine("MIN", 100);
|
|
}
|
|
|
|
void printCFGContinuityStats(raw_ostream &OS,
|
|
iterator_range<function_iterator> &Functions) {
|
|
// Given a perfect profile, every positive-execution-count BB should be
|
|
// connected to an entry of the function through a positive-execution-count
|
|
// directed path in the control flow graph.
|
|
std::vector<size_t> NumUnreachables;
|
|
std::vector<size_t> SumECUnreachables;
|
|
std::vector<double> FractionECUnreachables;
|
|
|
|
for (const BinaryFunction *Function : Functions) {
|
|
if (Function->size() <= 1) {
|
|
NumUnreachables.push_back(0);
|
|
SumECUnreachables.push_back(0);
|
|
FractionECUnreachables.push_back(0.0);
|
|
continue;
|
|
}
|
|
|
|
// Compute the sum of all BB execution counts (ECs).
|
|
size_t NumPosECBBs = 0;
|
|
size_t SumAllBBEC = 0;
|
|
for (const BinaryBasicBlock &BB : *Function) {
|
|
const size_t BBEC = BB.getKnownExecutionCount();
|
|
NumPosECBBs += !!BBEC;
|
|
SumAllBBEC += BBEC;
|
|
}
|
|
|
|
// Perform BFS on subgraph of CFG induced by positive weight edges.
|
|
// Compute the number of BBs reachable from the entry(s) of the function and
|
|
// the sum of their execution counts (ECs).
|
|
std::unordered_set<unsigned> Visited;
|
|
std::queue<unsigned> Queue;
|
|
size_t SumReachableBBEC = 0;
|
|
|
|
Function->forEachEntryPoint([&](uint64_t Offset, const MCSymbol *Label) {
|
|
const BinaryBasicBlock *EntryBB = Function->getBasicBlockAtOffset(Offset);
|
|
if (!EntryBB || EntryBB->getKnownExecutionCount() == 0)
|
|
return true;
|
|
Queue.push(EntryBB->getLayoutIndex());
|
|
Visited.insert(EntryBB->getLayoutIndex());
|
|
SumReachableBBEC += EntryBB->getKnownExecutionCount();
|
|
return true;
|
|
});
|
|
|
|
const FunctionLayout &Layout = Function->getLayout();
|
|
|
|
while (!Queue.empty()) {
|
|
const unsigned BBIndex = Queue.front();
|
|
const BinaryBasicBlock *BB = Layout.getBlock(BBIndex);
|
|
Queue.pop();
|
|
for (const auto &[Succ, BI] :
|
|
llvm::zip(BB->successors(), BB->branch_info())) {
|
|
const uint64_t Count = BI.Count;
|
|
if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0 ||
|
|
!Visited.insert(Succ->getLayoutIndex()).second)
|
|
continue;
|
|
SumReachableBBEC += Succ->getKnownExecutionCount();
|
|
Queue.push(Succ->getLayoutIndex());
|
|
}
|
|
}
|
|
|
|
const size_t NumReachableBBs = Visited.size();
|
|
|
|
const size_t NumPosECBBsUnreachableFromEntry =
|
|
NumPosECBBs - NumReachableBBs;
|
|
const size_t SumUnreachableBBEC = SumAllBBEC - SumReachableBBEC;
|
|
|
|
double FractionECUnreachable = 0.0;
|
|
if (SumAllBBEC > 0)
|
|
FractionECUnreachable = (double)SumUnreachableBBEC / SumAllBBEC;
|
|
|
|
if (opts::Verbosity >= 2 && FractionECUnreachable >= 0.05) {
|
|
OS << "Non-trivial CFG discontinuity observed in function "
|
|
<< Function->getPrintName() << "\n";
