
This patch moves the CommonArgs utilities into a location visible by the Frontend Drivers, so that the Frontend Drivers may share option parsing code with the Compiler Driver. This is useful when the Frontend Drivers would like to verify that their incoming options are well-formed and also not reinvent the option parsing wheel. We already see code in the Clang/Flang Drivers that is parsing and verifying its incoming options. E.g. OPT_ffp_contract. This option is parsed in the Compiler Driver, Clang Driver, and Flang Driver, all with slightly different parsing code. It would be nice if the Frontend Drivers were not required to duplicate this Compiler Driver code. That way there is no/low maintenance burden on keeping all these parsing functions in sync. Along those lines, the Frontend Drivers will now have a useful mechanism to verify their incoming options are well-formed. Currently, the Frontend Drivers trust that the Compiler Driver is not passing back junk in some cases. The Language Drivers may even accept junk with no error at all. E.g.: `clang -cc1 -mprefer-vector-width=junk test.c' With this patch, we'll now be able to tighten up incomming options to the Frontend drivers in a lightweight way. --------- Co-authored-by: Cameron McInally <cmcinally@nvidia.com> Co-authored-by: Shafik Yaghmour <shafik.yaghmour@intel.com>
528 lines
19 KiB
C++
528 lines
19 KiB
C++
//===--- Mips.cpp - Tools Implementations -----------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Mips.h"
|
|
#include "clang/Driver/CommonArgs.h"
|
|
#include "clang/Driver/Driver.h"
|
|
#include "clang/Driver/Options.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Option/ArgList.h"
|
|
|
|
using namespace clang::driver;
|
|
using namespace clang::driver::tools;
|
|
using namespace clang;
|
|
using namespace llvm::opt;
|
|
|
|
// Get CPU and ABI names. They are not independent
|
|
// so we have to calculate them together.
|
|
void mips::getMipsCPUAndABI(const ArgList &Args, const llvm::Triple &Triple,
|
|
StringRef &CPUName, StringRef &ABIName) {
|
|
const char *DefMips32CPU = "mips32r2";
|
|
const char *DefMips64CPU = "mips64r2";
|
|
|
|
// MIPS32r6 is the default for mips(el)?-img-linux-gnu and MIPS64r6 is the
|
|
// default for mips64(el)?-img-linux-gnu.
|
|
if (Triple.getVendor() == llvm::Triple::ImaginationTechnologies &&
|
|
Triple.isGNUEnvironment()) {
|
|
DefMips32CPU = "mips32r6";
|
|
DefMips64CPU = "mips64r6";
|
|
}
|
|
|
|
if (Triple.getSubArch() == llvm::Triple::MipsSubArch_r6) {
|
|
DefMips32CPU = "mips32r6";
|
|
DefMips64CPU = "mips64r6";
|
|
}
|
|
|
|
// MIPS3 is the default for mips64*-unknown-openbsd.
|
|
if (Triple.isOSOpenBSD())
|
|
DefMips64CPU = "mips3";
|
|
|
|
// MIPS2 is the default for mips(el)?-unknown-freebsd.
|
|
// MIPS3 is the default for mips64(el)?-unknown-freebsd.
|
|
if (Triple.isOSFreeBSD()) {
|
|
DefMips32CPU = "mips2";
|
|
DefMips64CPU = "mips3";
|
|
}
|
|
|
|
if (Arg *A = Args.getLastArg(clang::driver::options::OPT_march_EQ,
|
|
options::OPT_mcpu_EQ))
|
|
CPUName = A->getValue();
|
|
|
|
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ)) {
|
|
ABIName = A->getValue();
|
|
// Convert a GNU style Mips ABI name to the name
|
|
// accepted by LLVM Mips backend.
|
|
ABIName = llvm::StringSwitch<llvm::StringRef>(ABIName)
|
|
.Case("32", "o32")
|
|
.Case("64", "n64")
|
|
.Default(ABIName);
|
|
}
|
|
|
|
// Setup default CPU and ABI names.
