
There are a couple of places in the loop vectoriser where we want to calculate the cost of extracting the last lane in a vector. However, we wrongly assume that asking for the cost of extracting lane (VF.getKnownMinValue() - 1) is an accurate representation of the cost of extracting the last lane. For SVE at least, this is non-trivial as it requires the use of whilelo and lastb instructions. To solve this problem I have added a new getReverseVectorInstrCost interface where the index is used in reverse from the end of the vector. Suppose a vector has a given ElementCount EC, the extracted/inserted lane would be EC - 1 - Index. For scalable vectors this index is unknown at compile time. I've added a AArch64 hook that better represents the cost, and also a RISCV hook that maintains compatibility with the behaviour prior to this PR. I've also taken the liberty of adding support in vplan for calculating the cost of VPInstruction::ExtractLastElement.
492 lines
20 KiB
C++
492 lines
20 KiB
C++
//===- RISCVTargetTransformInfo.h - RISC-V specific TTI ---------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file defines a TargetTransformInfoImplBase conforming object specific
|
|
/// to the RISC-V target machine. It uses the target's detailed information to
|
|
/// provide more precise answers to certain TTI queries, while letting the
|
|
/// target independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
|
|
#define LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
|
|
|
|
#include "RISCVSubtarget.h"
|
|
#include "RISCVTargetMachine.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include <optional>
|
|
|
|
namespace llvm {
|
|
|
|
class RISCVTTIImpl final : public BasicTTIImplBase<RISCVTTIImpl> {
|
|
using BaseT = BasicTTIImplBase<RISCVTTIImpl>;
|
|
using TTI = TargetTransformInfo;
|
|
|
|
friend BaseT;
|
|
|
|
const RISCVSubtarget *ST;
|
|
const RISCVTargetLowering *TLI;
|
|
|
|
const RISCVSubtarget *getST() const { return ST; }
|
|
const RISCVTargetLowering *getTLI() const { return TLI; }
|
|
|
|
/// This function returns an estimate for VL to be used in VL based terms
|
|
/// of the cost model. For fixed length vectors, this is simply the
|
|
/// vector length. For scalable vectors, we return results consistent
|
|
/// with getVScaleForTuning under the assumption that clients are also
|
|
/// using that when comparing costs between scalar and vector representation.
|
|
/// This does unfortunately mean that we can both undershoot and overshot
|
|
/// the true cost significantly if getVScaleForTuning is wildly off for the
|
|
/// actual target hardware.
|
|
unsigned getEstimatedVLFor(VectorType *Ty) const;
|
|
|
|
/// This function calculates the costs for one or more RVV opcodes based
|
|
/// on the vtype and the cost kind.
|
|
/// \param Opcodes A list of opcodes of the RVV instruction to evaluate.
|
|
/// \param VT The MVT of vtype associated with the RVV instructions.
|
|
/// For widening/narrowing instructions where the result and source types
|
|
/// differ, it is important to check the spec to determine whether the vtype
|
|
/// refers to the result or source type.
|
|
/// \param CostKind The type of cost to compute.
|
|
InstructionCost getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
|
|
TTI::TargetCostKind CostKind) const;
|
|
|
|
/// Return the cost of accessing a constant pool entry of the specified
|
|
/// type.
|
|
InstructionCost getConstantPoolLoadCost(Type *Ty,
|
|
TTI::TargetCostKind CostKind) const;
|
|
|
|
/// If this shuffle can be lowered as a masked slide pair (at worst),
|
|
/// return a cost for it.
|
|
InstructionCost getSlideCost(FixedVectorType *Tp, ArrayRef<int> Mask,
|
|
TTI::TargetCostKind CostKind) const;
|
|
|
|
public:
|
|
explicit RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
|
|
: BaseT(TM, F.getDataLayout()), ST(TM->getSubtargetImpl(F)),
|
|
TLI(ST->getTargetLowering()) {}
|
|
|
|
/// Return the cost of materializing an immediate for a value operand of
|
|
/// a store instruction.
