
Currently, the NVPTXPrologEpilogPass will crash if LIFETIME_START or LIFETIME_END instructions are encountered. Usually this isn't a problem since a couple earlier passes will always remove them. However, when using opt-bisect-limit crashes can occur. This can hinder debugging and reveals a potential future problem if these optimization passes change their behavior. https://cuda.godbolt.org/z/E81xxKGdb This change updates NVPTXPrologEpilogPass and NVPTXRegisterInfo::eliminateFrameIndex to gracefully handle these instructions by simply removing them. While I'm here I also did some general fixup in NVPTXPrologEpilogPass to make it look more like PrologEpilogInserter (from which it was copied).
505 lines
19 KiB
C++
505 lines
19 KiB
C++
//===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Top-level implementation for the NVPTX target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NVPTXTargetMachine.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXAliasAnalysis.h"
|
|
#include "NVPTXAllocaHoisting.h"
|
|
#include "NVPTXAtomicLower.h"
|
|
#include "NVPTXCtorDtorLowering.h"
|
|
#include "NVPTXLowerAggrCopies.h"
|
|
#include "NVPTXMachineFunctionInfo.h"
|
|
#include "NVPTXTargetObjectFile.h"
|
|
#include "NVPTXTargetTransformInfo.h"
|
|
#include "TargetInfo/NVPTXTargetInfo.h"
|
|
#include "llvm/Analysis/KernelInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Passes/PassBuilder.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include "llvm/Transforms/IPO/ExpandVariadics.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/GVN.h"
|
|
#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
|
|
#include <cassert>
|
|
#include <optional>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
|
|
// LSV is still relatively new; this switch lets us turn it off in case we
|
|
// encounter (or suspect) a bug.
|
|
static cl::opt<bool>
|
|
DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
|
|
cl::desc("Disable load/store vectorizer"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
// TODO: Remove this flag when we are confident with no regressions.
|
|
static cl::opt<bool> DisableRequireStructuredCFG(
|
|
"disable-nvptx-require-structured-cfg",
|
|
cl::desc("Transitional flag to turn off NVPTX's requirement on preserving "
|
|
"structured CFG. The requirement should be disabled only when "
|
|
"unexpected regressions happen."),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> UseShortPointersOpt(
|
|
"nvptx-short-ptr",
|
|
cl::desc(
|
|
"Use 32-bit pointers for accessing const/local/shared address spaces."),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
// byval arguments in NVPTX are special. We're only allowed to read from them
|
|
// using a special instruction, and if we ever need to write to them or take an
|
|
// address, we must make a local copy and use it, instead.
|
|
//
|
|
// The problem is that local copies are very expensive, and we create them very
|
|
// late in the compilation pipeline, so LLVM does not have much of a chance to
|
|
// eliminate them, if they turn out to be unnecessary.
|
|
//
|
|
// One way around that is to create such copies early on, and let them percolate
|
|
// through the optimizations. The copying itself will never trigger creation of
|
|
// another copy later on, as the reads are allowed. If LLVM can eliminate it,
|
|
// it's a win. It the full optimization pipeline can't remove the copy, that's
|
|
// as good as it gets in terms of the effort we could've done, and it's
|
|
// certainly a much better effort than what we do now.
|
|
//
|
|
// This early injection of the copies has potential to create undesireable
|
|
// side-effects, so it's disabled by default, for now, until it sees more
|
|
// testing.
|
|
static cl::opt<bool> EarlyByValArgsCopy(
|
|
"nvptx-early-byval-copy",
|
|
cl::desc("Create a copy of byval function arguments early."),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
extern "C" LLVM_ABI LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXTarget() {
|
|
// Register the target.
|
|
RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32());
|
|
RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64());
|
|
|
|
PassRegistry &PR = *PassRegistry::getPassRegistry();
|
|
// FIXME: This pass is really intended to be invoked during IR optimization,
|
|
// but it's very NVPTX-specific.