|
|
if (CPUName.empty() && ABIName.empty()) {
|
|
switch (Triple.getArch()) {
|
|
default:
|
|
llvm_unreachable("Unexpected triple arch name");
|
|
case llvm::Triple::mips:
|
|
case llvm::Triple::mipsel:
|
|
CPUName = DefMips32CPU;
|
|
break;
|
|
case llvm::Triple::mips64:
|
|
case llvm::Triple::mips64el:
|
|
CPUName = DefMips64CPU;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ABIName.empty() && Triple.isABIN32())
|
|
ABIName = "n32";
|
|
|
|
if (ABIName.empty() &&
|
|
(Triple.getVendor() == llvm::Triple::MipsTechnologies ||
|
|
Triple.getVendor() == llvm::Triple::ImaginationTechnologies)) {
|
|
ABIName = llvm::StringSwitch<const char *>(CPUName)
|
|
.Case("mips1", "o32")
|
|
.Case("mips2", "o32")
|
|
.Case("mips3", "n64")
|
|
.Case("mips4", "n64")
|
|
.Case("mips5", "n64")
|
|
.Case("mips32", "o32")
|
|
.Case("mips32r2", "o32")
|
|
.Case("mips32r3", "o32")
|
|
.Case("mips32r5", "o32")
|
|
.Case("mips32r6", "o32")
|
|
.Case("mips64", "n64")
|
|
.Case("mips64r2", "n64")
|
|
.Case("mips64r3", "n64")
|
|
.Case("mips64r5", "n64")
|
|
.Case("mips64r6", "n64")
|
|
.Case("octeon", "n64")
|
|
.Case("p5600", "o32")
|
|
.Case("i6400", "n64")
|
|
.Case("i6500", "n64")
|
|
.Default("");
|
|
}
|
|
|
|
if (ABIName.empty()) {
|
|
// Deduce ABI name from the target triple.
|
|
ABIName = Triple.isMIPS32() ? "o32" : "n64";
|
|
}
|
|
|
|
if (CPUName.empty()) {
|
|
// Deduce CPU name from ABI name.
|
|
CPUName = llvm::StringSwitch<const char *>(ABIName)
|
|
.Case("o32", DefMips32CPU)
|
|
.Cases("n32", "n64", DefMips64CPU)
|
|
.Default("");
|
|
}
|
|
|
|
// FIXME: Warn on inconsistent use of -march and -mabi.
|
|
}
|
|
|
|
std::string mips::getMipsABILibSuffix(const ArgList &Args,
|
|
const llvm::Triple &Triple) {
|
|
StringRef CPUName, ABIName;
|
|
tools::mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
|
|
return llvm::StringSwitch<std::string>(ABIName)
|
|
.Case("o32", "")
|
|
.Case("n32", "32")
|
|
.Case("n64", "64");
|
|
}
|
|
|
|
// Convert ABI name to the GNU tools acceptable variant.
|
|
StringRef mips::getGnuCompatibleMipsABIName(StringRef ABI) {
|
|
return llvm::StringSwitch<llvm::StringRef>(ABI)
|
|
.Case("o32", "32")
|
|
.Case("n64", "64")
|
|
.Default(ABI);
|
|
}
|
|
|
|
// Select the MIPS float ABI as determined by -msoft-float, -mhard-float,
|
|
// and -mfloat-abi=.