|
|
InstructionCost getStoreImmCost(Type *VecTy, TTI::OperandValueInfo OpInfo,
|
|
TTI::TargetCostKind CostKind) const;
|
|
|
|
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) const override;
|
|
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
Instruction *Inst = nullptr) const override;
|
|
InstructionCost
|
|
getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
|
|
Type *Ty, TTI::TargetCostKind CostKind) const override;
|
|
|
|
/// \name EVL Support for predicated vectorization.
|
|
/// Whether the target supports the %evl parameter of VP intrinsic efficiently
|
|
/// in hardware. (see LLVM Language Reference - "Vector Predication
|
|
/// Intrinsics",
|
|
/// https://llvm.org/docs/LangRef.html#vector-predication-intrinsics and
|
|
/// "IR-level VP intrinsics",
|
|
/// https://llvm.org/docs/Proposals/VectorPredication.html#ir-level-vp-intrinsics).
|
|
bool hasActiveVectorLength() const override;
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
getPopcntSupport(unsigned TyWidth) const override;
|
|
|
|
InstructionCost getPartialReductionCost(
|
|
unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
|
|
ElementCount VF, TTI::PartialReductionExtendKind OpAExtend,
|
|
TTI::PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
|
|
TTI::TargetCostKind CostKind) const override;
|
|
|
|
bool shouldExpandReduction(const IntrinsicInst *II) const override;
|
|
bool supportsScalableVectors() const override {
|
|
return ST->hasVInstructions();
|
|
}
|
|
bool enableOrderedReductions() const override { return true; }
|
|
bool enableScalableVectorization() const override {
|
|
return ST->hasVInstructions();
|
|
}
|
|
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const override {
|
|
return ST->hasVInstructions();
|
|
}
|
|
TailFoldingStyle
|
|
getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const override {
|
|
return ST->hasVInstructions() ? TailFoldingStyle::DataWithEVL
|
|
: TailFoldingStyle::None;
|
|
}
|
|
std::optional<unsigned> getMaxVScale() const override;
|
|
std::optional<unsigned> getVScaleForTuning() const override;
|
|
|
|
TypeSize
|
|
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override;
|
|
|
|
unsigned getRegUsageForType(Type *Ty) const override;
|
|
|
|
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override;
|
|
|
|
bool preferAlternateOpcodeVectorization() const override { return false; }
|
|
|
|
bool preferEpilogueVectorization() const override {
|
|
// Epilogue vectorization is usually unprofitable - tail folding or
|
|
// a smaller VF would have been better. This a blunt hammer - we
|
|
// should re-examine this once vectorization is better tuned.
|
|
return false;
|
|
}
|
|
|
|
InstructionCost
|
|
getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind) const override;
|
|
|
|
InstructionCost
|
|
getPointersChainCost(ArrayRef<const Value *> Ptrs, const Value *Base,
|
|
const TTI::PointersChainInfo &Info, Type *AccessTy,
|
|
TTI::TargetCostKind CostKind) const override;
|
|
|
|
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP,
|
|
OptimizationRemarkEmitter *ORE) const override;
|
|
|
|
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) const override;
|
|
|
|
unsigned getMinVectorRegisterBitWidth() const override {
|
|
return ST->useRVVForFixedLengthVectors() ? 16 : 0;
|
|
}
|
|
|
|
InstructionCost
|
|
getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy,
|
|
ArrayRef<int> Mask, TTI::TargetCostKind CostKind, int Index,
|
|
VectorType *SubTp, ArrayRef<const Value *> Args = {},
|
|
const Instruction *CxtI = nullptr) const override;
|
|
|
|
InstructionCost getScalarizationOverhead(
|
|
VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
|
|
TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
|
|
ArrayRef<Value *> VL = {}) const override;
|
|
|
|
InstructionCost
|
|
getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) const override;
|
|
|
|
InstructionCost getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond = false, bool UseMaskForGaps = false) const override;
