llvm-project/clang/test/CodeGen/AArch64/pure-scalable-args.c
Nikita Popov c23b4fbdbb
[IR] Remove size argument from lifetime intrinsics (#150248)
Now that #149310 has restricted lifetime intrinsics to only work on
allocas, we can also drop the explicit size argument. Instead, the size
is implied by the alloca.

This removes the ability to only mark a prefix of an alloca alive/dead.
We never used that capability, so we should remove the need to handle
that possibility everywhere (though many key places, including stack
coloring, did not actually respect this).
2025-08-08 11:09:34 +02:00

481 lines
26 KiB
C

// RUN: %clang_cc1 -O3 -triple aarch64 -target-feature +sve -target-feature +sve2p1 -mvscale-min=1 -mvscale-max=1 -emit-llvm -o - %s | FileCheck %s --check-prefixes=CHECK,CHECK-AAPCS
// RUN: %clang_cc1 -O3 -triple arm64-apple-ios7.0 -target-abi darwinpcs -target-feature +sve -target-feature +sve2p1 -mvscale-min=1 -mvscale-max=1 -emit-llvm -o - %s | FileCheck %s --check-prefixes=CHECK,CHECK-DARWIN
// RUN: %clang_cc1 -O3 -triple aarch64-linux-gnu -target-feature +sve -target-feature +sve2p1 -mvscale-min=1 -mvscale-max=1 -emit-llvm -o - %s | FileCheck %s --check-prefixes=CHECK,CHECK-AAPCS
// REQUIRES: aarch64-registered-target
#include <arm_neon.h>
#include <arm_sve.h>
#include <stdarg.h>
typedef svfloat32_t fvec32 __attribute__((arm_sve_vector_bits(128)));
typedef svfloat64_t fvec64 __attribute__((arm_sve_vector_bits(128)));
typedef svbool_t bvec __attribute__((arm_sve_vector_bits(128)));
typedef svmfloat8_t mfvec8 __attribute__((arm_sve_vector_bits(128)));
typedef struct {
float f[4];
} HFA;
typedef struct {
mfloat8x16_t f[4];
} HVA;
// Pure Scalable Type, needs 4 Z-regs, 2 P-regs
typedef struct {
bvec a;
fvec64 x;
fvec32 y[2];
mfvec8 z;
bvec b;
} PST;
// Pure Scalable Type, 1 Z-reg
typedef struct {
fvec32 x;
} SmallPST;
// Big PST, does not fit in registers.
typedef struct {
struct {
bvec a;
fvec32 x[4];
} u[2];
fvec64 v;
} BigPST;
// A small aggregate type
typedef struct {
char data[16];
} SmallAgg;
// CHECK: %struct.PST = type { <2 x i8>, <2 x double>, [2 x <4 x float>], <16 x i8>, <2 x i8> }
// Test argument passing of Pure Scalable Types by examining the generated
// LLVM IR function declarations. A PST argument in C/C++ should map to:
// a) an `ptr` argument, if passed indirectly through memory
// b) a series of scalable vector arguments, if passed via registers
// Simple argument passing, PST expanded into registers.
