Kunqiu Chen 0aafeb8ba1
Reland [TSan] Clarify and enforce shadow end alignment (#146676)
#144648 was reverted because it failed the new sanitizer test
`munmap_clear_shadow.c` in IOS's CI.
That issue could be fixed by disabling the test on some platforms, due
to the incompatibility of the test on these platforms.

In detail, we should disable the test in FreeBSD, Apple, NetBSD,
Solaris, and Haiku, where `ReleaseMemoryPagesToOS` executes
`madvise(beg, end, MADV_FREE)`, which tags the relevant pages as 'FREE'
and does not release them immediately.
2025-07-02 20:28:30 +08:00

307 lines
9.3 KiB
C++

//===-- tsan_sync.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_sync.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
namespace __tsan {
void DDMutexInit(ThreadState *thr, uptr pc, SyncVar *s);
SyncVar::SyncVar() : mtx(MutexTypeSyncVar) { Reset(); }
void SyncVar::Init(ThreadState *thr, uptr pc, uptr addr, bool save_stack) {
Reset();
this->addr = addr;
next = 0;
if (save_stack && !SANITIZER_GO) // Go does not use them
creation_stack_id = CurrentStackId(thr, pc);
if (common_flags()->detect_deadlocks)
DDMutexInit(thr, pc, this);
}
void SyncVar::Reset() {
CHECK(!ctx->resetting);
creation_stack_id = kInvalidStackID;
owner_tid = kInvalidTid;
last_lock.Reset();
recursion = 0;
atomic_store_relaxed(&flags, 0);
Free(clock);
Free(read_clock);
}
MetaMap::MetaMap()
: block_alloc_("heap block allocator"), sync_alloc_("sync allocator") {}
void MetaMap::AllocBlock(ThreadState *thr, uptr pc, uptr p, uptr sz) {
u32 idx = block_alloc_.Alloc(&thr->proc()->block_cache);
MBlock *b = block_alloc_.Map(idx);
b->siz = sz;
b->tag = 0;
b->tid = thr->tid;
b->stk = CurrentStackId(thr, pc);
u32 *meta = MemToMeta(p);
DCHECK_EQ(*meta, 0);
*meta = idx | kFlagBlock;
}
uptr MetaMap::FreeBlock(Processor *proc, uptr p, bool reset) {
MBlock* b = GetBlock(p);
if (b == 0)
return 0;
uptr sz = RoundUpTo(b->siz, kMetaShadowCell);
FreeRange(proc, p, sz, reset);
return sz;
}
bool MetaMap::FreeRange(Processor *proc, uptr p, uptr sz, bool reset) {
bool has_something = false;
u32 *meta = MemToMeta(p);
u32 *end = MemToMeta(p + sz);
if (end == meta)
end++;
for (; meta < end; meta++) {
u32 idx = *meta;
if (idx == 0) {
// Note: don't write to meta in this case -- the block can be huge.
continue;
}
*meta = 0;
has_something = true;
while (idx != 0) {
if (idx & kFlagBlock) {
block_alloc_.Free(&proc->block_cache, idx & ~kFlagMask);
break;
} else if (idx & kFlagSync) {
DCHECK(idx & kFlagSync);
SyncVar *s = sync_alloc_.Map(idx & ~kFlagMask);
u32 next = s->next;
if (reset)
s->Reset();
sync_alloc_.Free(&proc->sync_cache, idx & ~kFlagMask);
idx = next;
} else {
CHECK(0);
}
}
}
return has_something;
}
// ResetRange removes all meta objects from the range.
// It is called for large mmap-ed regions. The function is best-effort wrt
// freeing of meta objects, because we don't want to page in the whole range
// which can be huge. The function probes pages one-by-one until it finds a page
// without meta objects, at this point it stops freeing meta objects. Because
// thread stacks grow top-down, we do the same starting from end as well.
void MetaMap::ResetRange(Processor *proc, uptr p, uptr sz, bool reset) {
if (SANITIZER_GO) {
// UnmapOrDie/MmapFixedNoReserve does not work on Windows,
// so we do the optimization only for C/C++.
FreeRange(proc, p, sz, reset);
return;
}
const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
if (sz <= 4 * kPageSize) {
// If the range is small, just do the normal free procedure.
FreeRange(proc, p, sz, reset);
return;
}
// First, round both ends of the range to page size.
uptr diff = RoundUp(p, kPageSize) - p;
if (diff != 0) {
FreeRange(proc, p, diff, reset);
p += diff;
sz -= diff;
}
diff = p + sz - RoundDown(p + sz, kPageSize);
if (diff != 0) {
FreeRange(proc, p + sz - diff, diff, reset);
sz -= diff;
}
// Now we must have a non-empty page-aligned range.
CHECK_GT(sz, 0);
CHECK_EQ(p, RoundUp(p, kPageSize));
CHECK_EQ(sz, RoundUp(sz, kPageSize));
const uptr p0 = p;
const uptr sz0 = sz;
// Probe start of the range.
for (uptr checked = 0; sz > 0; checked += kPageSize) {
bool has_something = FreeRange(proc, p, kPageSize, reset);
p += kPageSize;
sz -= kPageSize;
if (!has_something && checked > (128 << 10))
break;
}
// Probe end of the range.
for (uptr checked = 0; sz > 0; checked += kPageSize) {
