llvm-project/mlir/lib/Dialect/Shard/Interfaces/ShardingInterface.cpp
Frank Schlimbach b2d4963ee9
[NFC][mlir][mesh,shard] Fixing misnomers in mesh dialect, renaming 'mesh' dialect to 'shard' (#150177)
Dialect to 'shard' (discourse 87053)
  - dialect name mesh -> shard
  - (device) mesh -> (device) grid
  - spmdize -> partition

A lot of diffs, but simple renames only.

@tkarna @yaochengji
2025-07-25 16:53:08 +02:00

652 lines
24 KiB
C++

//===- ShardingInterface.cpp -------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Shard/Interfaces/ShardingInterface.h"
#include "mlir/Dialect/Shard/Interfaces/ShardingInterfaceImpl.h"
#include "mlir/Dialect/Shard/IR/ShardOps.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/Debug.h"
#include <utility>
#define DEBUG_TYPE "sharding-interface"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
using namespace mlir;
using namespace mlir::shard;
#include "mlir/Dialect/Shard/Interfaces/ShardingInterface.cpp.inc"
//===----------------------------------------------------------------------===//
// common util functions
//===----------------------------------------------------------------------===//
static LogicalResult
checkOperandAffineExprRecursively(AffineExpr expr,
SmallVectorImpl<bool> &seenIds) {
switch (expr.getKind()) {
case AffineExprKind::Add: {
auto binOpExpr = cast<AffineBinaryOpExpr>(expr);
AffineExpr lhs = binOpExpr.getLHS();
AffineExpr rhs = binOpExpr.getRHS();
if (failed(checkOperandAffineExprRecursively(lhs, seenIds)))
return failure();
if (failed(checkOperandAffineExprRecursively(rhs, seenIds)))
return failure();
return success();
}
case AffineExprKind::Mul: {
auto binOpExpr = cast<AffineBinaryOpExpr>(expr);
AffineExpr lhs = binOpExpr.getLHS();
AffineExpr rhs = binOpExpr.getRHS();
AffineExpr dimExpr;
if (lhs.getKind() == AffineExprKind::DimId &&
rhs.getKind() == AffineExprKind::Constant) {
dimExpr = lhs;
} else if (rhs.getKind() == AffineExprKind::DimId &&
lhs.getKind() == AffineExprKind::Constant) {
dimExpr = rhs;
} else {
return failure();
}
unsigned position = cast<AffineDimExpr>(dimExpr).getPosition();
if ((size_t)position >= seenIds.size() || seenIds[position])
return failure();
seenIds[position] = true;
return success();
}
case AffineExprKind::DimId: {
unsigned position = cast<AffineDimExpr>(expr).getPosition();
if ((size_t)position >= seenIds.size() || seenIds[position])
return failure();
seenIds[position] = true;
return success();
}
default:
return failure();
}
}
static FailureOr<llvm::SmallSet<unsigned, 2>>
checkOperandAffineExpr(AffineExpr expr, unsigned numDims) {
SmallVector<bool> seenIds(numDims, false);
if (failed(checkOperandAffineExprRecursively(expr, seenIds)))
return failure();
llvm::SmallSet<unsigned, 2> positions;
for (auto it : llvm::enumerate(seenIds)) {
if (it.value())
positions.insert((unsigned)it.index());
}
return positions;
}
template <typename T>
SmallVector<GridAxesAttr>
fromArrayOfVector(MLIRContext *ctxt, const SmallVector<SmallVector<T>> &vec) {
SmallVector<GridAxesAttr> res;
for (const auto &v : vec) {
res.emplace_back(GridAxesAttr::get(ctxt, v));
}
return res;
}
//===----------------------------------------------------------------------===//
// shard::getSharding
//===----------------------------------------------------------------------===//
FailureOr<std::pair<bool, Sharding>> shard::getSharding(OpResult result) {
Value val = cast<Value>(result);
bool anyShardedForDef = llvm::any_of(val.getUsers(), [](Operation *user) {
auto shardOp = llvm::dyn_cast<shard::ShardOp>(user);
if (!shardOp)
return false;
return !shardOp.getAnnotateForUsers();
});
if (anyShardedForDef) {
// expected to have exact one use if it has a use of `shard.shard` without
// unit attr annotate_for_users
if (!val.hasOneUse())
return failure();
auto shardOp = llvm::cast<shard::ShardOp>(*val.getUsers().begin());
return std::make_pair(false, Sharding(shardOp.getSharding()));
}
bool anyShardedForUsers = llvm::any_of(val.getUsers(), [](Operation *user) {
auto shardOp = llvm::dyn_cast<shard::ShardOp>(user);
if (!shardOp)
return false;
return shardOp.getAnnotateForUsers();
});
if (anyShardedForUsers) {
SmallVector<ShardOp> shardOps;
for (Operation *user : val.getUsers()) {
ShardOp shardOp = llvm::dyn_cast<ShardOp>(user);
if (shardOp)
shardOps.push_back(shardOp);
}
Sharding shardForDef = shardOps[0].getSharding();
for (size_t i = 1; i < shardOps.size(); ++i) {
// TODO: Deduce a reasonable grid sharding attr for def when they are
// different
assert(shardForDef == shardOps[i].getSharding() &&
"only support all shard ops have the same grid sharding attr");
}
return std::make_pair(true, shardForDef);
}
return failure();
}
FailureOr<std::pair<bool, Sharding>> shard::getSharding(OpOperand &opOperand) {
Value val = opOperand.get();
if (ShardOp shardOp = val.getDefiningOp<ShardOp>())
return std::make_pair(shardOp.getAnnotateForUsers(),
Sharding(shardOp.getSharding()));
return failure();