|
|
initializeNVVMReflectLegacyPassPass(PR);
|
|
initializeNVVMIntrRangePass(PR);
|
|
initializeGenericToNVVMLegacyPassPass(PR);
|
|
initializeNVPTXAllocaHoistingPass(PR);
|
|
initializeNVPTXAsmPrinterPass(PR);
|
|
initializeNVPTXAssignValidGlobalNamesPass(PR);
|
|
initializeNVPTXAtomicLowerPass(PR);
|
|
initializeNVPTXLowerArgsLegacyPassPass(PR);
|
|
initializeNVPTXLowerAllocaPass(PR);
|
|
initializeNVPTXLowerUnreachablePass(PR);
|
|
initializeNVPTXCtorDtorLoweringLegacyPass(PR);
|
|
initializeNVPTXLowerAggrCopiesPass(PR);
|
|
initializeNVPTXProxyRegErasurePass(PR);
|
|
initializeNVPTXForwardParamsPassPass(PR);
|
|
initializeNVPTXDAGToDAGISelLegacyPass(PR);
|
|
initializeNVPTXAAWrapperPassPass(PR);
|
|
initializeNVPTXExternalAAWrapperPass(PR);
|
|
initializeNVPTXPeepholePass(PR);
|
|
initializeNVPTXTagInvariantLoadLegacyPassPass(PR);
|
|
initializeNVPTXPrologEpilogPassPass(PR);
|
|
}
|
|
|
|
static std::string computeDataLayout(bool is64Bit, bool UseShortPointers) {
|
|
std::string Ret = "e";
|
|
|
|
// Tensor Memory (addrspace:6) is always 32-bits.
|
|
// Distributed Shared Memory (addrspace:7) follows shared memory
|
|
// (addrspace:3).
|
|
if (!is64Bit)
|
|
Ret += "-p:32:32-p6:32:32-p7:32:32";
|
|
else if (UseShortPointers) {
|
|
Ret += "-p3:32:32-p4:32:32-p5:32:32-p6:32:32-p7:32:32";
|
|
} else
|
|
Ret += "-p6:32:32";
|
|
|
|
Ret += "-i64:64-i128:128-v16:16-v32:32-n16:32:64";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
std::optional<Reloc::Model> RM,
|
|
std::optional<CodeModel::Model> CM,
|
|
CodeGenOptLevel OL, bool is64bit)
|
|
// The pic relocation model is used regardless of what the client has
|
|
// specified, as it is the only relocation model currently supported.
|
|
: CodeGenTargetMachineImpl(T,
|
|
computeDataLayout(is64bit, UseShortPointersOpt),
|
|
TT, CPU, FS, Options, Reloc::PIC_,
|
|
getEffectiveCodeModel(CM, CodeModel::Small), OL),
|
|
is64bit(is64bit), TLOF(std::make_unique<NVPTXTargetObjectFile>()),
|
|
Subtarget(TT, std::string(CPU), std::string(FS), *this),
|
|
StrPool(StrAlloc) {
|
|
if (TT.getOS() == Triple::NVCL)
|
|
drvInterface = NVPTX::NVCL;
|
|
else
|
|
drvInterface = NVPTX::CUDA;
|
|
if (!DisableRequireStructuredCFG)
|
|
setRequiresStructuredCFG(true);
|
|
initAsmInfo();
|
|
}
|
|
|
|
NVPTXTargetMachine::~NVPTXTargetMachine() = default;
|
|
|
|
void NVPTXTargetMachine32::anchor() {}
|
|
|
|
NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
std::optional<Reloc::Model> RM,
|
|
std::optional<CodeModel::Model> CM,
|
|
CodeGenOptLevel OL, bool JIT)
|
|
: NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
|
|
|
|
void NVPTXTargetMachine64::anchor() {}
|
|
|
|
NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
std::optional<Reloc::Model> RM,
|
|
std::optional<CodeModel::Model> CM,
|
|
CodeGenOptLevel OL, bool JIT)
|
|
: NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
|
|
|
|
namespace {
|
|
|
|
class NVPTXPassConfig : public TargetPassConfig {
|
|
public:
|
|
NVPTXPassConfig(NVPTXTargetMachine &TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
NVPTXTargetMachine &getNVPTXTargetMachine() const {
|
|
return getTM<NVPTXTargetMachine>();
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
bool addInstSelector() override;
|
|
void addPreRegAlloc() override;
|
|
void addPostRegAlloc() override;
|
|
void addMachineSSAOptimization() override;
|
|
|
|
FunctionPass *createTargetRegisterAllocator(bool) override;
|
|
void addFastRegAlloc() override;
|
|
void addOptimizedRegAlloc() override;
|
|
|
|
bool addRegAssignAndRewriteFast() override {
|
|
llvm_unreachable("should not be used");
|
|
}
|
|
|
|
bool addRegAssignAndRewriteOptimized() override {
|
|
llvm_unreachable("should not be used");
|
|
}
|
|
|
|
private:
|
|
// If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
|
|
// function is only called in opt mode.