|
|
|
|
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
|
|
const Value *Ptr, bool VariableMask,
|
|
Align Alignment,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) const override;
|
|
|
|
InstructionCost
|
|
getExpandCompressMemoryOpCost(unsigned Opcode, Type *Src, bool VariableMask,
|
|
Align Alignment, TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) const override;
|
|
|
|
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy,
|
|
const Value *Ptr, bool VariableMask,
|
|
Align Alignment,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) const override;
|
|
|
|
InstructionCost
|
|
getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const override;
|
|
|
|
InstructionCost
|
|
getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
TTI::CastContextHint CCH, TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) const override;
|
|
|
|
InstructionCost
|
|
getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
|
|
TTI::TargetCostKind CostKind) const override;
|
|
|
|
InstructionCost
|
|
getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
|
|
std::optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind CostKind) const override;
|
|
|
|
InstructionCost
|
|
getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
|
|
VectorType *ValTy, std::optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind CostKind) const override;
|
|
|
|
InstructionCost getMemoryOpCost(
|
|
unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo OpdInfo = {TTI::OK_AnyValue, TTI::OP_None},
|
|
const Instruction *I = nullptr) const override;
|
|
|
|
InstructionCost getCmpSelInstrCost(
|
|
unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None},
|
|
TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None},
|
|
const Instruction *I = nullptr) const override;
|
|
|
|
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) const override;
|
|
|
|
using BaseT::getVectorInstrCost;
|
|
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
TTI::TargetCostKind CostKind,
|
|
unsigned Index, const Value *Op0,
|
|
const Value *Op1) const override;
|
|
|
|
InstructionCost
|
|
getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val,
|
|
TTI::TargetCostKind CostKind,
|
|
unsigned Index) const override;
|
|
|
|
InstructionCost getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None},
|
|
TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None},
|
|
ArrayRef<const Value *> Args = {},
|
|
const Instruction *CxtI = nullptr) const override;
|
|
|
|
bool isElementTypeLegalForScalableVector(Type *Ty) const override {
|
|
return TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty));
|
|
}
|
|
|
|
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const {
|
|
if (!ST->hasVInstructions())
|
|
return false;
|
|
|
|
EVT DataTypeVT = TLI->getValueType(DL, DataType);
|
|
|
|
// Only support fixed vectors if we know the minimum vector size.
|
|
if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
|
|
return false;
|
|
|
|
EVT ElemType = DataTypeVT.getScalarType();
|
|
if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
|
|
return false;
|
|
|
|
return TLI->isLegalElementTypeForRVV(ElemType);
|
|
}
|
|
|
|
bool isLegalMaskedLoad(Type *DataType, Align Alignment,
|
|
unsigned /*AddressSpace*/) const override {
|
|
return isLegalMaskedLoadStore(DataType, Alignment);
|
|
}
|
|
bool isLegalMaskedStore(Type *DataType, Align Alignment,
|
|
unsigned /*AddressSpace*/) const override {
|
|
return isLegalMaskedLoadStore(DataType, Alignment);
|
|
}
|
|
|
|
bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) const {
|
|
if (!ST->hasVInstructions())
|
|
return false;
|
|
|
|
EVT DataTypeVT = TLI->getValueType(DL, DataType);
|
|
|
|
// Only support fixed vectors if we know the minimum vector size.
|
|
if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
|
|
return false;
|
|
|
|
// We also need to check if the vector of address is valid.