|
|
if (opts::Verbosity >= 3)
|
|
Function->dump();
|
|
}
|
|
|
|
NumUnreachables.push_back(NumPosECBBsUnreachableFromEntry);
|
|
SumECUnreachables.push_back(SumUnreachableBBEC);
|
|
FractionECUnreachables.push_back(FractionECUnreachable);
|
|
}
|
|
|
|
llvm::sort(FractionECUnreachables);
|
|
const int Rank = int(FractionECUnreachables.size() *
|
|
opts::PercentileForProfileQualityCheck / 100);
|
|
OS << formatv("function CFG discontinuity {0:P}; ",
|
|
FractionECUnreachables[Rank]);
|
|
if (opts::Verbosity >= 1) {
|
|
OS << "\nabbreviations: EC = execution count, POS BBs = positive EC BBs\n"
|
|
<< "distribution of NUM(unreachable POS BBs) per function\n";
|
|
llvm::sort(NumUnreachables);
|
|
printDistribution(OS, NumUnreachables);
|
|
|
|
OS << "distribution of SUM_EC(unreachable POS BBs) per function\n";
|
|
llvm::sort(SumECUnreachables);
|
|
printDistribution(OS, SumECUnreachables);
|
|
|
|
OS << "distribution of [(SUM_EC(unreachable POS BBs) / SUM_EC(all "
|
|
"POS BBs))] per function\n";
|
|
printDistribution(OS, FractionECUnreachables, /*Fraction=*/true);
|
|
}
|
|
}
|
|
|
|
void printCallGraphFlowConservationStats(
|
|
raw_ostream &OS, iterator_range<function_iterator> &Functions,
|
|
FlowInfo &TotalFlowMap) {
|
|
std::vector<double> CallGraphGaps;
|
|
|
|
for (const BinaryFunction *Function : Functions) {
|
|
if (Function->size() <= 1 || !Function->isSimple()) {
|
|
CallGraphGaps.push_back(0.0);
|
|
continue;
|
|
}
|
|
|
|
const uint64_t FunctionNum = Function->getFunctionNumber();
|
|
std::vector<uint64_t> &IncomingFlows =
|
|
TotalFlowMap.TotalIncomingFlows[FunctionNum];
|
|
std::vector<uint64_t> &OutgoingFlows =
|
|
TotalFlowMap.TotalOutgoingFlows[FunctionNum];
|
|
FunctionFlowMapTy &CallGraphIncomingFlows =
|
|
TotalFlowMap.CallGraphIncomingFlows;
|
|
|
|
// Only consider functions that are not a program entry.
|
|
if (CallGraphIncomingFlows.find(FunctionNum) ==
|
|
CallGraphIncomingFlows.end()) {
|
|
CallGraphGaps.push_back(0.0);
|
|
continue;
|
|
}
|
|
|
|
uint64_t EntryInflow = 0;
|
|
uint64_t EntryOutflow = 0;
|
|
uint32_t NumConsideredEntryBlocks = 0;
|
|
|
|
Function->forEachEntryPoint([&](uint64_t Offset, const MCSymbol *Label) {
|
|
const BinaryBasicBlock *EntryBB = Function->getBasicBlockAtOffset(Offset);
|
|
if (!EntryBB || EntryBB->succ_size() == 0)
|
|
return true;
|
|
NumConsideredEntryBlocks++;
|
|
EntryInflow += IncomingFlows[EntryBB->getLayoutIndex()];
|
|
EntryOutflow += OutgoingFlows[EntryBB->getLayoutIndex()];
|
|
return true;
|
|
});
|
|
|
|
uint64_t NetEntryOutflow = 0;
|
|
if (EntryOutflow < EntryInflow) {
|
|
if (opts::Verbosity >= 2) {
|
|
// We expect entry blocks' CFG outflow >= inflow, i.e., it has a
|
|
// non-negative net outflow. If this is not the case, then raise a
|
|
// warning if requested.