|
|
void addEarlyCSEOrGVNPass();
|
|
|
|
// Add passes that propagate special memory spaces.
|
|
void addAddressSpaceInferencePasses();
|
|
|
|
// Add passes that perform straight-line scalar optimizations.
|
|
void addStraightLineScalarOptimizationPasses();
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new NVPTXPassConfig(*this, PM);
|
|
}
|
|
|
|
MachineFunctionInfo *NVPTXTargetMachine::createMachineFunctionInfo(
|
|
BumpPtrAllocator &Allocator, const Function &F,
|
|
const TargetSubtargetInfo *STI) const {
|
|
return NVPTXMachineFunctionInfo::create<NVPTXMachineFunctionInfo>(Allocator,
|
|
F, STI);
|
|
}
|
|
|
|
void NVPTXTargetMachine::registerEarlyDefaultAliasAnalyses(AAManager &AAM) {
|
|
AAM.registerFunctionAnalysis<NVPTXAA>();
|
|
}
|
|
|
|
void NVPTXTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
|
|
#define GET_PASS_REGISTRY "NVPTXPassRegistry.def"
|
|
#include "llvm/Passes/TargetPassRegistry.inc"
|
|
|
|
PB.registerPipelineStartEPCallback(
|
|
[this](ModulePassManager &PM, OptimizationLevel Level) {
|
|
// We do not want to fold out calls to nvvm.reflect early if the user
|
|
// has not provided a target architecture just yet.
|
|
if (Subtarget.hasTargetName())
|
|
PM.addPass(NVVMReflectPass(Subtarget.getSmVersion()));
|
|
|
|
FunctionPassManager FPM;
|
|
// Note: NVVMIntrRangePass was causing numerical discrepancies at one
|
|
// point, if issues crop up, consider disabling.
|
|
FPM.addPass(NVVMIntrRangePass());
|
|
if (EarlyByValArgsCopy)
|
|
FPM.addPass(NVPTXCopyByValArgsPass());
|
|
PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
|
|
});
|
|
|
|
if (!NoKernelInfoEndLTO) {
|
|
PB.registerFullLinkTimeOptimizationLastEPCallback(
|
|
[this](ModulePassManager &PM, OptimizationLevel Level) {
|
|
FunctionPassManager FPM;
|
|
FPM.addPass(KernelInfoPrinter(this));
|
|
PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
|
|
});
|
|
}
|
|
}
|
|
|
|
TargetTransformInfo
|
|
NVPTXTargetMachine::getTargetTransformInfo(const Function &F) const {
|
|
return TargetTransformInfo(std::make_unique<NVPTXTTIImpl>(this, F));
|
|
}
|
|
|
|
std::pair<const Value *, unsigned>
|
|
NVPTXTargetMachine::getPredicatedAddrSpace(const Value *V) const {
|
|
if (auto *II = dyn_cast<IntrinsicInst>(V)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::nvvm_isspacep_const:
|
|
return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_CONST);
|
|
case Intrinsic::nvvm_isspacep_global:
|
|
return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_GLOBAL);
|
|
case Intrinsic::nvvm_isspacep_local:
|
|
return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_LOCAL);
|
|
case Intrinsic::nvvm_isspacep_shared:
|
|
return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_SHARED);
|
|
case Intrinsic::nvvm_isspacep_shared_cluster:
|
|
return std::make_pair(II->getArgOperand(0),
|
|
llvm::ADDRESS_SPACE_SHARED_CLUSTER);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return std::make_pair(nullptr, -1);
|
|
}
|
|
|
|
void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
|
|
if (getOptLevel() == CodeGenOptLevel::Aggressive)
|
|
addPass(createGVNPass());
|
|
else
|
|
addPass(createEarlyCSEPass());
|
|
}
|
|
|
|
void NVPTXPassConfig::addAddressSpaceInferencePasses() {
|
|
// NVPTXLowerArgs emits alloca for byval parameters which can often
|
|
// be eliminated by SROA.
|
|
addPass(createSROAPass());
|
|
addPass(createNVPTXLowerAllocaPass());
|
|
// TODO: Consider running InferAddressSpaces during opt, earlier in the
|
|
// compilation flow.