|
|
mips::FloatABI mips::getMipsFloatABI(const Driver &D, const ArgList &Args,
|
|
const llvm::Triple &Triple) {
|
|
mips::FloatABI ABI = mips::FloatABI::Invalid;
|
|
if (Arg *A =
|
|
Args.getLastArg(options::OPT_msoft_float, options::OPT_mhard_float,
|
|
options::OPT_mfloat_abi_EQ)) {
|
|
if (A->getOption().matches(options::OPT_msoft_float))
|
|
ABI = mips::FloatABI::Soft;
|
|
else if (A->getOption().matches(options::OPT_mhard_float))
|
|
ABI = mips::FloatABI::Hard;
|
|
else {
|
|
ABI = llvm::StringSwitch<mips::FloatABI>(A->getValue())
|
|
.Case("soft", mips::FloatABI::Soft)
|
|
.Case("hard", mips::FloatABI::Hard)
|
|
.Default(mips::FloatABI::Invalid);
|
|
if (ABI == mips::FloatABI::Invalid && !StringRef(A->getValue()).empty()) {
|
|
D.Diag(clang::diag::err_drv_invalid_mfloat_abi) << A->getAsString(Args);
|
|
ABI = mips::FloatABI::Hard;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If unspecified, choose the default based on the platform.
|
|
if (ABI == mips::FloatABI::Invalid) {
|
|
if (Triple.isOSFreeBSD()) {
|
|
// For FreeBSD, assume "soft" on all flavors of MIPS.
|
|
ABI = mips::FloatABI::Soft;
|
|
} else {
|
|
// Assume "hard", because it's a default value used by gcc.
|
|
// When we start to recognize specific target MIPS processors,
|
|
// we will be able to select the default more correctly.
|
|
ABI = mips::FloatABI::Hard;
|
|
}
|
|
}
|
|
|
|
assert(ABI != mips::FloatABI::Invalid && "must select an ABI");
|
|
return ABI;
|
|
}
|
|
|
|
void mips::getMIPSTargetFeatures(const Driver &D, const llvm::Triple &Triple,
|
|
const ArgList &Args,
|
|
std::vector<StringRef> &Features) {
|
|
StringRef CPUName;
|
|
StringRef ABIName;
|
|
getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
|
|
ABIName = getGnuCompatibleMipsABIName(ABIName);
|
|
|
|
// Historically, PIC code for MIPS was associated with -mabicalls, a.k.a
|
|
// SVR4 abicalls. Static code does not use SVR4 calling sequences. An ABI
|
|
// extension was developed by Richard Sandiford & Code Sourcery to support
|
|
// static code calling PIC code (CPIC). For O32 and N32 this means we have
|
|
// several combinations of PIC/static and abicalls. Pure static, static
|
|
// with the CPIC extension, and pure PIC code.
|
|
|
|
// At final link time, O32 and N32 with CPIC will have another section
|
|
// added to the binary which contains the stub functions to perform
|
|
// any fixups required for PIC code.
|
|
|
|
// For N64, the situation is more regular: code can either be static
|
|
// (non-abicalls) or PIC (abicalls). GCC has traditionally picked PIC code
|
|
// code for N64. Since Clang has already built the relocation model portion
|
|
// of the commandline, we pick add +noabicalls feature in the N64 static
|
|
// case.
|
|
|
|
// The is another case to be accounted for: -msym32, which enforces that all
|
|
// symbols have 32 bits in size. In this case, N64 can in theory use CPIC
|
|
// but it is unsupported.
|
|
|
|
// The combinations for N64 are:
|
|
// a) Static without abicalls and 64bit symbols.
|
|
// b) Static with abicalls and 32bit symbols.
|
|
// c) PIC with abicalls and 64bit symbols.
|
|
|
|
// For case (a) we need to add +noabicalls for N64.
