llvm-project/clang/test/Analysis/stack-capture-leak-arc.mm
ziqingluo-90 a5e354ec4d [analyzer] Fixing a bug raising false positives of stack block object
leaking in ARC mode

When ARC (automatic reference count) is enabled, (objective-c) block
objects are automatically retained and released thus they do not leak.
Without ARC, they still can leak from an expiring stack frame like
other stack variables.
With this commit, the static analyzer now puts a block object in an
"unknown" region if ARC is enabled because it is up to the
implementation to choose whether to put the object on stack initially
(then move to heap when needed) or in heap directly under ARC.
Therefore, the `StackAddrEscapeChecker` has no need to know
specifically about ARC at all and it will not report errors on objects
in "unknown" regions.

Reviewed By: NoQ (Artem Dergachev)

Differential Revision: https://reviews.llvm.org/D131009
2022-08-26 12:19:32 -07:00

228 lines
5.8 KiB
Plaintext

// RUN: %clang_analyze_cc1 -triple x86_64-apple-darwin10 -analyzer-checker=core,alpha.core.StackAddressAsyncEscape -fblocks -fobjc-arc -verify %s
typedef struct dispatch_queue_s *dispatch_queue_t;
typedef void (^dispatch_block_t)(void);
void dispatch_async(dispatch_queue_t queue, dispatch_block_t block);
typedef long dispatch_once_t;
void dispatch_once(dispatch_once_t *predicate, dispatch_block_t block);
typedef long dispatch_time_t;
void dispatch_after(dispatch_time_t when, dispatch_queue_t queue, dispatch_block_t block);
void dispatch_barrier_sync(dispatch_queue_t queue, dispatch_block_t block);
void f(int);
extern dispatch_queue_t queue;
extern dispatch_once_t *predicate;
extern dispatch_time_t when;
void test_block_expr_async() {
int x = 123;
int *p = &x;
dispatch_async(queue, ^{
*p = 321;
});
// expected-warning@-3 {{Address of stack memory associated with local variable 'x' \
is captured by an asynchronously-executed block}}
}
void test_block_expr_once_no_leak() {
int x = 123;
int *p = &x;
// synchronous, no warning
dispatch_once(predicate, ^{
*p = 321;
});
}
void test_block_expr_after() {
int x = 123;
int *p = &x;
dispatch_after(when, queue, ^{
*p = 321;
});
// expected-warning@-3 {{Address of stack memory associated with local variable 'x' \
is captured by an asynchronously-executed block}}
}
void test_block_expr_async_no_leak() {
int x = 123;
int *p = &x;
// no leak
dispatch_async(queue, ^{
int y = x;
++y;
});
}
void test_block_var_async() {
int x = 123;
int *p = &x;
void (^b)(void) = ^void(void) {
*p = 1;
};
dispatch_async(queue, b);
// expected-warning@-1 {{Address of stack memory associated with local variable 'x' \
is captured by an asynchronously-executed block}}
}
void test_block_with_ref_async() {
int x = 123;
int &r = x;
void (^b)(void) = ^void(void) {
r = 1;
};
dispatch_async(queue, b);
// expected-warning@-1 {{Address of stack memory associated with local variable 'x' \
is captured by an asynchronously-executed block}}
}
dispatch_block_t get_leaking_block() {
int leaked_x = 791;
int *p = &leaked_x;
return ^void(void) {
*p = 1;
};
// expected-warning@-3 {{Address of stack memory associated with local variable 'leaked_x' \
is captured by a returned block}}
}
void test_returned_from_func_block_async() {
dispatch_async(queue, get_leaking_block());
// expected-warning@-1 {{Address of stack memory associated with local variable 'leaked_x' \
is captured by an asynchronously-executed block}}
}
// synchronous, no leak
void test_block_var_once() {
int x = 123;
int *p = &x;
void (^b)(void) = ^void(void) {
*p = 1;
};
dispatch_once(predicate, b); // no-warning
}
void test_block_var_after() {
int x = 123;
int *p = &x;
void (^b)(void) = ^void(void) {
*p = 1;
};
dispatch_after(when, queue, b);
// expected-warning@-1 {{Address of stack memory associated with local variable 'x' \
is captured by an asynchronously-executed block}}
}
void test_block_var_async_no_leak() {
int x = 123;
int *p = &x;
void (^b)(void) = ^void(void) {
int y = x;
++y;
};
dispatch_async(queue, b); // no-warning
}
void test_block_inside_block_async_no_leak() {
int x = 123;
int *p = &x;
void (^inner)(void) = ^void(void) {
int y = x;
++y;
};
void (^outer)(void) = ^void(void) {
int z = x;
++z;
inner();
};
dispatch_async(queue, outer); // no-warning
}
dispatch_block_t accept_and_pass_back_block(dispatch_block_t block) {
block();
return block; // no-warning
}
void test_passing_continuation_no_leak() {
int x = 123;
int *p = &x;
void (^cont)(void) = ^void(void) {
*p = 128;
};
accept_and_pass_back_block(cont); // no-warning
}
@interface NSObject
@end
@protocol OS_dispatch_semaphore
@end
typedef NSObject<OS_dispatch_semaphore> *dispatch_semaphore_t;
dispatch_semaphore_t dispatch_semaphore_create(long value);
long dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout);
long dispatch_semaphore_signal(dispatch_semaphore_t dsema);
void test_no_leaks_on_semaphore_pattern() {
int x = 0;
int *p = &x;
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
dispatch_async(queue, ^{
*p = 1;
// Some work.
dispatch_semaphore_signal(semaphore);
}); // no-warning
// Do some other work concurrently with the asynchronous work
// Wait for the asynchronous work to finish
dispatch_semaphore_wait(semaphore, 1000);
}
void test_dispatch_barrier_sync() {
int buf[16];
for (int n = 0; n < 16; ++n) {
int *ptr = &buf[n];
// FIXME: Should not warn. The dispatch_barrier_sync() call ensures
// that the block does not outlive 'buf'.
dispatch_async(queue, ^{ // expected-warning{{Address of stack memory associated with local variable 'buf' is captured by an asynchronously-executed block}}
(void)ptr;
});
}
dispatch_barrier_sync(queue, ^{});
}
void output_block(dispatch_block_t * blk) {
int x = 0;
*blk = ^{ f(x); };
}
// Block objects themselves can never leak under ARC.
void test_no_block_leak() {
__block dispatch_block_t blk;
int x = 0;
dispatch_block_t p = ^{
blk = ^{
f(x);
};
};
p();
blk();
output_block(&blk);
blk();
}
// Block objects do not leak under ARC but stack variables of
// non-object kind indirectly referred by a block can leak.
dispatch_block_t test_block_referencing_variable_leak() {
int x = 0;
__block int * p = &x;
__block int * q = &x;
dispatch_async(queue, ^{// expected-warning {{Address of stack memory associated with local variable 'x' is captured by an asynchronously-executed block \
[alpha.core.StackAddressAsyncEscape]}}
++(*p);
});
return (dispatch_block_t) ^{// expected-warning {{Address of stack memory associated with local variable 'x' is captured by a returned block \
[core.StackAddressEscape]}}
++(*q);
};
}