|
|
OS << "BOLT WARNING: unexpected entry block CFG outflow < inflow "
|
|
"in function "
|
|
<< Function->getPrintName() << "\n";
|
|
if (opts::Verbosity >= 3)
|
|
Function->dump();
|
|
}
|
|
} else {
|
|
NetEntryOutflow = EntryOutflow - EntryInflow;
|
|
}
|
|
if (NumConsideredEntryBlocks > 0) {
|
|
const uint64_t CallGraphInflow =
|
|
TotalFlowMap.CallGraphIncomingFlows[Function->getFunctionNumber()];
|
|
const uint64_t Min = std::min(NetEntryOutflow, CallGraphInflow);
|
|
const uint64_t Max = std::max(NetEntryOutflow, CallGraphInflow);
|
|
double CallGraphGap = 0.0;
|
|
if (Max > 0)
|
|
CallGraphGap = 1 - (double)Min / Max;
|
|
|
|
if (opts::Verbosity >= 2 && CallGraphGap >= 0.5) {
|
|
OS << "Non-trivial call graph gap of size "
|
|
<< formatv("{0:P}", CallGraphGap) << " observed in function "
|
|
<< Function->getPrintName() << "\n";
|
|
if (opts::Verbosity >= 3)
|
|
Function->dump();
|
|
}
|
|
|
|
CallGraphGaps.push_back(CallGraphGap);
|
|
} else {
|
|
CallGraphGaps.push_back(0.0);
|
|
}
|
|
}
|
|
|
|
llvm::sort(CallGraphGaps);
|
|
const int Rank =
|
|
int(CallGraphGaps.size() * opts::PercentileForProfileQualityCheck / 100);
|
|
OS << formatv("call graph flow conservation gap {0:P}; ",
|
|
CallGraphGaps[Rank]);
|
|
if (opts::Verbosity >= 1) {
|
|
OS << "\ndistribution of function entry flow conservation gaps\n";
|
|
printDistribution(OS, CallGraphGaps, /*Fraction=*/true);
|
|
}
|
|
}
|
|
|
|
void printCFGFlowConservationStats(const BinaryContext &BC, raw_ostream &OS,
|
|
iterator_range<function_iterator> &Functions,
|
|
FlowInfo &TotalFlowMap) {
|
|
std::vector<double> CFGGapsWeightedAvg;
|
|
std::vector<double> CFGGapsWorst;
|
|
std::vector<uint64_t> CFGGapsWorstAbs;
|
|
for (const BinaryFunction *Function : Functions) {
|
|
if (Function->size() <= 1 || !Function->isSimple()) {
|
|
CFGGapsWeightedAvg.push_back(0.0);
|
|
CFGGapsWorst.push_back(0.0);
|
|
CFGGapsWorstAbs.push_back(0);
|
|
continue;
|
|
}
|
|
|
|
const uint64_t FunctionNum = Function->getFunctionNumber();
|
|
std::vector<uint64_t> &MaxCountMaps =
|
|
TotalFlowMap.TotalMaxCountMaps[FunctionNum];
|
|
std::vector<uint64_t> &MinCountMaps =
|
|
TotalFlowMap.TotalMinCountMaps[FunctionNum];
|
|
double WeightedGapSum = 0.0;
|
|
double WeightSum = 0.0;
|
|
double WorstGap = 0.0;
|
|
uint64_t WorstGapAbs = 0;
|
|
BinaryBasicBlock *BBWorstGap = nullptr;
|
|
BinaryBasicBlock *BBWorstGapAbs = nullptr;
|
|
for (BinaryBasicBlock &BB : *Function) {
|
|
// We don't consider function entry or exit blocks for CFG flow
|
|
// conservation
|
|
if (BB.isEntryPoint() || BB.succ_size() == 0)
|
|
continue;
|
|
|
|
if (BB.getKnownExecutionCount() == 0 || BB.getNumNonPseudos() == 0)
|
|
continue;
|
|
|
|
// We don't consider blocks that is a landing pad or has a
|
|
// positive-execution-count landing pad
|
|
if (BB.isLandingPad())
|
|
continue;
|
|
|
|
if (llvm::any_of(BB.landing_pads(),