|
|
|
|
bool IsN64 = ABIName == "64";
|
|
bool IsPIC = false;
|
|
bool NonPIC = false;
|
|
bool HasNaN2008Opt = false;
|
|
|
|
Arg *LastPICArg = Args.getLastArg(options::OPT_fPIC, options::OPT_fno_PIC,
|
|
options::OPT_fpic, options::OPT_fno_pic,
|
|
options::OPT_fPIE, options::OPT_fno_PIE,
|
|
options::OPT_fpie, options::OPT_fno_pie);
|
|
if (LastPICArg) {
|
|
Option O = LastPICArg->getOption();
|
|
NonPIC =
|
|
(O.matches(options::OPT_fno_PIC) || O.matches(options::OPT_fno_pic) ||
|
|
O.matches(options::OPT_fno_PIE) || O.matches(options::OPT_fno_pie));
|
|
IsPIC =
|
|
(O.matches(options::OPT_fPIC) || O.matches(options::OPT_fpic) ||
|
|
O.matches(options::OPT_fPIE) || O.matches(options::OPT_fpie));
|
|
}
|
|
|
|
bool UseAbiCalls = false;
|
|
|
|
Arg *ABICallsArg =
|
|
Args.getLastArg(options::OPT_mabicalls, options::OPT_mno_abicalls);
|
|
UseAbiCalls =
|
|
!ABICallsArg || ABICallsArg->getOption().matches(options::OPT_mabicalls);
|
|
|
|
if (IsN64 && NonPIC && (!ABICallsArg || UseAbiCalls)) {
|
|
D.Diag(diag::warn_drv_unsupported_pic_with_mabicalls)
|
|
<< LastPICArg->getAsString(Args) << (!ABICallsArg ? 0 : 1);
|
|
}
|
|
|
|
if (ABICallsArg && !UseAbiCalls && IsPIC) {
|
|
D.Diag(diag::err_drv_unsupported_noabicalls_pic);
|
|
}
|
|
|
|
if (CPUName == "i6500" || CPUName == "i6400") {
|
|
// MIPS cpu i6400 and i6500 support MSA (Mips SIMD Architecture)
|
|
// by default.
|
|
Features.push_back("+msa");
|
|
}
|
|
|
|
if (!UseAbiCalls)
|
|
Features.push_back("+noabicalls");
|
|
else
|
|
Features.push_back("-noabicalls");
|
|
|
|
if (Arg *A = Args.getLastArg(options::OPT_mlong_calls,
|
|
options::OPT_mno_long_calls)) {
|
|
if (A->getOption().matches(options::OPT_mno_long_calls))
|
|
Features.push_back("-long-calls");
|
|
else if (!UseAbiCalls)
|
|
Features.push_back("+long-calls");
|
|
else
|
|
D.Diag(diag::warn_drv_unsupported_longcalls) << (ABICallsArg ? 0 : 1);
|
|
}
|
|
|
|
if (Arg *A = Args.getLastArg(options::OPT_mxgot, options::OPT_mno_xgot)) {
|
|
if (A->getOption().matches(options::OPT_mxgot))
|
|
Features.push_back("+xgot");
|
|
else
|
|
Features.push_back("-xgot");
|
|
}
|
|
|
|
mips::FloatABI FloatABI = mips::getMipsFloatABI(D, Args, Triple);
|
|
if (FloatABI == mips::FloatABI::Soft) {
|
|
// FIXME: Note, this is a hack. We need to pass the selected float
|
|
// mode to the MipsTargetInfoBase to define appropriate macros there.
|
|
// Now it is the only method.
