
…elative The semantics of `llvm.type.checked.load.relative` seem to be a little different from that of `llvm.load.relative`. It looks like the semantics for `llvm.type.checked.load.relative` is `ptr + offset + *(ptr + offset)` whereas the semantics for `llvm.load.relative` is `ptr + *(ptr + offset)`. That is, the offset for the former is added to the offset address whereas the later has the offset added to the original pointer. It really feels like the checked intrinsic was meant to match the semantics of the non-checked intrinsic, but I think for all cases the checked intrinsic is used (swift being the only use I know of), the calculation just happens to be the same because swift always uses an offset of zero. Likewise, all llvm tests for this intrinsic happen to use an offset of zero. Relative vtables in clang happens to be the first time where we're using this intrinsic and using it with non-zero values. This updates the semantics of the checked intrinsic to match the non-checked one. Effectively this shouldn't change any codegen by any users of this since all current users seem to use a zero offset. This PR also updates some tests with non-zero offsets.
75 lines
2.0 KiB
LLVM
75 lines
2.0 KiB
LLVM
; RUN: opt -S -passes=wholeprogramdevirt %s | FileCheck %s
|
|
|
|
; Test that we correctly expand the llvm.type.checked.load.relative intrinsic in
|
|
; cases where we cannot devirtualize.
|
|
|
|
target datalayout = "e-p:64:64"
|
|
target triple = "x86_64-unknown-linux-gnu"
|
|
|
|
@vt1 = constant { [2 x i32] } { [2 x i32] [
|
|
i32 trunc (i64 sub (i64 ptrtoint (ptr @vf1 to i64), i64 ptrtoint (ptr @vt1 to i64)) to i32),
|
|
i32 trunc (i64 sub (i64 ptrtoint (ptr @vf2 to i64), i64 ptrtoint (ptr @vt1 to i64)) to i32)
|
|
]}, align 8, !type !0
|
|
|
|
!0 = !{i64 0, !"vtable"}
|
|
|
|
define void @vf1(ptr %this) {
|
|
ret void
|
|
}
|
|
|
|
define void @vf2(ptr %this) {
|
|
ret void
|
|
}
|
|
|
|
; CHECK: define void @call_vf1
|
|
; CHECK: [[TT:%.*]] = call i1 @llvm.type.test(ptr [[VT:%.*]], metadata !"vtable")
|
|
; CHECK: br i1 [[TT]]
|
|
|
|
; Relative pointer computation at the vtable to the i32 value
|
|
; to get to the pointer value.
|
|
|
|
; CHECK: [[F:%.*]] = call ptr @llvm.load.relative.i32(ptr [[VT]], i32 0)
|
|
; CHECK: call void [[F]](ptr
|
|
|
|
define void @call_vf1(ptr %obj) {
|
|
%vtable = load ptr, ptr %obj
|
|
%pair = call {ptr, i1} @llvm.type.checked.load.relative(ptr %vtable, i32 0, metadata !"vtable")
|
|
%p = extractvalue {ptr, i1} %pair, 1
|
|
br i1 %p, label %cont, label %trap
|
|
|
|
cont:
|
|
%fptr = extractvalue {ptr, i1} %pair, 0
|
|
call void %fptr(ptr %obj)
|
|
ret void
|
|
|
|
trap:
|
|
call void @llvm.trap()
|
|
unreachable
|
|
}
|
|
|
|
; CHECK: define void @call_vf2
|
|
; CHECK: [[TT:%.*]] = call i1 @llvm.type.test(ptr [[VT:%.*]], metadata !"vtable")
|
|
; CHECK: br i1 [[TT]]
|
|
|
|
; CHECK: [[F:%.*]] = call ptr @llvm.load.relative.i32(ptr [[VT]], i32 4)
|
|
; CHECK: call void [[F]](ptr
|
|
|
|
define void @call_vf2(ptr %obj) {
|
|
%vtable = load ptr, ptr %obj
|
|
%pair = call {ptr, i1} @llvm.type.checked.load.relative(ptr %vtable, i32 4, metadata !"vtable")
|
|
%p = extractvalue {ptr, i1} %pair, 1
|
|
br i1 %p, label %cont, label %trap
|
|
|
|
cont:
|
|
%fptr = extractvalue {ptr, i1} %pair, 0
|
|
call void %fptr(ptr %obj)
|
|
ret void
|
|
|
|
trap:
|
|
call void @llvm.trap()
|
|
unreachable
|
|
}
|
|
|
|
declare {ptr, i1} @llvm.type.checked.load.relative(ptr, i32, metadata)
|
|
declare void @llvm.trap()
|