|
|
std::mem_fn(&BinaryBasicBlock::getKnownExecutionCount)))
|
|
continue;
|
|
|
|
// We don't consider blocks that end with a recursive call instruction
|
|
const MCInst *Inst = BB.getLastNonPseudoInstr();
|
|
if (BC.MIB->isCall(*Inst)) {
|
|
const MCSymbol *DstSym = BC.MIB->getTargetSymbol(*Inst);
|
|
const BinaryFunction *DstFunc =
|
|
DstSym ? BC.getFunctionForSymbol(DstSym) : nullptr;
|
|
if (DstFunc == Function)
|
|
continue;
|
|
}
|
|
|
|
const uint64_t Max = MaxCountMaps[BB.getLayoutIndex()];
|
|
const uint64_t Min = MinCountMaps[BB.getLayoutIndex()];
|
|
double Gap = 0.0;
|
|
if (Max > 0)
|
|
Gap = 1 - (double)Min / Max;
|
|
double Weight = BB.getKnownExecutionCount() * BB.getNumNonPseudos();
|
|
// We use log to prevent the stats from being dominated by extremely hot
|
|
// blocks
|
|
Weight = log(Weight);
|
|
WeightedGapSum += Gap * Weight;
|
|
WeightSum += Weight;
|
|
if (BB.getKnownExecutionCount() > MinBlockCount && Gap > WorstGap) {
|
|
WorstGap = Gap;
|
|
BBWorstGap = &BB;
|
|
}
|
|
if (BB.getKnownExecutionCount() > MinBlockCount &&
|
|
Max - Min > WorstGapAbs) {
|
|
WorstGapAbs = Max - Min;
|
|
BBWorstGapAbs = &BB;
|
|
}
|
|
}
|
|
double WeightedGap = WeightedGapSum;
|
|
if (WeightSum > 0)
|
|
WeightedGap /= WeightSum;
|
|
if (opts::Verbosity >= 2 && WorstGap >= 0.9) {
|
|
OS << "Non-trivial CFG gap observed in function "
|
|
<< Function->getPrintName() << "\n"
|
|
<< "Weighted gap: " << formatv("{0:P}", WeightedGap) << "\n";
|
|
if (BBWorstGap)
|
|
OS << "Worst gap: " << formatv("{0:P}", WorstGap)
|
|
<< " at BB with input offset: 0x"
|
|
<< Twine::utohexstr(BBWorstGap->getInputOffset()) << "\n";
|
|
if (BBWorstGapAbs)
|
|
OS << "Worst gap (absolute value): " << WorstGapAbs << " at BB with "
|
|
<< "input offset 0x"
|
|
<< Twine::utohexstr(BBWorstGapAbs->getInputOffset()) << "\n";
|
|
if (opts::Verbosity >= 3)
|
|
Function->dump();
|
|
}
|
|
CFGGapsWeightedAvg.push_back(WeightedGap);
|
|
CFGGapsWorst.push_back(WorstGap);
|
|
CFGGapsWorstAbs.push_back(WorstGapAbs);
|
|
}
|
|
|
|
llvm::sort(CFGGapsWeightedAvg);
|
|
const int RankWA = int(CFGGapsWeightedAvg.size() *
|
|
opts::PercentileForProfileQualityCheck / 100);
|
|
llvm::sort(CFGGapsWorst);
|
|
const int RankW =
|
|
int(CFGGapsWorst.size() * opts::PercentileForProfileQualityCheck / 100);
|
|
OS << formatv("CFG flow conservation gap {0:P} (weighted) {1:P} (worst); ",
|
|
CFGGapsWeightedAvg[RankWA], CFGGapsWorst[RankW]);
|
|
if (opts::Verbosity >= 1) {
|
|
OS << "distribution of weighted CFG flow conservation gaps\n";
|
|
printDistribution(OS, CFGGapsWeightedAvg, /*Fraction=*/true);
|
|
OS << format("Consider only blocks with execution counts > %zu:\n",
|
|
MinBlockCount)
|
|
<< "distribution of worst block flow conservation gap per "
|
|
"function \n";
|
|
printDistribution(OS, CFGGapsWorst, /*Fraction=*/true);
|
|
OS << "distribution of worst block flow conservation gap (absolute "