}
//===----------------------------------------------------------------------===//
// ShardingInterface::verifyShardingInterfaceImpl
//===----------------------------------------------------------------------===//
LogicalResult shard::ShardingInterface::verifyShardingInterfaceImpl() {
Operation *op = getOperation();
// check operands and results type
for (Type type : op->getOperandTypes())
if (!llvm::isa<RankedTensorType>(type) && !type.isIntOrIndexOrFloat())
return failure();
for (Type type : op->getResultTypes())
if (!llvm::isa<RankedTensorType>(type) && !type.isIntOrIndexOrFloat())
return failure();
// check maps
SmallVector<AffineMap> maps = getIndexingMaps();
if (maps.empty())
return failure();
unsigned numOperands = op->getNumOperands();
unsigned numResults = op->getNumResults();
if (numOperands + numResults != maps.size())
return failure();
for (OpResult result : op->getResults()) {
auto resultType = dyn_cast<RankedTensorType>(result.getType());
if (!resultType)
return failure();
AffineMap map = maps[numOperands + result.getResultNumber()];
if (!map.isProjectedPermutation()) {
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// ShardingInterface::printLoopTypesAndIndexingMaps
//===----------------------------------------------------------------------===//
void shard::ShardingInterface::printLoopTypesAndIndexingMaps(raw_ostream &os) {
os << "print loop types and indexing maps for: \n";
getOperation()->print(os);
os << "\n";
os << "loop types: [";
for (utils::IteratorType type : getLoopIteratorTypes()) {
os << stringifyEnum(type) << " ";
}
os << "]\n";
os << "indexing maps: \n";
for (AffineMap map : getIndexingMaps())
os << map << "\n";
os << "\n";
}
//===----------------------------------------------------------------------===//
// detail::defaultGetShardingOption
//===----------------------------------------------------------------------===//
namespace {
// Update the given `shardingOption` according to `gridAxes` and `loopIdx`
static LogicalResult fillShardingOption(Operation *op,
ShardingOption &shardingOption,
FlatSymbolRefAttr grid,
ArrayRef<GridAxis> gridAxes,
unsigned loopIdx) {
if ((shardingOption.grid && grid && shardingOption.grid != grid) ||
(!shardingOption.shardingArray[loopIdx].empty() &&
shardingOption.shardingArray[loopIdx] != gridAxes)) {
LLVM_DEBUG(DBGS() << "sharding option conflicts on loop iterator "
<< loopIdx << "\n");
return failure();
}
for (size_t i = 0; i < shardingOption.shardingArray.size(); ++i) {
if (i == loopIdx)
continue;
for (GridAxis axis : gridAxes) {
if (llvm::is_contained(shardingOption.shardingArray[i], axis)) {
LLVM_DEBUG(DBGS() << "sharding option conflicts because grid axes "
<< axis << " duplicate");
return failure();
}
}
}
if (grid)
shardingOption.grid = grid;
if (shardingOption.shardingArray[loopIdx].empty())
shardingOption.shardingArray[loopIdx].append(gridAxes.begin(),
gridAxes.end());
return success();
}
} // namespace
FailureOr<ShardingOption>
shard::detail::defaultGetShardingOption(Operation *op,
ArrayRef<Sharding> operandShardings,
ArrayRef<Sharding> resultShardings) {
ShardingInterface shardingOp = llvm::cast<ShardingInterface>(op);
ShardingOption shardingOption;
if (failed(shardingOp.verifyShardingInterfaceImpl()))
return op->emitOpError() << "invalid sharding interface implementation";
SmallVector<utils::IteratorType> loopTypes =
shardingOp.getLoopIteratorTypes();
SmallVector<AffineMap> maps = shardingOp.getIndexingMaps();
unsigned numOperands = op->getNumOperands();
shardingOption.shardingArray.resize(loopTypes.size());
llvm::SmallSet<unsigned, 4> visitedLoopIndices;
bool anyShardingInResultsOrOperands = false;
// 1. Fill sharding option based on op results
for (auto shardingIt : llvm::enumerate(resultShardings)) {
Sharding shardAttr = shardingIt.value();
if (!shardAttr)
continue;
AffineMap map = maps[numOperands + shardingIt.index()];
anyShardingInResultsOrOperands = true;
if (shardAttr.getSplitAxes().empty() || map.getResults().empty()) {
shardingOption.grid = shardAttr.getGridAttr();
} else {
// Handle the split axes: calculate the corresponding loop index for each
// split axes sub-array, and then store the sub-array to
// shardingOption[index]
for (auto it : llvm::zip(map.getResults(), shardAttr.getSplitAxes())) {
AffineExpr expr = std::get<0>(it);
ArrayRef<GridAxis> axes = std::get<1>(it).asArrayRef();
auto dim = cast<AffineDimExpr>(expr);
unsigned index = dim.getPosition();
visitedLoopIndices.insert(index);
if (failed(fillShardingOption(op, shardingOption,
shardAttr.getGridAttr(), axes, index)))
return failure();
}
}
}
// 2. Fill sharding option based on operands
for (auto shardingIt : llvm::enumerate(operandShardings)) {
Sharding shardAttr = shardingIt.value();
if (!shardAttr)
continue;
anyShardingInResultsOrOperands = !shardAttr.getSplitAxes().empty();
AffineMap map = maps[shardingIt.index()];
unsigned numDims = map.getNumDims();
// Handle the split axes.