// a -> p0
// b -> p1
// x -> q0
// y[0] -> q1
// y[1] -> q2
// z -> q3
void test_argpass_simple(PST *p) {
void argpass_simple_callee(PST);
argpass_simple_callee(*p);
}
// CHECK-AAPCS: define dso_local void @test_argpass_simple(ptr noundef readonly captures(none) %p)
// CHECK-AAPCS-NEXT: entry:
// CHECK-AAPCS-NEXT: %0 = load <2 x i8>, ptr %p, align 16
// CHECK-AAPCS-NEXT: %cast.scalable = tail call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v2i8(<vscale x 2 x i8> poison, <2 x i8> %0, i64 0)
// CHECK-AAPCS-NEXT: %1 = bitcast <vscale x 2 x i8> %cast.scalable to <vscale x 16 x i1>
// CHECK-AAPCS-NEXT: %2 = getelementptr inbounds nuw i8, ptr %p, i64 16
// CHECK-AAPCS-NEXT: %3 = load <2 x double>, ptr %2, align 16
// CHECK-AAPCS-NEXT: %cast.scalable1 = tail call <vscale x 2 x double> @llvm.vector.insert.nxv2f64.v2f64(<vscale x 2 x double> poison, <2 x double> %3, i64 0)
// CHECK-AAPCS-NEXT: %4 = getelementptr inbounds nuw i8, ptr %p, i64 32
// CHECK-AAPCS-NEXT: %5 = load <4 x float>, ptr %4, align 16
// CHECK-AAPCS-NEXT: %cast.scalable2 = tail call <vscale x 4 x float> @llvm.vector.insert.nxv4f32.v4f32(<vscale x 4 x float> poison, <4 x float> %5, i64 0)
// CHECK-AAPCS-NEXT: %6 = getelementptr inbounds nuw i8, ptr %p, i64 48
// CHECK-AAPCS-NEXT: %7 = load <4 x float>, ptr %6, align 16
// CHECK-AAPCS-NEXT: %cast.scalable3 = tail call <vscale x 4 x float> @llvm.vector.insert.nxv4f32.v4f32(<vscale x 4 x float> poison, <4 x float> %7, i64 0)
// CHECK-AAPCS-NEXT: %8 = getelementptr inbounds nuw i8, ptr %p, i64 64
// CHECK-AAPCS-NEXT: %9 = load <16 x i8>, ptr %8, align 16
// CHECK-AAPCS-NEXT: %cast.scalable4 = tail call <vscale x 16 x i8> @llvm.vector.insert.nxv16i8.v16i8(<vscale x 16 x i8> poison, <16 x i8> %9, i64 0)
// CHECK-AAPCS-NEXT: %10 = getelementptr inbounds nuw i8, ptr %p, i64 80
// CHECK-AAPCS-NEXT: %11 = load <2 x i8>, ptr %10, align 16
// CHECK-AAPCS-NEXT: %cast.scalable5 = tail call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v2i8(<vscale x 2 x i8> poison, <2 x i8> %11, i64 0)
// CHECK-AAPCS-NEXT: %12 = bitcast <vscale x 2 x i8> %cast.scalable5 to <vscale x 16 x i1>
// CHECK-AAPCS-NEXT: tail call void @argpass_simple_callee(<vscale x 16 x i1> %1, <vscale x 2 x double> %cast.scalable1, <vscale x 4 x float> %cast.scalable2, <vscale x 4 x float> %cast.scalable3, <vscale x 16 x i8> %cast.scalable4, <vscale x 16 x i1> %12)
// CHECK-AAPCS-NEXT: ret void
// CHECK-AAPCS: declare void @argpass_simple_callee(<vscale x 16 x i1>, <vscale x 2 x double>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 16 x i8>, <vscale x 16 x i1>)
// CHECK-DARWIN: declare void @argpass_simple_callee(ptr dead_on_return noundef)
// Boundary case of using the last available Z-reg, PST expanded.
// 0.0 -> d0-d3
// a -> p0
// b -> p1
// x -> q4
// y[0] -> q5
// y[1] -> q6
// z -> q7
void test_argpass_last_z(PST *p) {
void argpass_last_z_callee(double, double, double, double, PST);
argpass_last_z_callee(.0, .0, .0, .0, *p);
}
// CHECK-AAPCS: declare void @argpass_last_z_callee(double noundef, double noundef, double noundef, double noundef, <vscale x 16 x i1>, <vscale x 2 x double>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 16 x i8>, <vscale x 16 x i1>)
// CHECK-DARWIN: declare void @argpass_last_z_callee(double noundef, double noundef, double noundef, double noundef, ptr dead_on_return noundef)
// Like the above, but using a tuple type to occupy some registers.
// x -> z0.d-z3.d
// a -> p0
// b -> p1
// x -> q4
// y[0] -> q5
// y[1] -> q6
// z -> q7
void test_argpass_last_z_tuple(PST *p, svfloat64x4_t x) {
void argpass_last_z_tuple_callee(svfloat64x4_t, PST);
argpass_last_z_tuple_callee(x, *p);
}
// CHECK-AAPCS: declare void @argpass_last_z_tuple_callee(<vscale x 2 x double>, <vscale x 2 x double>, <vscale x 2 x double>, <vscale x 2 x double>, <vscale x 16 x i1>, <vscale x 2 x double>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 16 x i8>, <vscale x 16 x i1>)
// CHECK-DARWIN: declare void @argpass_last_z_tuple_callee(<vscale x 2 x double>, <vscale x 2 x double>, <vscale x 2 x double>, <vscale x 2 x double>, ptr dead_on_return noundef)
// Boundary case of using the last available P-reg, PST expanded.