bool has_something = FreeRange(proc, p + sz - kPageSize, kPageSize, reset);
sz -= kPageSize;
// Stacks grow down, so sync object are most likely at the end of the region
// (if it is a stack). The very end of the stack is TLS and tsan increases
// TLS by at least 256K, so check at least 512K.
if (!has_something && checked > (512 << 10))
break;
}
// Finally, page out the whole range (including the parts that we've just
// freed). Note: we can't simply madvise, because we need to leave a zeroed
// range (otherwise __tsan_java_move can crash if it encounters a left-over
// meta objects in java heap).
uptr metap = (uptr)MemToMeta(p0);
uptr metasz = sz0 / kMetaRatio;
UnmapOrDie((void*)metap, metasz);
if (!MmapFixedSuperNoReserve(metap, metasz))
Die();
}
void MetaMap::ResetClocks() {
// This can be called from the background thread
// which does not have proc/cache.
// The cache is too large for stack.
static InternalAllocatorCache cache;
internal_memset(&cache, 0, sizeof(cache));
internal_allocator()->InitCache(&cache);
sync_alloc_.ForEach([&](SyncVar *s) {
if (s->clock) {
InternalFree(s->clock, &cache);
s->clock = nullptr;
}
if (s->read_clock) {
InternalFree(s->read_clock, &cache);
s->read_clock = nullptr;
}
s->last_lock.Reset();
});
internal_allocator()->DestroyCache(&cache);
}
MBlock* MetaMap::GetBlock(uptr p) {
u32 *meta = MemToMeta(p);
u32 idx = *meta;
for (;;) {
if (idx == 0)
return 0;
if (idx & kFlagBlock)
return block_alloc_.Map(idx & ~kFlagMask);
DCHECK(idx & kFlagSync);
SyncVar * s = sync_alloc_.Map(idx & ~kFlagMask);
idx = s->next;
}
}
SyncVar *MetaMap::GetSync(ThreadState *thr, uptr pc, uptr addr, bool create,
bool save_stack) {
DCHECK(!create || thr->slot_locked);
u32 *meta = MemToMeta(addr);
u32 idx0 = *meta;
u32 myidx = 0;
SyncVar *mys = nullptr;
for (;;) {
for (u32 idx = idx0; idx && !(idx & kFlagBlock);) {
DCHECK(idx & kFlagSync);
SyncVar * s = sync_alloc_.Map(idx & ~kFlagMask);
if (LIKELY(s->addr == addr)) {
if (UNLIKELY(myidx != 0)) {
mys->Reset();
sync_alloc_.Free(&thr->proc()->sync_cache, myidx);
}
return s;
}
idx = s->next;
}
if (!create)
return nullptr;
if (UNLIKELY(*meta != idx0)) {
idx0 = *meta;
continue;
}
if (LIKELY(myidx == 0)) {
myidx = sync_alloc_.Alloc(&thr->proc()->sync_cache);
mys = sync_alloc_.Map(myidx);
mys->Init(thr, pc, addr, save_stack);
}
mys->next = idx0;
if (atomic_compare_exchange_strong((atomic_uint32_t*)meta, &idx0,
myidx | kFlagSync, memory_order_release)) {
return mys;
}
}
}
void MetaMap::MoveMemory(uptr src, uptr dst, uptr sz) {
// src and dst can overlap,
// there are no concurrent accesses to the regions (e.g. stop-the-world).
CHECK_NE(src, dst);
CHECK_NE(sz, 0);
// The current MoveMemory implementation behaves incorrectly when src, dst,
// and sz are not aligned to kMetaShadowCell.
// For example, with kMetaShadowCell == 8:
// - src = 4: unexpectedly clears the metadata for the range [0, 4).
// - src = 16, dst = 4, size = 8: A sync variable for addr = 20, which should
// be moved to the metadata for address 8, is incorrectly moved to the
// metadata for address 0 instead.
// - src = 0, sz = 4: fails to move the tail metadata.
// Therefore, the following assertions is needed.
DCHECK_EQ(src % kMetaShadowCell, 0);
DCHECK_EQ(dst % kMetaShadowCell, 0);
DCHECK_EQ(sz % kMetaShadowCell, 0);
uptr diff = dst - src;
u32 *src_meta, *dst_meta, *src_meta_end;
uptr inc;
if (dst < src) {
src_meta = MemToMeta(src);
dst_meta = MemToMeta(dst);
src_meta_end = MemToMeta(src + sz);
inc = 1;
} else {
src_meta = MemToMeta(src + sz) - 1;
dst_meta = MemToMeta(dst + sz) - 1;
src_meta_end = MemToMeta(src) - 1;
inc = -1;
}
for (; src_meta != src_meta_end; src_meta += inc, dst_meta += inc) {
CHECK_EQ(*dst_meta, 0);
u32 idx = *src_meta;
*src_meta = 0;
*dst_meta = idx;
// Patch the addresses in sync objects.
while (idx != 0) {
if (idx & kFlagBlock)
break;
CHECK(idx & kFlagSync);
SyncVar *s = sync_alloc_.Map(idx & ~kFlagMask);
s->addr += diff;
idx = s->next;
}
}
}
void MetaMap::OnProcIdle(Processor *proc) {
block_alloc_.FlushCache(&proc->block_cache);
sync_alloc_.FlushCache(&proc->sync_cache);
}
MetaMap::MemoryStats MetaMap::GetMemoryStats() const {
MemoryStats stats;
stats.mem_block = block_alloc_.AllocatedMemory();
stats.sync_obj = sync_alloc_.AllocatedMemory();
return stats;
}
} // namespace __tsan