|
|
"value) per function\n";
|
|
llvm::sort(CFGGapsWorstAbs);
|
|
printDistribution(OS, CFGGapsWorstAbs, /*Fraction=*/false);
|
|
}
|
|
}
|
|
|
|
void printExceptionHandlingStats(const BinaryContext &BC, raw_ostream &OS,
|
|
iterator_range<function_iterator> &Functions) {
|
|
std::vector<double> LPCountFractionsOfTotalBBEC;
|
|
std::vector<double> LPCountFractionsOfTotalInvokeEC;
|
|
for (const BinaryFunction *Function : Functions) {
|
|
size_t LPECSum = 0;
|
|
size_t BBECSum = 0;
|
|
size_t InvokeECSum = 0;
|
|
for (BinaryBasicBlock &BB : *Function) {
|
|
const size_t BBEC = BB.getKnownExecutionCount();
|
|
BBECSum += BBEC;
|
|
if (BB.isLandingPad())
|
|
LPECSum += BBEC;
|
|
for (const MCInst &Inst : BB) {
|
|
if (!BC.MIB->isInvoke(Inst))
|
|
continue;
|
|
const std::optional<MCPlus::MCLandingPad> EHInfo =
|
|
BC.MIB->getEHInfo(Inst);
|
|
if (EHInfo->first)
|
|
InvokeECSum += BBEC;
|
|
}
|
|
}
|
|
|
|
if (LPECSum <= MinLPECSum) {
|
|
LPCountFractionsOfTotalBBEC.push_back(0.0);
|
|
LPCountFractionsOfTotalInvokeEC.push_back(0.0);
|
|
continue;
|
|
}
|
|
double FracTotalBBEC = 0.0;
|
|
if (BBECSum > 0)
|
|
FracTotalBBEC = (double)LPECSum / BBECSum;
|
|
double FracTotalInvokeEC = 0.0;
|
|
if (InvokeECSum > 0)
|
|
FracTotalInvokeEC = (double)LPECSum / InvokeECSum;
|
|
LPCountFractionsOfTotalBBEC.push_back(FracTotalBBEC);
|
|
LPCountFractionsOfTotalInvokeEC.push_back(FracTotalInvokeEC);
|
|
|
|
if (opts::Verbosity >= 2 && FracTotalInvokeEC >= 0.05) {
|
|
OS << "Non-trivial usage of exception handling observed in function "
|
|
<< Function->getPrintName() << "\n"
|
|
<< formatv(
|
|
"Fraction of total InvokeEC that goes to landing pads: {0:P}\n",
|
|
FracTotalInvokeEC);
|
|
if (opts::Verbosity >= 3)
|
|
Function->dump();
|
|
}
|
|
}
|
|
|
|
llvm::sort(LPCountFractionsOfTotalBBEC);
|
|
const int RankBBEC = int(LPCountFractionsOfTotalBBEC.size() *
|
|
opts::PercentileForProfileQualityCheck / 100);
|
|
llvm::sort(LPCountFractionsOfTotalInvokeEC);
|
|
const int RankInvoke = int(LPCountFractionsOfTotalInvokeEC.size() *
|
|
opts::PercentileForProfileQualityCheck / 100);
|
|
OS << formatv("exception handling usage {0:P} (of total BBEC) {1:P} (of "
|
|
"total InvokeEC)\n",
|
|
LPCountFractionsOfTotalBBEC[RankBBEC],
|
|
LPCountFractionsOfTotalInvokeEC[RankInvoke]);
|
|
if (opts::Verbosity >= 1) {
|
|
OS << "distribution of exception handling usage as a fraction of total "
|
|
"BBEC of each function\n";
|
|
printDistribution(OS, LPCountFractionsOfTotalBBEC, /*Fraction=*/true);
|
|
OS << "distribution of exception handling usage as a fraction of total "
|
|
"InvokeEC of each function\n";
|
|
printDistribution(OS, LPCountFractionsOfTotalInvokeEC, /*Fraction=*/true);
|
|
}
|
|
}
|
|
|
|
void computeFlowMappings(const BinaryContext &BC, FlowInfo &TotalFlowMap) {
|
|
// Increment block inflow and outflow with CFG jump counts.