// false -> p0-p1
// a -> p2
// b -> p3
// x -> q0
// y[0] -> q1
// y[1] -> q2
// z -> q3
void test_argpass_last_p(PST *p) {
void argpass_last_p_callee(svbool_t, svcount_t, PST);
argpass_last_p_callee(svpfalse(), svpfalse_c(), *p);
}
// CHECK-AAPCS: declare void @argpass_last_p_callee(<vscale x 16 x i1>, target("aarch64.svcount"), <vscale x 16 x i1>, <vscale x 2 x double>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 16 x i8>, <vscale x 16 x i1>)
// CHECK-DARWIN: declare void @argpass_last_p_callee(<vscale x 16 x i1>, target("aarch64.svcount"), ptr dead_on_return noundef)
// Not enough Z-regs, push PST to memory and pass a pointer, Z-regs and
// P-regs still available for other arguments
// u -> z0
// v -> q1
// w -> q2
// 0.0 -> d3-d4
// 1 -> w0
// *p -> memory, address -> x1
// 2 -> w2
// 3.0 -> d5
// true -> p0
void test_argpass_no_z(PST *p, double dummy, svmfloat8_t u, int8x16_t v, mfloat8x16_t w) {
void argpass_no_z_callee(svmfloat8_t, int8x16_t, mfloat8x16_t, double, double, int, PST, int, double, svbool_t);
argpass_no_z_callee(u, v, w, .0, .0, 1, *p, 2, 3.0, svptrue_b64());
}
// CHECK: declare void @argpass_no_z_callee(<vscale x 16 x i8>, <16 x i8> noundef, <16 x i8>, double noundef, double noundef, i32 noundef, ptr dead_on_return noundef, i32 noundef, double noundef, <vscale x 16 x i1>)
// Like the above, using a tuple to occupy some registers.
// x -> z0.d-z3.d
// 0.0 -> d4
// 1 -> w0
// *p -> memory, address -> x1
// 2 -> w2
// 3.0 -> d5
// true -> p0
void test_argpass_no_z_tuple_f64(PST *p, float dummy, svfloat64x4_t x) {
void argpass_no_z_tuple_f64_callee(svfloat64x4_t, double, int, PST, int,
double, svbool_t);
argpass_no_z_tuple_f64_callee(x, .0, 1, *p, 2, 3.0, svptrue_b64());
}
// CHECK: declare void @argpass_no_z_tuple_f64_callee(<vscale x 2 x double>, <vscale x 2 x double>, <vscale x 2 x double>, <vscale x 2 x double>, double noundef, i32 noundef, ptr dead_on_return noundef, i32 noundef, double noundef, <vscale x 16 x i1>)
// Likewise, using a different tuple.
// x -> z0.d-z3.d
// 0.0 -> d4
// 1 -> w0
// *p -> memory, address -> x1
// 2 -> w2
// 3.0 -> d5
// true -> p0
void test_argpass_no_z_tuple_mfp8(PST *p, float dummy, svmfloat8x4_t x) {
void argpass_no_z_tuple_mfp8_callee(svmfloat8x4_t, double, int, PST, int,
double, svbool_t);
argpass_no_z_tuple_mfp8_callee(x, .0, 1, *p, 2, 3.0, svptrue_b64());
}
// CHECK: declare void @argpass_no_z_tuple_mfp8_callee(<vscale x 16 x i8>, <vscale x 16 x i8>, <vscale x 16 x i8>, <vscale x 16 x i8>, double noundef, i32 noundef, ptr dead_on_return noundef, i32 noundef, double noundef, <vscale x 16 x i1>)
// Not enough Z-regs (consumed by a HFA), PST passed indirectly
// 0.0 -> d0
// *h -> s1-s4
// 1 -> w0
// *p -> memory, address -> x1
// p -> x1
// 2 -> w2
// true -> p0
void test_argpass_no_z_hfa(HFA *h, PST *p) {
void argpass_no_z_hfa_callee(double, HFA, int, PST, int, svbool_t);
argpass_no_z_hfa_callee(.0, *h, 1, *p, 2, svptrue_b64());
}