|
|
addPass(createInferAddressSpacesPass());
|
|
addPass(createNVPTXAtomicLowerPass());
|
|
}
|
|
|
|
void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
|
|
addPass(createSeparateConstOffsetFromGEPPass());
|
|
addPass(createSpeculativeExecutionPass());
|
|
// ReassociateGEPs exposes more opportunites for SLSR. See
|
|
// the example in reassociate-geps-and-slsr.ll.
|
|
addPass(createStraightLineStrengthReducePass());
|
|
// SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
|
|
// EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
|
|
// for some of our benchmarks.
|
|
addEarlyCSEOrGVNPass();
|
|
// Run NaryReassociate after EarlyCSE/GVN to be more effective.
|
|
addPass(createNaryReassociatePass());
|
|
// NaryReassociate on GEPs creates redundant common expressions, so run
|
|
// EarlyCSE after it.
|
|
addPass(createEarlyCSEPass());
|
|
}
|
|
|
|
void NVPTXPassConfig::addIRPasses() {
|
|
// The following passes are known to not play well with virtual regs hanging
|
|
// around after register allocation (which in our case, is *all* registers).
|
|
// We explicitly disable them here. We do, however, need some functionality
|
|
// of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
|
|
// NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
|
|
disablePass(&PrologEpilogCodeInserterID);
|
|
disablePass(&MachineLateInstrsCleanupID);
|
|
disablePass(&MachineCopyPropagationID);
|
|
disablePass(&TailDuplicateLegacyID);
|
|
disablePass(&StackMapLivenessID);
|
|
disablePass(&PostRAMachineSinkingID);
|
|
disablePass(&PostRASchedulerID);
|
|
disablePass(&FuncletLayoutID);
|
|
disablePass(&PatchableFunctionID);
|
|
disablePass(&ShrinkWrapID);
|
|
disablePass(&RemoveLoadsIntoFakeUsesID);
|
|
|
|
addPass(createNVPTXAAWrapperPass());
|
|
addPass(createNVPTXExternalAAWrapperPass());
|
|
|
|
// NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
|
|
// it here does nothing. But since we need it for correctness when lowering
|
|
// to NVPTX, run it here too, in case whoever built our pass pipeline didn't
|
|
// call addEarlyAsPossiblePasses.
|
|
const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
|
|
addPass(createNVVMReflectPass(ST.getSmVersion()));
|
|
|
|
if (getOptLevel() != CodeGenOptLevel::None)
|
|
addPass(createNVPTXImageOptimizerPass());
|
|
addPass(createNVPTXAssignValidGlobalNamesPass());
|
|
addPass(createGenericToNVVMLegacyPass());
|
|
|
|
// NVPTXLowerArgs is required for correctness and should be run right
|
|
// before the address space inference passes.
|
|
addPass(createNVPTXLowerArgsPass());
|
|
if (getOptLevel() != CodeGenOptLevel::None) {
|
|
addAddressSpaceInferencePasses();
|
|
addStraightLineScalarOptimizationPasses();
|
|
}
|
|
|
|
addPass(createAtomicExpandLegacyPass());
|
|
addPass(createExpandVariadicsPass(ExpandVariadicsMode::Lowering));
|
|
addPass(createNVPTXCtorDtorLoweringLegacyPass());
|
|
|
|
// === LSR and other generic IR passes ===
|
|
TargetPassConfig::addIRPasses();
|
|
// EarlyCSE is not always strong enough to clean up what LSR produces. For
|
|
// example, GVN can combine
|
|
//
|
|
// %0 = add %a, %b
|
|
// %1 = add %b, %a
|
|
//
|
|
// and
|
|
//
|
|
// %0 = shl nsw %a, 2
|
|
// %1 = shl %a, 2
|
|
//
|
|
// but EarlyCSE can do neither of them.
|
|
if (getOptLevel() != CodeGenOptLevel::None) {
|
|
addEarlyCSEOrGVNPass();
|
|
if (!DisableLoadStoreVectorizer)
|
|
addPass(createLoadStoreVectorizerPass());
|
|
addPass(createSROAPass());
|
|
addPass(createNVPTXTagInvariantLoadsPass());
|
|
}
|
|
|
|
if (ST.hasPTXASUnreachableBug()) {
|
|
// Run LowerUnreachable to WAR a ptxas bug. See the commit description of
|
|
// 1ee4d880e8760256c606fe55b7af85a4f70d006d for more details.
