
This thread through proper error handling / reporting capabilities to avoid hitting llvm_unreachable while parsing linalg ops. Fixes #132755 Fixes #132740 Fixes #129185
134 lines
4.6 KiB
C++
134 lines
4.6 KiB
C++
//===- Linalg.cpp - C Interface for Linalg dialect ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir-c/Dialect/Linalg.h"
|
|
#include "mlir/CAPI/Registration.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
/// Apply the special region builder for the builtin named Linalg op.
|
|
/// Assert that `op` is a builtin named Linalg op.
|
|
void mlirLinalgFillBuiltinNamedOpRegion(MlirOperation mlirOp) {
|
|
Operation *op = unwrap(mlirOp);
|
|
auto linalgOp = cast<LinalgOp>(op);
|
|
auto *dialect = static_cast<LinalgDialect *>(linalgOp->getDialect());
|
|
LinalgDialect::RegionBuilderFunType fun =
|
|
dialect->getRegionBuilder(op->getName().getStringRef());
|
|
|
|
assert(fun && "Expected a builtin named Linalg op.");
|
|
assert(op->getNumRegions() == 1 && "Expected Linalg op with 1 region");
|
|
assert(op->getRegion(0).getBlocks().empty() &&
|
|
"Expected Linalg op with 0 blocks");
|
|
|
|
SmallVector<Type, 8> argTypes;
|
|
SmallVector<Location, 8> argLocs;
|
|
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
|
|
argTypes.push_back(getElementTypeOrSelf(opOperand.get().getType()));
|
|
argLocs.push_back(opOperand.get().getLoc());
|
|
}
|
|
|
|
ImplicitLocOpBuilder b(op->getLoc(), op->getContext());
|
|
Region ®ion = op->getRegion(0);
|
|
Block *body = b.createBlock(®ion, /*insertPt=*/{}, argTypes, argLocs);
|
|
b.setInsertionPointToStart(body);
|
|
fun(b, *body, op->getAttrs(), /*emitError=*/{});
|
|
}
|
|
|
|
MLIR_CAPI_EXPORTED bool mlirLinalgIsAContractionOp(MlirOperation op) {
|
|
auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(op));
|
|
// isaContractionOpInterface handles null linalgOp internally.
|
|
return linalg::isaContractionOpInterface(linalgOp);
|
|
}
|
|
|
|
MLIR_CAPI_EXPORTED MlirLinalgContractionDimensions
|
|
mlirLinalgInferContractionDimensions(MlirOperation op) {
|
|
MlirLinalgContractionDimensions result{};
|
|
auto linalgOp = dyn_cast<linalg::LinalgOp>(unwrap(op));
|
|
if (!linalgOp)
|
|
return result;
|
|
|
|
FailureOr<linalg::ContractionDimensions> maybeDims =
|
|
linalg::inferContractionDims(linalgOp);
|
|
if (failed(maybeDims))
|
|
return result;
|
|
|
|
linalg::ContractionDimensions contractionDims = *maybeDims;
|
|
MLIRContext *ctx = linalgOp.getContext();
|
|
|
|
auto toAttr = [&ctx](const SmallVector<unsigned, 2> &vals) -> MlirAttribute {
|
|
return wrap(
|
|
DenseI32ArrayAttr::get(ctx, llvm::to_vector_of<int32_t, 2>(vals)));
|
|
};
|
|
|
|
result.batch = toAttr(contractionDims.batch);
|
|
result.m = toAttr(contractionDims.m);
|
|
result.n = toAttr(contractionDims.n);
|
|
result.k = toAttr(contractionDims.k);
|
|
|
|
return result;
|
|
}
|
|
|
|
MLIR_CAPI_EXPORTED bool mlirLinalgIsAConvolutionOp(MlirOperation op) {
|
|
auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(op));
|
|
if (!linalgOp)
|
|
return false;
|
|
|
|
return linalg::isaConvolutionOpInterface(linalgOp);
|
|
}
|
|
|
|
MLIR_CAPI_EXPORTED MlirLinalgConvolutionDimensions
|
|
mlirLinalgInferConvolutionDimensions(MlirOperation op) {
|
|
MlirLinalgConvolutionDimensions result{};
|
|
auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(op));
|
|
if (!linalgOp)
|
|
return result;
|
|
|
|
FailureOr<linalg::ConvolutionDimensions> maybeDims =
|
|
linalg::inferConvolutionDims(linalgOp);
|
|
if (failed(maybeDims))
|
|
return result;
|
|
|
|
linalg::ConvolutionDimensions dims = *maybeDims;
|
|
MLIRContext *ctx = linalgOp.getContext();
|
|
|
|
auto toI32Attr =
|
|
[&ctx](const SmallVector<unsigned, 2> &vals) -> MlirAttribute {
|
|
return wrap(DenseI32ArrayAttr::get(ctx, llvm::to_vector_of<int32_t>(vals)));
|
|
};
|
|
|
|
auto toI64Attr =
|
|
[&ctx](const SmallVector<int64_t, 2> &vals) -> MlirAttribute {
|
|
return wrap(DenseI64ArrayAttr::get(ctx, vals));
|
|
};
|
|
|
|
result.batch = toI32Attr(dims.batch);
|
|
result.outputImage = toI32Attr(dims.outputImage);
|
|
result.outputChannel = toI32Attr(dims.outputChannel);
|
|
result.filterLoop = toI32Attr(dims.filterLoop);
|
|
result.inputChannel = toI32Attr(dims.inputChannel);
|
|
result.depth = toI32Attr(dims.depth);
|
|
result.strides = toI64Attr(dims.strides);
|
|
result.dilations = toI64Attr(dims.dilations);
|
|
|
|
return result;
|
|
}
|
|
|
|
MLIR_CAPI_EXPORTED MlirAttribute
|
|
mlirLinalgGetIndexingMapsAttribute(MlirOperation op) {
|
|
auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(op));
|
|
if (!linalgOp)
|
|
return MlirAttribute{nullptr};
|
|
|
|
ArrayAttr attr = linalgOp.getIndexingMaps();
|
|
return wrap(attr);
|
|
}
|
|
|
|
MLIR_DEFINE_CAPI_DIALECT_REGISTRATION(Linalg, linalg, LinalgDialect)
|