|
|
EVT PointerTypeVT = EVT(TLI->getPointerTy(DL));
|
|
if (DataTypeVT.isScalableVector() &&
|
|
!TLI->isLegalElementTypeForRVV(PointerTypeVT))
|
|
return false;
|
|
|
|
EVT ElemType = DataTypeVT.getScalarType();
|
|
if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
|
|
return false;
|
|
|
|
return TLI->isLegalElementTypeForRVV(ElemType);
|
|
}
|
|
|
|
bool isLegalMaskedGather(Type *DataType, Align Alignment) const override {
|
|
return isLegalMaskedGatherScatter(DataType, Alignment);
|
|
}
|
|
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override {
|
|
return isLegalMaskedGatherScatter(DataType, Alignment);
|
|
}
|
|
|
|
bool forceScalarizeMaskedGather(VectorType *VTy,
|
|
Align Alignment) const override {
|
|
// Scalarize masked gather for RV64 if EEW=64 indices aren't supported.
|
|
return ST->is64Bit() && !ST->hasVInstructionsI64();
|
|
}
|
|
|
|
bool forceScalarizeMaskedScatter(VectorType *VTy,
|
|
Align Alignment) const override {
|
|
// Scalarize masked scatter for RV64 if EEW=64 indices aren't supported.
|
|
return ST->is64Bit() && !ST->hasVInstructionsI64();
|
|
}
|
|
|
|
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override {
|
|
EVT DataTypeVT = TLI->getValueType(DL, DataType);
|
|
return TLI->isLegalStridedLoadStore(DataTypeVT, Alignment);
|
|
}
|
|
|
|
bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
|
|
Align Alignment,
|
|
unsigned AddrSpace) const override {
|
|
return TLI->isLegalInterleavedAccessType(VTy, Factor, Alignment, AddrSpace,
|
|
DL);
|
|
}
|
|
|
|
bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override;
|
|
|
|
bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override;
|
|
|
|
bool isVScaleKnownToBeAPowerOfTwo() const override {
|
|
return TLI->isVScaleKnownToBeAPowerOfTwo();
|
|
}
|
|
|
|
/// \returns How the target needs this vector-predicated operation to be
|
|
/// transformed.
|
|
TargetTransformInfo::VPLegalization
|
|
getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
|
|
using VPLegalization = TargetTransformInfo::VPLegalization;
|
|
if (!ST->hasVInstructions() ||
|
|
(PI.getIntrinsicID() == Intrinsic::vp_reduce_mul &&
|
|
cast<VectorType>(PI.getArgOperand(1)->getType())
|
|
->getElementType()
|
|
->getIntegerBitWidth() != 1))
|
|
return VPLegalization(VPLegalization::Discard, VPLegalization::Convert);
|
|
return VPLegalization(VPLegalization::Legal, VPLegalization::Legal);
|
|
}
|
|
|
|
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
|
|
ElementCount VF) const override {
|
|
if (!VF.isScalable())
|
|
return true;
|
|
|
|
Type *Ty = RdxDesc.getRecurrenceType();
|
|
if (!TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty)))
|
|
return false;
|
|
|
|
switch (RdxDesc.getRecurrenceKind()) {
|
|
case RecurKind::Add:
|
|
case RecurKind::And:
|
|
case RecurKind::Or:
|
|
case RecurKind::Xor:
|
|
case RecurKind::SMin:
|
|
case RecurKind::SMax:
|
|
case RecurKind::UMin:
|
|
case RecurKind::UMax:
|
|
case RecurKind::FMin:
|
|
case RecurKind::FMax:
|
|
return true;
|
|
case RecurKind::AnyOf:
|
|
case RecurKind::FAdd:
|
|
case RecurKind::FMulAdd:
|
|
// We can't promote f16/bf16 fadd reductions and scalable vectors can't be
|
|
// expanded.
|
|
if (Ty->isBFloatTy() || (Ty->isHalfTy() && !ST->hasVInstructionsF16()))
|
|
return false;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned getMaxInterleaveFactor(ElementCount VF) const override {
|
|
// Don't interleave if the loop has been vectorized with scalable vectors.
|
|
if (VF.isScalable())
|
|
return 1;
|
|
// If the loop will not be vectorized, don't interleave the loop.