// CHECK-AAPCS: declare void @argpass_no_z_hfa_callee(double noundef, [4 x float] alignstack(8), i32 noundef, ptr dead_on_return noundef, i32 noundef, <vscale x 16 x i1>)
// CHECK-DARWIN: declare void @argpass_no_z_hfa_callee(double noundef, [4 x float], i32 noundef, ptr dead_on_return noundef, i32 noundef, <vscale x 16 x i1>)
// Not enough Z-regs (consumed by a HVA), PST passed indirectly
// 0.0 -> d0
// *h -> s1-s4
// 1 -> w0
// *p -> memory, address -> x1
// p -> x1
// 2 -> w2
// true -> p0
void test_argpass_no_z_hva(HVA *h, PST *p) {
void argpass_no_z_hva_callee(double, HVA, int, PST, int, svbool_t);
argpass_no_z_hva_callee(.0, *h, 1, *p, 2, svptrue_b64());
}
// CHECK-AAPCS: declare void @argpass_no_z_hva_callee(double noundef, [4 x <16 x i8>] alignstack(16), i32 noundef, ptr dead_on_return noundef, i32 noundef, <vscale x 16 x i1>)
// CHECK-DARWIN: declare void @argpass_no_z_hva_callee(double noundef, [4 x <16 x i8>], i32 noundef, ptr dead_on_return noundef, i32 noundef, <vscale x 16 x i1>)
// Not enough P-regs, PST passed indirectly, Z-regs and P-regs still available.
// true -> p0-p2
// 1 -> w0
// *p -> memory, address -> x1
// 2 -> w2
// 3.0 -> d0
// true -> p3
void test_argpass_no_p(PST *p) {
void argpass_no_p_callee(svbool_t, svbool_t, svbool_t, int, PST, int, double, svbool_t);
argpass_no_p_callee(svptrue_b8(), svptrue_b16(), svptrue_b32(), 1, *p, 2, 3.0, svptrue_b64());
}
// CHECK: declare void @argpass_no_p_callee(<vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>, i32 noundef, ptr dead_on_return noundef, i32 noundef, double noundef, <vscale x 16 x i1>)
// Like above, using a tuple to occupy some registers.
// P-regs still available.
// v -> p0-p1
// u -> p2
// 1 -> w0
// *p -> memory, address -> x1
// 2 -> w2
// 3.0 -> d0
// true -> p3
void test_argpass_no_p_tuple(PST *p, svbool_t u, svboolx2_t v) {
void argpass_no_p_tuple_callee(svboolx2_t, svbool_t, int, PST, int, double,
svbool_t);
argpass_no_p_tuple_callee(v, u, 1, *p, 2, 3.0, svptrue_b64());
}
// CHECK: declare void @argpass_no_p_tuple_callee(<vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>, i32 noundef, ptr dead_on_return noundef, i32 noundef, double noundef, <vscale x 16 x i1>)
// HFAs go back-to-back to memory, afterwards Z-regs not available, PST passed indirectly.
// 0.0 -> d0-d3
// *h -> memory
// *p -> memory, address -> x0
// *h -> memory
// false -> p0
void test_after_hfa(HFA *h, PST *p) {
void after_hfa_callee(double, double, double, double, double, HFA, PST, HFA, svbool_t);
after_hfa_callee(.0, .0, .0, .0, .0, *h, *p, *h, svpfalse());
}
// CHECK-AAPCS: declare void @after_hfa_callee(double noundef, double noundef, double noundef, double noundef, double noundef, [4 x float] alignstack(8), ptr dead_on_return noundef, [4 x float] alignstack(8), <vscale x 16 x i1>)
// CHECK-DARWIN: declare void @after_hfa_callee(double noundef, double noundef, double noundef, double noundef, double noundef, [4 x float], ptr dead_on_return noundef, [4 x float], <vscale x 16 x i1>)
// Small PST, not enough registers, passed indirectly, unlike other small
// aggregates.