|
|
TotalFlowMapTy &TotalIncomingFlows = TotalFlowMap.TotalIncomingFlows;
|
|
TotalFlowMapTy &TotalOutgoingFlows = TotalFlowMap.TotalOutgoingFlows;
|
|
for (const auto &BFI : BC.getBinaryFunctions()) {
|
|
const BinaryFunction *Function = &BFI.second;
|
|
std::vector<uint64_t> &IncomingFlows =
|
|
TotalIncomingFlows[Function->getFunctionNumber()];
|
|
std::vector<uint64_t> &OutgoingFlows =
|
|
TotalOutgoingFlows[Function->getFunctionNumber()];
|
|
const uint64_t NumBlocks = Function->size();
|
|
IncomingFlows.resize(NumBlocks, 0);
|
|
OutgoingFlows.resize(NumBlocks, 0);
|
|
if (Function->empty() || !Function->hasValidProfile())
|
|
continue;
|
|
for (const BinaryBasicBlock &BB : *Function) {
|
|
uint64_t TotalOutgoing = 0ULL;
|
|
for (const auto &[Succ, BI] :
|
|
llvm::zip(BB.successors(), BB.branch_info())) {
|
|
const uint64_t Count = BI.Count;
|
|
if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0)
|
|
continue;
|
|
TotalOutgoing += Count;
|
|
IncomingFlows[Succ->getLayoutIndex()] += Count;
|
|
}
|
|
OutgoingFlows[BB.getLayoutIndex()] = TotalOutgoing;
|
|
}
|
|
}
|
|
// Initialize TotalMaxCountMaps and TotalMinCountMaps using
|
|
// TotalIncomingFlows and TotalOutgoingFlows
|
|
TotalFlowMapTy &TotalMaxCountMaps = TotalFlowMap.TotalMaxCountMaps;
|
|
TotalFlowMapTy &TotalMinCountMaps = TotalFlowMap.TotalMinCountMaps;
|
|
for (const auto &BFI : BC.getBinaryFunctions()) {
|
|
const BinaryFunction *Function = &BFI.second;
|
|
uint64_t FunctionNum = Function->getFunctionNumber();
|
|
std::vector<uint64_t> &IncomingFlows = TotalIncomingFlows[FunctionNum];
|
|
std::vector<uint64_t> &OutgoingFlows = TotalOutgoingFlows[FunctionNum];
|
|
std::vector<uint64_t> &MaxCountMap = TotalMaxCountMaps[FunctionNum];
|
|
std::vector<uint64_t> &MinCountMap = TotalMinCountMaps[FunctionNum];
|
|
const uint64_t NumBlocks = Function->size();
|
|
MaxCountMap.resize(NumBlocks, 0);
|
|
MinCountMap.resize(NumBlocks, 0);
|
|
if (Function->empty() || !Function->hasValidProfile())
|
|
continue;
|
|
for (const BinaryBasicBlock &BB : *Function) {
|
|
uint64_t BBNum = BB.getLayoutIndex();
|
|
MaxCountMap[BBNum] = std::max(IncomingFlows[BBNum], OutgoingFlows[BBNum]);
|
|
MinCountMap[BBNum] = std::min(IncomingFlows[BBNum], OutgoingFlows[BBNum]);
|
|
}
|
|
}
|
|
|
|
// Modify TotalMaxCountMaps and TotalMinCountMaps using call counts and
|
|
// fill out CallGraphIncomingFlows
|
|
FunctionFlowMapTy &CallGraphIncomingFlows =
|
|
TotalFlowMap.CallGraphIncomingFlows;
|
|
for (const auto &BFI : BC.getBinaryFunctions()) {
|
|
const BinaryFunction *Function = &BFI.second;
|
|
uint64_t FunctionNum = Function->getFunctionNumber();
|
|
std::vector<uint64_t> &MaxCountMap = TotalMaxCountMaps[FunctionNum];
|
|
std::vector<uint64_t> &MinCountMap = TotalMinCountMaps[FunctionNum];
|
|
|
|
// Record external entry count into CallGraphIncomingFlows
|
|