|
|
// Let regular unroll to unroll the loop.
|
|
return VF.isScalar() ? 1 : ST->getMaxInterleaveFactor();
|
|
}
|
|
|
|
bool enableInterleavedAccessVectorization() const override { return true; }
|
|
|
|
bool enableMaskedInterleavedAccessVectorization() const override {
|
|
return ST->hasVInstructions();
|
|
}
|
|
|
|
unsigned getMinTripCountTailFoldingThreshold() const override;
|
|
|
|
enum RISCVRegisterClass { GPRRC, FPRRC, VRRC };
|
|
unsigned getNumberOfRegisters(unsigned ClassID) const override {
|
|
switch (ClassID) {
|
|
case RISCVRegisterClass::GPRRC:
|
|
// 31 = 32 GPR - x0 (zero register)
|
|
// FIXME: Should we exclude fixed registers like SP, TP or GP?
|
|
return 31;
|
|
case RISCVRegisterClass::FPRRC:
|
|
if (ST->hasStdExtF())
|
|
return 32;
|
|
return 0;
|
|
case RISCVRegisterClass::VRRC:
|
|
// Although there are 32 vector registers, v0 is special in that it is the
|
|
// only register that can be used to hold a mask.
|
|
// FIXME: Should we conservatively return 31 as the number of usable
|
|
// vector registers?
|
|
return ST->hasVInstructions() ? 32 : 0;
|
|
}
|
|
llvm_unreachable("unknown register class");
|
|
}
|
|
|
|
TTI::AddressingModeKind
|
|
getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override;
|
|
|
|
unsigned getRegisterClassForType(bool Vector,
|
|
Type *Ty = nullptr) const override {
|
|
if (Vector)
|
|
return RISCVRegisterClass::VRRC;
|
|
if (!Ty)
|
|
return RISCVRegisterClass::GPRRC;
|
|
|
|
Type *ScalarTy = Ty->getScalarType();
|
|
if ((ScalarTy->isHalfTy() && ST->hasStdExtZfhmin()) ||
|
|
(ScalarTy->isFloatTy() && ST->hasStdExtF()) ||
|
|
(ScalarTy->isDoubleTy() && ST->hasStdExtD())) {
|
|
return RISCVRegisterClass::FPRRC;
|
|
}
|
|
|
|
return RISCVRegisterClass::GPRRC;
|
|
}
|
|
|
|
const char *getRegisterClassName(unsigned ClassID) const override {
|
|
switch (ClassID) {
|
|
case RISCVRegisterClass::GPRRC:
|
|
return "RISCV::GPRRC";
|
|
case RISCVRegisterClass::FPRRC:
|
|
return "RISCV::FPRRC";
|
|
case RISCVRegisterClass::VRRC:
|
|
return "RISCV::VRRC";
|
|
}
|
|
llvm_unreachable("unknown register class");
|
|
}
|
|
|
|
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
|
|
const TargetTransformInfo::LSRCost &C2) const override;
|
|
|
|
bool shouldConsiderAddressTypePromotion(
|
|
const Instruction &I,
|
|
bool &AllowPromotionWithoutCommonHeader) const override;
|
|
std::optional<unsigned> getMinPageSize() const override { return 4096; }
|
|
/// Return true if the (vector) instruction I will be lowered to an
|
|
/// instruction with a scalar splat operand for the given Operand number.
|
|
bool canSplatOperand(Instruction *I, int Operand) const;
|
|
/// Return true if a vector instruction will lower to a target instruction
|
|
/// able to splat the given operand.
|
|
bool canSplatOperand(unsigned Opcode, int Operand) const;
|
|
|
|
bool isProfitableToSinkOperands(Instruction *I,
|
|
SmallVectorImpl<Use *> &Ops) const override;
|
|
|
|
TTI::MemCmpExpansionOptions
|
|
enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override;
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
|