// *s -> x0-x1
// 0.0 -> d0-d7
// *p -> memory, address -> x2
// 1.0 -> memory
// 2.0 -> memory (next to the above)
void test_small_pst(SmallPST *p, SmallAgg *s) {
void small_pst_callee(SmallAgg, double, double, double, double, double, double, double, double, double, SmallPST, double);
small_pst_callee(*s, .0, .0, .0, .0, .0, .0, .0, .0, 1.0, *p, 2.0);
}
// CHECK-AAPCS: declare void @small_pst_callee([2 x i64], double noundef, double noundef, double noundef, double noundef, double noundef, double noundef, double noundef, double noundef, double noundef, ptr dead_on_return noundef, double noundef)
// CHECK-DARWIN: declare void @small_pst_callee([2 x i64], double noundef, double noundef, double noundef, double noundef, double noundef, double noundef, double noundef, double noundef, double noundef, i128, double noundef)
// Simple return, PST expanded to registers
// p->a -> p0
// p->x -> q0
// p->y[0] -> q1
// p->y[1] -> q2
// p->z -> q3
// p->b -> p1
PST test_return(PST *p) {
return *p;
}
// CHECK-AAPCS: define dso_local <{ <vscale x 16 x i1>, <vscale x 2 x double>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 16 x i8>, <vscale x 16 x i1> }> @test_return(ptr
// CHECK-DARWIN: define void @test_return(ptr dead_on_unwind noalias writable writeonly sret(%struct.PST) align 16 captures(none) initializes((0, 96)) %agg.result, ptr noundef readonly captures(none) %p)
// Corner case of 1-element aggregate
// p->x -> q0
SmallPST test_return_small_pst(SmallPST *p) {
return *p;
}
// CHECK-AAPCS: define dso_local <vscale x 4 x float> @test_return_small_pst(ptr
// CHECK-DARWIN: define i128 @test_return_small_pst(ptr noundef readonly captures(none) %p)
// Big PST, returned indirectly
// *p -> *x8
BigPST test_return_big_pst(BigPST *p) {
return *p;
}
// CHECK-AAPCS: define dso_local void @test_return_big_pst(ptr dead_on_unwind noalias writable writeonly sret(%struct.BigPST) align 16 captures(none) initializes((0, 176)) %agg.result, ptr noundef readonly captures(none) %p)
// CHECK-DARWIN: define void @test_return_big_pst(ptr dead_on_unwind noalias writable writeonly sret(%struct.BigPST) align 16 captures(none) initializes((0, 176)) %agg.result, ptr noundef readonly captures(none) %p)
// Variadic arguments are unnamed, PST passed indirectly.
// (Passing SVE types to a variadic function currently unsupported by
// the AArch64 backend)
// p->a -> p0
// p->x -> q0
// p->y[0] -> q1
// p->y[1] -> q2
// p->z -> q3
// p->b -> p1
// *q -> memory, address -> x1
void test_pass_variadic(PST *p, PST *q) {
void pass_variadic_callee(PST, ...);
pass_variadic_callee(*p, *q);
}
// CHECK-AAPCS: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(96) %byval-temp, ptr noundef nonnull align 16 dereferenceable(96) %q, i64 96, i1 false)
// CHECK-AAPCS: call void (<vscale x 16 x i1>, <vscale x 2 x double>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 16 x i8>, <vscale x 16 x i1>, ...) @pass_variadic_callee(<vscale x 16 x i1> %1, <vscale x 2 x double> %cast.scalable1, <vscale x 4 x float> %cast.scalable2, <vscale x 4 x float> %cast.scalable3, <vscale x 16 x i8> %cast.scalable4, <vscale x 16 x i1> %12, ptr dead_on_return noundef nonnull %byval-temp)
// CHECK-DARWIN: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(96) %byval-temp, ptr noundef nonnull align 16 dereferenceable(96) %p, i64 96, i1 false)
// CHECK-DARWIN: call void @llvm.lifetime.start.p0(ptr nonnull %byval-temp1)
// CHECK-DARWIN: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(96) %byval-temp1, ptr noundef nonnull align 16 dereferenceable(96) %q, i64 96, i1 false)
// CHECK-DARWIN: call void (ptr, ...) @pass_variadic_callee(ptr dead_on_return noundef nonnull %byval-temp, ptr dead_on_return noundef nonnull %byval-temp1)
// Test passing a small PST, still passed indirectly, despite being <= 128 bits
void test_small_pst_variadic(SmallPST *p) {
void small_pst_variadic_callee(int, ...);
small_pst_variadic_callee(0, *p);
}
// CHECK-AAPCS: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(16) %byval-temp, ptr noundef nonnull align 16 dereferenceable(16) %p, i64 16, i1 false)
// CHECK-AAPCS: call void (i32, ...) @small_pst_variadic_callee(i32 noundef 0, ptr dead_on_return noundef nonnull %byval-temp)
// CHECK-DARWIN: %0 = load i128, ptr %p, align 16
// CHECK-DARWIN: tail call void (i32, ...) @small_pst_variadic_callee(i32 noundef 0, i128 %0)
// Test handling of a PST argument when passed in registers, from the callee side.