|
|
Features.push_back("+soft-float");
|
|
}
|
|
|
|
if (Arg *A = Args.getLastArg(options::OPT_mnan_EQ)) {
|
|
StringRef Val = StringRef(A->getValue());
|
|
if (Val == "2008") {
|
|
if (mips::getIEEE754Standard(CPUName) & mips::Std2008) {
|
|
Features.push_back("+nan2008");
|
|
HasNaN2008Opt = true;
|
|
} else {
|
|
Features.push_back("-nan2008");
|
|
D.Diag(diag::warn_target_unsupported_nan2008) << CPUName;
|
|
}
|
|
} else if (Val == "legacy") {
|
|
if (mips::getIEEE754Standard(CPUName) & mips::Legacy)
|
|
Features.push_back("-nan2008");
|
|
else {
|
|
Features.push_back("+nan2008");
|
|
D.Diag(diag::warn_target_unsupported_nanlegacy) << CPUName;
|
|
}
|
|
} else
|
|
D.Diag(diag::err_drv_unsupported_option_argument)
|
|
<< A->getSpelling() << Val;
|
|
}
|
|
|
|
if (Arg *A = Args.getLastArg(options::OPT_mabs_EQ)) {
|
|
StringRef Val = StringRef(A->getValue());
|
|
if (Val == "2008") {
|
|
if (mips::getIEEE754Standard(CPUName) & mips::Std2008) {
|
|
Features.push_back("+abs2008");
|
|
} else {
|
|
Features.push_back("-abs2008");
|
|
D.Diag(diag::warn_target_unsupported_abs2008) << CPUName;
|
|
}
|
|
} else if (Val == "legacy") {
|
|
if (mips::getIEEE754Standard(CPUName) & mips::Legacy) {
|
|
Features.push_back("-abs2008");
|
|
} else {
|
|
Features.push_back("+abs2008");
|
|
D.Diag(diag::warn_target_unsupported_abslegacy) << CPUName;
|
|
}
|
|
} else {
|
|
D.Diag(diag::err_drv_unsupported_option_argument)
|
|
<< A->getSpelling() << Val;
|
|
}
|
|
} else if (HasNaN2008Opt) {
|
|
Features.push_back("+abs2008");
|
|
}
|
|
|
|
AddTargetFeature(Args, Features, options::OPT_msingle_float,
|
|
options::OPT_mdouble_float, "single-float");
|
|
AddTargetFeature(Args, Features, options::OPT_mips16, options::OPT_mno_mips16,
|
|
"mips16");
|
|
AddTargetFeature(Args, Features, options::OPT_mmicromips,
|
|
options::OPT_mno_micromips, "micromips");
|
|
AddTargetFeature(Args, Features, options::OPT_mdsp, options::OPT_mno_dsp,
|
|
"dsp");
|
|
AddTargetFeature(Args, Features, options::OPT_mdspr2, options::OPT_mno_dspr2,
|
|
"dspr2");
|
|
AddTargetFeature(Args, Features, options::OPT_mmsa, options::OPT_mno_msa,
|
|
"msa");
|
|
if (Arg *A = Args.getLastArg(
|
|
options::OPT_mstrict_align, options::OPT_mno_strict_align,
|
|
options::OPT_mno_unaligned_access, options::OPT_munaligned_access)) {
|
|
if (A->getOption().matches(options::OPT_mstrict_align) ||
|
|
A->getOption().matches(options::OPT_mno_unaligned_access))
|
|
Features.push_back(Args.MakeArgString("+strict-align"));
|
|
else
|
|
Features.push_back(Args.MakeArgString("-strict-align"));
|
|
}
|
|
|
|
// Add the last -mfp32/-mfpxx/-mfp64, if none are given and the ABI is O32
|
|
// pass -mfpxx, or if none are given and fp64a is default, pass fp64 and
|
|
// nooddspreg.