CallGraphIncomingFlows[FunctionNum] += Function->getExternEntryCount();
|
|
|
|
// Update MaxCountMap, MinCountMap, and CallGraphIncomingFlows
|
|
auto recordCall = [&](const BinaryBasicBlock *SourceBB,
|
|
const MCSymbol *DestSymbol, uint64_t Count,
|
|
uint64_t TotalCallCount) {
|
|
if (Count == BinaryBasicBlock::COUNT_NO_PROFILE)
|
|
Count = 0;
|
|
const BinaryFunction *DstFunc =
|
|
DestSymbol ? BC.getFunctionForSymbol(DestSymbol) : nullptr;
|
|
if (DstFunc)
|
|
CallGraphIncomingFlows[DstFunc->getFunctionNumber()] += Count;
|
|
if (SourceBB) {
|
|
unsigned BlockIndex = SourceBB->getLayoutIndex();
|
|
MaxCountMap[BlockIndex] =
|
|
std::max(MaxCountMap[BlockIndex], TotalCallCount);
|
|
MinCountMap[BlockIndex] =
|
|
std::min(MinCountMap[BlockIndex], TotalCallCount);
|
|
}
|
|
};
|
|
|
|
// Get pairs of (symbol, count) for each target at this callsite.
|
|
// If the call is to an unknown function the symbol will be nullptr.
|
|
// If there is no profiling data the count will be COUNT_NO_PROFILE.
|
|
using TargetDesc = std::pair<const MCSymbol *, uint64_t>;
|
|
using CallInfoTy = std::vector<TargetDesc>;
|
|
auto getCallInfo = [&](const BinaryBasicBlock *BB, const MCInst &Inst) {
|
|
CallInfoTy Counts;
|
|
const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst);
|
|
|
|
if (!DstSym && BC.MIB->hasAnnotation(Inst, "CallProfile")) {
|
|
for (const auto &CSI : BC.MIB->getAnnotationAs<IndirectCallSiteProfile>(
|
|
Inst, "CallProfile"))
|
|
if (CSI.Symbol)
|
|
Counts.emplace_back(CSI.Symbol, CSI.Count);
|
|
} else {
|
|
const uint64_t Count = BB->getExecutionCount();
|
|
Counts.emplace_back(DstSym, Count);
|
|
}
|
|
|
|
return Counts;
|
|
};
|
|
|
|
// If the function has an invalid profile, try to use the perf data
|
|
// directly. The call EC is only used to update CallGraphIncomingFlows.
|
|
if (!Function->hasValidProfile() && !Function->getAllCallSites().empty()) {
|
|
for (const IndirectCallProfile &CSI : Function->getAllCallSites())
|
|
if (CSI.Symbol)
|
|
recordCall(nullptr, CSI.Symbol, CSI.Count, CSI.Count);
|
|
continue;
|
|
} else {
|
|
// If the function has a valid profile
|
|
for (const BinaryBasicBlock &BB : *Function) {
|
|
for (const MCInst &Inst : BB) {
|
|
if (!BC.MIB->isCall(Inst))
|
|
continue;
|
|
// Find call instructions and extract target symbols from each
|
|
// one.
|
|
const CallInfoTy CallInfo = getCallInfo(&BB, Inst);
|
|
// We need the total call count to update MaxCountMap and
|
|
// MinCountMap in recordCall for indirect calls
|
|
uint64_t TotalCallCount = 0;
|
|
for (const TargetDesc &CI : CallInfo)
|
|
TotalCallCount += CI.second;
|
|
for (const TargetDesc &CI : CallInfo)
|
|
recordCall(&BB, CI.first, CI.second, TotalCallCount);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void printAll(BinaryContext &BC, FunctionListType &ValidFunctions,
|
|
size_t NumTopFunctions) {
|
|
// Sort the list of functions by execution counts (reverse).