void test_argpass_callee_side(PST v) {
void use(PST *p);
use(&v);
}
// CHECK-AAPCS: define dso_local void @test_argpass_callee_side(<vscale x 16 x i1> %0, <vscale x 2 x double> %.coerce1, <vscale x 4 x float> %.coerce3, <vscale x 4 x float> %.coerce5, <vscale x 16 x i8> %.coerce7, <vscale x 16 x i1> %1)
// CHECK-AAPCS-NEXT: entry:
// CHECK-AAPCS-NEXT: %v = alloca %struct.PST, align 16
// CHECK-AAPCS-NEXT: %.coerce = bitcast <vscale x 16 x i1> %0 to <vscale x 2 x i8>
// CHECK-AAPCS-NEXT: %cast.fixed = tail call <2 x i8> @llvm.vector.extract.v2i8.nxv2i8(<vscale x 2 x i8> %.coerce, i64 0)
// CHECK-AAPCS-NEXT: store <2 x i8> %cast.fixed, ptr %v, align 16
// CHECK-AAPCS-NEXT: %2 = getelementptr inbounds nuw i8, ptr %v, i64 16
// CHECK-AAPCS-NEXT: %cast.fixed2 = tail call <2 x double> @llvm.vector.extract.v2f64.nxv2f64(<vscale x 2 x double> %.coerce1, i64 0)
// CHECK-AAPCS-NEXT: store <2 x double> %cast.fixed2, ptr %2, align 16
// CHECK-AAPCS-NEXT: %3 = getelementptr inbounds nuw i8, ptr %v, i64 32
// CHECK-AAPCS-NEXT: %cast.fixed4 = tail call <4 x float> @llvm.vector.extract.v4f32.nxv4f32(<vscale x 4 x float> %.coerce3, i64 0)
// CHECK-AAPCS-NEXT: store <4 x float> %cast.fixed4, ptr %3, align 16
// CHECK-AAPCS-NEXT: %4 = getelementptr inbounds nuw i8, ptr %v, i64 48
// CHECK-AAPCS-NEXT: %cast.fixed6 = tail call <4 x float> @llvm.vector.extract.v4f32.nxv4f32(<vscale x 4 x float> %.coerce5, i64 0)
// CHECK-AAPCS-NEXT: store <4 x float> %cast.fixed6, ptr %4, align 16
// CHECK-AAPCS-NEXT: %5 = getelementptr inbounds nuw i8, ptr %v, i64 64
// CHECK-AAPCS-NEXT: %cast.fixed8 = tail call <16 x i8> @llvm.vector.extract.v16i8.nxv16i8(<vscale x 16 x i8> %.coerce7, i64 0)
// CHECK-AAPCS-NEXT: store <16 x i8> %cast.fixed8, ptr %5, align 16
// CHECK-AAPCS-NEXT: %6 = getelementptr inbounds nuw i8, ptr %v, i64 80
// CHECK-AAPCS-NEXT: %.coerce9 = bitcast <vscale x 16 x i1> %1 to <vscale x 2 x i8>
// CHECK-AAPCS-NEXT: %cast.fixed10 = tail call <2 x i8> @llvm.vector.extract.v2i8.nxv2i8(<vscale x 2 x i8> %.coerce9, i64 0)
// CHECK-AAPCS-NEXT: store <2 x i8> %cast.fixed10, ptr %6, align 16
// CHECK-AAPCS-NEXT: call void @use(ptr noundef nonnull %v)
// CHECK-AAPCS-NEXT: ret void
// CHECK-AAPCS-NEXT: }
// Test va_arg operation
#ifdef __cplusplus
extern "C"
#endif
void test_va_arg(int n, ...) {
va_list ap;
va_start(ap, n);
PST v = va_arg(ap, PST);
va_end(ap);
void use1(bvec, fvec32);
use1(v.a, v.y[1]);
}
// CHECK-AAPCS: define dso_local void @test_va_arg(i32 noundef %n, ...)