|
|
if (Arg *A = Args.getLastArg(options::OPT_mfp32, options::OPT_mfpxx,
|
|
options::OPT_mfp64)) {
|
|
if (A->getOption().matches(options::OPT_mfp32))
|
|
Features.push_back("-fp64");
|
|
else if (A->getOption().matches(options::OPT_mfpxx)) {
|
|
Features.push_back("+fpxx");
|
|
Features.push_back("+nooddspreg");
|
|
} else
|
|
Features.push_back("+fp64");
|
|
} else if (mips::shouldUseFPXX(Args, Triple, CPUName, ABIName, FloatABI)) {
|
|
Features.push_back("+fpxx");
|
|
Features.push_back("+nooddspreg");
|
|
} else if (Arg *A = Args.getLastArg(options::OPT_mmsa)) {
|
|
if (A->getOption().matches(options::OPT_mmsa))
|
|
Features.push_back("+fp64");
|
|
}
|
|
|
|
AddTargetFeature(Args, Features, options::OPT_mno_odd_spreg,
|
|
options::OPT_modd_spreg, "nooddspreg");
|
|
AddTargetFeature(Args, Features, options::OPT_mno_madd4, options::OPT_mmadd4,
|
|
"nomadd4");
|
|
AddTargetFeature(Args, Features, options::OPT_mmt, options::OPT_mno_mt, "mt");
|
|
AddTargetFeature(Args, Features, options::OPT_mcrc, options::OPT_mno_crc,
|
|
"crc");
|
|
AddTargetFeature(Args, Features, options::OPT_mvirt, options::OPT_mno_virt,
|
|
"virt");
|
|
AddTargetFeature(Args, Features, options::OPT_mginv, options::OPT_mno_ginv,
|
|
"ginv");
|
|
|
|
if (Arg *A = Args.getLastArg(options::OPT_mindirect_jump_EQ)) {
|
|
StringRef Val = StringRef(A->getValue());
|
|
if (Val == "hazard") {
|
|
Arg *B =
|
|
Args.getLastArg(options::OPT_mmicromips, options::OPT_mno_micromips);
|
|
Arg *C = Args.getLastArg(options::OPT_mips16, options::OPT_mno_mips16);
|
|
|
|
if (B && B->getOption().matches(options::OPT_mmicromips))
|
|
D.Diag(diag::err_drv_unsupported_indirect_jump_opt)
|
|
<< "hazard" << "micromips";
|
|
else if (C && C->getOption().matches(options::OPT_mips16))
|
|
D.Diag(diag::err_drv_unsupported_indirect_jump_opt)
|
|
<< "hazard" << "mips16";
|
|
else if (mips::supportsIndirectJumpHazardBarrier(CPUName))
|
|
Features.push_back("+use-indirect-jump-hazard");
|
|
else
|
|
D.Diag(diag::err_drv_unsupported_indirect_jump_opt)
|
|
<< "hazard" << CPUName;
|
|
} else
|
|
D.Diag(diag::err_drv_unknown_indirect_jump_opt) << Val;
|
|
}
|
|
}
|
|
|
|
mips::IEEE754Standard mips::getIEEE754Standard(StringRef &CPU) {
|
|
// Strictly speaking, mips32r2 and mips64r2 do not conform to the
|
|
// IEEE754-2008 standard. Support for this standard was first introduced
|
|
// in Release 3. However, other compilers have traditionally allowed it
|
|
// for Release 2 so we should do the same.
|
|
return (IEEE754Standard)llvm::StringSwitch<int>(CPU)
|
|
.Case("mips1", Legacy)
|
|
.Case("mips2", Legacy)
|
|
.Case("mips3", Legacy)
|
|
.Case("mips4", Legacy)
|
|
.Case("mips5", Legacy)
|
|
.Case("mips32", Legacy)
|
|
.Case("mips32r2", Legacy | Std2008)
|
|
.Case("mips32r3", Legacy | Std2008)
|
|
.Case("mips32r5", Legacy | Std2008)
|
|
.Case("mips32r6", Std2008)
|
|
.Case("mips64", Legacy)
|
|
.Case("mips64r2", Legacy | Std2008)
|
|
.Case("mips64r3", Legacy | Std2008)
|
|
.Case("mips64r5", Legacy | Std2008)
|
|
.Case("mips64r6", Std2008)
|
|
.Default(Std2008);
|
|
}
|
|
|
|
bool mips::hasCompactBranches(StringRef &CPU) {
|
|
// mips32r6 and mips64r6 have compact branches.