|
|
llvm::sort(ValidFunctions,
|
|
[&](const BinaryFunction *A, const BinaryFunction *B) {
|
|
return A->getKnownExecutionCount() > B->getKnownExecutionCount();
|
|
});
|
|
|
|
const size_t RealNumTopFunctions =
|
|
std::min(NumTopFunctions, ValidFunctions.size());
|
|
|
|
iterator_range<function_iterator> Functions(
|
|
ValidFunctions.begin(), ValidFunctions.begin() + RealNumTopFunctions);
|
|
|
|
FlowInfo TotalFlowMap;
|
|
computeFlowMappings(BC, TotalFlowMap);
|
|
|
|
BC.outs() << format("BOLT-INFO: profile quality metrics for the hottest %zu "
|
|
"functions (reporting top %zu%% values): ",
|
|
RealNumTopFunctions,
|
|
100 - opts::PercentileForProfileQualityCheck);
|
|
printCFGContinuityStats(BC.outs(), Functions);
|
|
printCallGraphFlowConservationStats(BC.outs(), Functions, TotalFlowMap);
|
|
printCFGFlowConservationStats(BC, BC.outs(), Functions, TotalFlowMap);
|
|
printExceptionHandlingStats(BC, BC.outs(), Functions);
|
|
// Print more detailed bucketed stats if requested.
|
|
if (opts::Verbosity >= 1 && RealNumTopFunctions >= 5) {
|
|
const size_t PerBucketSize = RealNumTopFunctions / 5;
|
|
BC.outs() << format(
|
|
"Detailed stats for 5 buckets, each with %zu functions:\n",
|
|
PerBucketSize);
|
|
|
|
// For each bucket, print the CFG continuity stats of the functions in
|
|
// the bucket.
|
|
for (size_t BucketIndex = 0; BucketIndex < 5; ++BucketIndex) {
|
|
const size_t StartIndex = BucketIndex * PerBucketSize;
|
|
const size_t EndIndex = StartIndex + PerBucketSize;
|
|
iterator_range<function_iterator> Functions(
|
|
ValidFunctions.begin() + StartIndex,
|
|
ValidFunctions.begin() + EndIndex);
|
|
const size_t MaxFunctionExecutionCount =
|
|
ValidFunctions[StartIndex]->getKnownExecutionCount();
|
|
const size_t MinFunctionExecutionCount =
|
|
ValidFunctions[EndIndex - 1]->getKnownExecutionCount();
|
|
BC.outs() << format("----------------\n| Bucket %zu: "
|
|
"|\n----------------\n",
|
|
BucketIndex + 1)
|
|
<< format(
|
|
"execution counts of the %zu functions in the bucket: "
|
|
"%zu-%zu\n",
|
|
EndIndex - StartIndex, MinFunctionExecutionCount,
|
|
MaxFunctionExecutionCount);
|
|
printCFGContinuityStats(BC.outs(), Functions);
|
|
printCallGraphFlowConservationStats(BC.outs(), Functions, TotalFlowMap);
|
|
printCFGFlowConservationStats(BC, BC.outs(), Functions, TotalFlowMap);
|
|
printExceptionHandlingStats(BC, BC.outs(), Functions);
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
bool PrintProfileQualityStats::shouldOptimize(const BinaryFunction &BF) const {
|
|
if (BF.empty() || !BF.hasValidProfile())
|
|
return false;
|
|
|
|
return BinaryFunctionPass::shouldOptimize(BF);
|
|
}
|
|
|
|
Error PrintProfileQualityStats::runOnFunctions(BinaryContext &BC) {
|
|
// Create a list of functions with valid profiles.
|
|
FunctionListType ValidFunctions;
|
|
for (const auto &BFI : BC.getBinaryFunctions()) {
|
|
const BinaryFunction *Function = &BFI.second;
|
|
if (PrintProfileQualityStats::shouldOptimize(*Function))
|
|
ValidFunctions.push_back(Function);
|
|
}
|
|
if (ValidFunctions.empty() || opts::TopFunctionsForProfileQualityCheck == 0)
|
|
return Error::success();
|
|
|
|
printAll(BC, ValidFunctions, opts::TopFunctionsForProfileQualityCheck);
|
|
return Error::success();
|
|
}
|