// CHECK-AAPCS-NEXT: entry:
// CHECK-AAPCS-NEXT: %ap = alloca %struct.__va_list, align 8
// CHECK-AAPCS-NEXT: call void @llvm.lifetime.start.p0(ptr nonnull %ap)
// CHECK-AAPCS-NEXT: call void @llvm.va_start.p0(ptr nonnull %ap)
// CHECK-AAPCS-NEXT: %gr_offs_p = getelementptr inbounds nuw i8, ptr %ap, i64 24
// CHECK-AAPCS-NEXT: %gr_offs = load i32, ptr %gr_offs_p, align 8
// CHECK-AAPCS-NEXT: %0 = icmp sgt i32 %gr_offs, -1
// CHECK-AAPCS-NEXT: br i1 %0, label %vaarg.on_stack, label %vaarg.maybe_reg
// CHECK-AAPCS-EMPTY:
// CHECK-AAPCS-NEXT: vaarg.maybe_reg: ; preds = %entry
// Increment by 8, size of the pointer to the argument value, not size of the argument value itself.
// CHECK-AAPCS-NEXT: %new_reg_offs = add nsw i32 %gr_offs, 8
// CHECK-AAPCS-NEXT: store i32 %new_reg_offs, ptr %gr_offs_p, align 8
// CHECK-AAPCS-NEXT: %inreg = icmp samesign ult i32 %gr_offs, -7
// CHECK-AAPCS-NEXT: br i1 %inreg, label %vaarg.in_reg, label %vaarg.on_stack
// CHECK-AAPCS-EMPTY:
// CHECK-AAPCS-NEXT: vaarg.in_reg: ; preds = %vaarg.maybe_reg
// CHECK-AAPCS-NEXT: %reg_top_p = getelementptr inbounds nuw i8, ptr %ap, i64 8
// CHECK-AAPCS-NEXT: %reg_top = load ptr, ptr %reg_top_p, align 8
// CHECK-AAPCS-NEXT: %1 = sext i32 %gr_offs to i64
// CHECK-AAPCS-NEXT: %2 = getelementptr inbounds i8, ptr %reg_top, i64 %1
// CHECK-AAPCS-NEXT: br label %vaarg.end
// CHECK-AAPCS-EMPTY:
// CHECK-AAPCS-NEXT: vaarg.on_stack: ; preds = %vaarg.maybe_reg, %entry
// CHECK-AAPCS-NEXT: %stack = load ptr, ptr %ap, align 8
// CHECK-AAPCS-NEXT: %new_stack = getelementptr inbounds nuw i8, ptr %stack, i64 8
// CHECK-AAPCS-NEXT: store ptr %new_stack, ptr %ap, align 8
// CHECK-AAPCS-NEXT: br label %vaarg.end
// CHECK-AAPCS-EMPTY:
// CHECK-AAPCS-NEXT: vaarg.end: ; preds = %vaarg.on_stack, %vaarg.in_reg
// CHECK-AAPCS-NEXT: %vaargs.addr = phi ptr [ %2, %vaarg.in_reg ], [ %stack, %vaarg.on_stack ]
// Extra indirection, for a composite passed indirectly.
// CHECK-AAPCS-NEXT: %vaarg.addr = load ptr, ptr %vaargs.addr, align 8
// CHECK-AAPCS-NEXT: %v.sroa.0.0.copyload = load <2 x i8>, ptr %vaarg.addr, align 16
// CHECK-AAPCS-NEXT: %v.sroa.43.0.vaarg.addr.sroa_idx = getelementptr inbounds nuw i8, ptr %vaarg.addr, i64 48
// CHECK-AAPCS-NEXT: %v.sroa.43.0.copyload = load <4 x float>, ptr %v.sroa.43.0.vaarg.addr.sroa_idx, align 16
// CHECK-AAPCS-NEXT: call void @llvm.va_end.p0(ptr nonnull %ap)
// CHECK-AAPCS-NEXT: %cast.scalable = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v2i8(<vscale x 2 x i8> poison, <2 x i8> %v.sroa.0.0.copyload, i64 0)
// CHECK-AAPCS-NEXT: %3 = bitcast <vscale x 2 x i8> %cast.scalable to <vscale x 16 x i1>
// CHECK-AAPCS-NEXT: %cast.scalable2 = call <vscale x 4 x float> @llvm.vector.insert.nxv4f32.v4f32(<vscale x 4 x float> poison, <4 x float> %v.sroa.43.0.copyload, i64 0)
// CHECK-AAPCS-NEXT: call void @use1(<vscale x 16 x i1> noundef %3, <vscale x 4 x float> noundef %cast.scalable2)
// CHECK-AAPCS-NEXT: call void @llvm.lifetime.end.p0(ptr nonnull %ap)
// CHECK-AAPCS-NEXT: ret void
// CHECK-AAPCS-NEXT: }
// CHECK-DARWIN: define void @test_va_arg(i32 noundef %n, ...)