|
|
return llvm::StringSwitch<bool>(CPU)
|
|
.Case("mips32r6", true)
|
|
.Case("mips64r6", true)
|
|
.Default(false);
|
|
}
|
|
|
|
bool mips::hasMipsAbiArg(const ArgList &Args, const char *Value) {
|
|
Arg *A = Args.getLastArg(options::OPT_mabi_EQ);
|
|
return A && (A->getValue() == StringRef(Value));
|
|
}
|
|
|
|
bool mips::isUCLibc(const ArgList &Args) {
|
|
Arg *A = Args.getLastArg(options::OPT_m_libc_Group);
|
|
return A && A->getOption().matches(options::OPT_muclibc);
|
|
}
|
|
|
|
bool mips::isNaN2008(const Driver &D, const ArgList &Args,
|
|
const llvm::Triple &Triple) {
|
|
if (Arg *NaNArg = Args.getLastArg(options::OPT_mnan_EQ))
|
|
return llvm::StringSwitch<bool>(NaNArg->getValue())
|
|
.Case("2008", true)
|
|
.Case("legacy", false)
|
|
.Default(false);
|
|
|
|
// NaN2008 is the default for MIPS32r6/MIPS64r6.
|
|
return llvm::StringSwitch<bool>(getCPUName(D, Args, Triple))
|
|
.Cases("mips32r6", "mips64r6", true)
|
|
.Default(false);
|
|
}
|
|
|
|
bool mips::isFPXXDefault(const llvm::Triple &Triple, StringRef CPUName,
|
|
StringRef ABIName, mips::FloatABI FloatABI) {
|
|
if (ABIName != "32")
|
|
return false;
|
|
|
|
// FPXX shouldn't be used if either -msoft-float or -mfloat-abi=soft is
|
|
// present.
|
|
if (FloatABI == mips::FloatABI::Soft)
|
|
return false;
|
|
|
|
return llvm::StringSwitch<bool>(CPUName)
|
|
.Cases("mips2", "mips3", "mips4", "mips5", true)
|
|
.Cases("mips32", "mips32r2", "mips32r3", "mips32r5", true)
|
|
.Cases("mips64", "mips64r2", "mips64r3", "mips64r5", true)
|
|
.Default(false);
|
|
}
|
|
|
|
bool mips::shouldUseFPXX(const ArgList &Args, const llvm::Triple &Triple,
|
|
StringRef CPUName, StringRef ABIName,
|
|
mips::FloatABI FloatABI) {
|
|
bool UseFPXX = isFPXXDefault(Triple, CPUName, ABIName, FloatABI);
|
|
|
|
// FPXX shouldn't be used if -msingle-float is present.
|
|
if (Arg *A = Args.getLastArg(options::OPT_msingle_float,
|
|
options::OPT_mdouble_float))
|
|
if (A->getOption().matches(options::OPT_msingle_float))
|
|
UseFPXX = false;
|
|
// FP64 should be used for MSA.
|
|
if (Arg *A = Args.getLastArg(options::OPT_mmsa))
|
|
if (A->getOption().matches(options::OPT_mmsa))
|
|
UseFPXX = llvm::StringSwitch<bool>(CPUName)
|
|
.Cases("mips32r2", "mips32r3", "mips32r5", false)
|
|
.Cases("mips64r2", "mips64r3", "mips64r5", false)
|
|
.Default(UseFPXX);
|
|
|
|
return UseFPXX;
|
|
}
|
|
|
|
bool mips::supportsIndirectJumpHazardBarrier(StringRef &CPU) {
|
|
// Supporting the hazard barrier method of dealing with indirect
|
|
// jumps requires MIPSR2 support.
|
|
return llvm::StringSwitch<bool>(CPU)
|
|
.Case("mips32r2", true)
|
|
.Case("mips32r3", true)
|
|
.Case("mips32r5", true)
|
|
.Case("mips32r6", true)
|
|
.Case("mips64r2", true)
|
|
.Case("mips64r3", true)
|
|
.Case("mips64r5", true)
|
|
.Case("mips64r6", true)
|
|
.Case("octeon", true)
|
|
.Case("p5600", true)
|
|
.Case("i6400", true)
|
|
.Case("i6500", true)
|
|
.Default(false);
|
|
}
|