|
|
const auto &Options = getNVPTXTargetMachine().Options;
|
|
addPass(createNVPTXLowerUnreachablePass(Options.TrapUnreachable,
|
|
Options.NoTrapAfterNoreturn));
|
|
}
|
|
}
|
|
|
|
bool NVPTXPassConfig::addInstSelector() {
|
|
addPass(createLowerAggrCopies());
|
|
addPass(createAllocaHoisting());
|
|
addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
|
|
addPass(createNVPTXReplaceImageHandlesPass());
|
|
|
|
return false;
|
|
}
|
|
|
|
void NVPTXPassConfig::addPreRegAlloc() {
|
|
addPass(createNVPTXForwardParamsPass());
|
|
// Remove Proxy Register pseudo instructions used to keep `callseq_end` alive.
|
|
addPass(createNVPTXProxyRegErasurePass());
|
|
}
|
|
|
|
void NVPTXPassConfig::addPostRegAlloc() {
|
|
addPass(createNVPTXPrologEpilogPass());
|
|
if (getOptLevel() != CodeGenOptLevel::None) {
|
|
// NVPTXPrologEpilogPass calculates frame object offset and replace frame
|
|
// index with VRFrame register. NVPTXPeephole need to be run after that and
|
|
// will replace VRFrame with VRFrameLocal when possible.
|
|
addPass(createNVPTXPeephole());
|
|
}
|
|
}
|
|
|
|
FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
|
|
return nullptr; // No reg alloc
|
|
}
|
|
|
|
void NVPTXPassConfig::addFastRegAlloc() {
|
|
addPass(&PHIEliminationID);
|
|
addPass(&TwoAddressInstructionPassID);
|
|
}
|
|
|
|
void NVPTXPassConfig::addOptimizedRegAlloc() {
|
|
addPass(&ProcessImplicitDefsID);
|
|
addPass(&LiveVariablesID);
|
|
addPass(&MachineLoopInfoID);
|
|
addPass(&PHIEliminationID);
|
|
|
|
addPass(&TwoAddressInstructionPassID);
|
|
addPass(&RegisterCoalescerID);
|
|
|
|
// PreRA instruction scheduling.
|
|
if (addPass(&MachineSchedulerID))
|
|
printAndVerify("After Machine Scheduling");
|
|
|
|
addPass(&StackSlotColoringID);
|
|
|
|
// FIXME: Needs physical registers
|
|
// addPass(&MachineLICMID);
|
|
|
|
printAndVerify("After StackSlotColoring");
|
|
}
|
|
|
|
void NVPTXPassConfig::addMachineSSAOptimization() {
|
|
// Pre-ra tail duplication.
|
|
if (addPass(&EarlyTailDuplicateLegacyID))
|
|
printAndVerify("After Pre-RegAlloc TailDuplicate");
|
|
|
|
// Optimize PHIs before DCE: removing dead PHI cycles may make more
|
|
// instructions dead.
|
|
addPass(&OptimizePHIsLegacyID);
|
|
|
|
// This pass merges large allocas. StackSlotColoring is a different pass
|
|
// which merges spill slots.
|
|
addPass(&StackColoringLegacyID);
|
|
|
|
// If the target requests it, assign local variables to stack slots relative
|
|
// to one another and simplify frame index references where possible.
|
|
addPass(&LocalStackSlotAllocationID);
|
|
|
|
// With optimization, dead code should already be eliminated. However
|
|
// there is one known exception: lowered code for arguments that are only
|
|
// used by tail calls, where the tail calls reuse the incoming stack
|
|
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
|
|
addPass(&DeadMachineInstructionElimID);
|
|
printAndVerify("After codegen DCE pass");
|
|
|
|
// Allow targets to insert passes that improve instruction level parallelism,
|
|
// like if-conversion. Such passes will typically need dominator trees and
|
|
// loop info, just like LICM and CSE below.
|
|
if (addILPOpts())
|
|
printAndVerify("After ILP optimizations");
|
|
|
|
addPass(&EarlyMachineLICMID);
|
|
addPass(&MachineCSELegacyID);
|
|
|
|
addPass(&MachineSinkingLegacyID);
|
|
printAndVerify("After Machine LICM, CSE and Sinking passes");
|
|
|
|
addPass(&PeepholeOptimizerLegacyID);
|
|
printAndVerify("After codegen peephole optimization pass");
|
|
}
|