// CHECK-DARWIN-NEXT: entry:
// CHECK-DARWIN-NEXT: %ap = alloca ptr, align 8
// CHECK-DARWIN-NEXT: call void @llvm.lifetime.start.p0(ptr nonnull %ap)
// CHECK-DARWIN-NEXT: call void @llvm.va_start.p0(ptr nonnull %ap)
// CHECK-DARWIN-NEXT: %argp.cur = load ptr, ptr %ap, align 8
// CHECK-DARWIN-NEXT: %argp.next = getelementptr inbounds nuw i8, ptr %argp.cur, i64 8
// CHECK-DARWIN-NEXT: store ptr %argp.next, ptr %ap, align 8
// CHECK-DARWIN-NEXT: %0 = load ptr, ptr %argp.cur, align 8
// CHECK-DARWIN-NEXT: %v.sroa.0.0.copyload = load <2 x i8>, ptr %0, align 16
// CHECK-DARWIN-NEXT: %v.sroa.43.0..sroa_idx = getelementptr inbounds nuw i8, ptr %0, i64 48
// CHECK-DARWIN-NEXT: %v.sroa.43.0.copyload = load <4 x float>, ptr %v.sroa.43.0..sroa_idx, align 16
// CHECK-DARWIN-NEXT: call void @llvm.va_end.p0(ptr nonnull %ap)
// CHECK-DARWIN-NEXT: %cast.scalable = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v2i8(<vscale x 2 x i8> poison, <2 x i8> %v.sroa.0.0.copyload, i64 0)
// CHECK-DARWIN-NEXT: %1 = bitcast <vscale x 2 x i8> %cast.scalable to <vscale x 16 x i1>
// CHECK-DARWIN-NEXT: %cast.scalable2 = call <vscale x 4 x float> @llvm.vector.insert.nxv4f32.v4f32(<vscale x 4 x float> poison, <4 x float> %v.sroa.43.0.copyload, i64 0)
// CHECK-DARWIN-NEXT: call void @use1(<vscale x 16 x i1> noundef %1, <vscale x 4 x float> noundef %cast.scalable2)
// CHECK-DARWIN-NEXT: call void @llvm.lifetime.end.p0(ptr nonnull %ap)
// CHECK-DARWIN-NEXT: ret void
// CHECK-DARWIN-NEXT: }
// Regression test for incorrect passing of SVE vector tuples
// The whole `y` need to be passed indirectly.
void test_tuple_reg_count(svfloat32_t x, svfloat32x2_t y) {
void test_tuple_reg_count_callee(svfloat32_t, svfloat32_t, svfloat32_t, svfloat32_t,
svfloat32_t, svfloat32_t, svfloat32_t, svfloat32x2_t);
test_tuple_reg_count_callee(x, x, x, x, x, x, x, y);
}
// CHECK-AAPCS: declare void @test_tuple_reg_count_callee(<vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, ptr dead_on_return noundef)
// CHECK-DARWIN: declare void @test_tuple_reg_count_callee(<vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>, <vscale x 4 x float>)
// Regression test for incorrect passing of SVE vector tuples
// The whole `y` need to be passed indirectly.
void test_tuple_reg_count_bool(svboolx4_t x, svboolx4_t y) {
void test_tuple_reg_count_bool_callee(svboolx4_t, svboolx4_t);
test_tuple_reg_count_bool_callee(x, y);
}
// CHECK-AAPCS: declare void @test_tuple_reg_count_bool_callee(<vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>, ptr dead_on_return noundef)
// CHECK-DARWIN: declare void @test_tuple_reg_count_bool_callee(<vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>, <vscale x 16 x i1>)