//
// TODO: Change to process the operands with single loop index first and
// then the operands with multiple loop indices.
for (auto it : llvm::zip(map.getResults(), shardAttr.getSplitAxes())) {
AffineExpr expr = std::get<0>(it);
ArrayRef<GridAxis> axes = std::get<1>(it).asArrayRef();
FailureOr<llvm::SmallSet<unsigned, 2>> loopIndices =
checkOperandAffineExpr(expr, numDims);
if (failed(loopIndices))
return op->emitOpError()
<< "operand's affine expression is restricted to const_i * "
"dim_i + const_j + dim_j + ...";
if (loopIndices->empty())
continue;
if (loopIndices->size() == 1) {
unsigned loopIdx = *loopIndices->begin();
visitedLoopIndices.insert(loopIdx);
if (failed(fillShardingOption(op, shardingOption,
shardAttr.getGridAttr(), axes, loopIdx)))
return failure();
}
// If multiple loop indices correspond to a dimension of an operand, it is
// difficult to infer which loop indices are responsible for sharding.
// Therefore, the exact loop index must be specified by others.
if (loopIndices->size() > 1) {
bool seenLoopIndices = false;
for (unsigned loopIdx : *loopIndices) {
if (visitedLoopIndices.contains(loopIdx)) {
seenLoopIndices = true;
break;
}
}
if (!seenLoopIndices)
return op->emitOpError()
<< "the operand " << shardingIt.index()
<< " has multiple loop indices in a dimension, but none of "
"them could be found in the exactly specified annotation "
"of op results or operands.";
}
}
}
// 3. Finalize sharding option
removeTrailingEmptySubArray(shardingOption.shardingArray);
if (!anyShardingInResultsOrOperands)
shardingOption.empty = true;
return shardingOption;
}
// Get the sharding attributed for the given result and sharding option.
static Sharding getSharding(OpResult result,
const ShardingOption &shardingOption, AffineMap map,
ArrayRef<utils::IteratorType> loopTypes) {
auto resultType = cast<RankedTensorType>(result.getType());
SmallVector<SmallVector<GridAxis>> splitAxes(resultType.getRank());
// process the split axes
for (auto it : llvm::enumerate(map.getResults())) {
AffineExpr expr = it.value();
// `expr` must be an `AffineDimExpr` because `map` is verified by
// isProjectedPermutation
auto dim = cast<AffineDimExpr>(expr);
unsigned loopIdx = dim.getPosition();
if (loopIdx < shardingOption.shardingArray.size())
splitAxes[it.index()].append(shardingOption.shardingArray[loopIdx]);
}
removeTrailingEmptySubArray(splitAxes);
return Sharding::get(shardingOption.grid,
fromArrayOfVector(result.getContext(), splitAxes));
}
static FailureOr<Sharding> getSharding(OpOperand &opOperand,
const ShardingOption &shardingOption,
AffineMap map) {
Value operandValue = opOperand.get();
auto operandType = dyn_cast<RankedTensorType>(operandValue.getType());
if (!operandType) {
if (operandValue.getType().isIntOrIndexOrFloat())
return Sharding();
return failure();
}
// 0d tensors cannot be sharded and must get replicated
if (operandType.getRank() == 0) {
return Sharding(shardingOption.grid);
}
SmallVector<SmallVector<GridAxis>> splitAxes(operandType.getRank());
unsigned numDims = map.getNumDims();
for (auto it : llvm::enumerate(map.getResults())) {
int64_t idx = it.index();
AffineExpr expr = it.value();
FailureOr<llvm::SmallSet<unsigned, 2>> loopIndices =
checkOperandAffineExpr(expr, numDims);
if (failed(loopIndices))
return failure();
SmallVector<unsigned> shardedLoopIndices;
for (unsigned loopIdx : *loopIndices) {
if ((size_t)loopIdx < shardingOption.shardingArray.size() &&
!shardingOption.shardingArray[loopIdx].empty())
shardedLoopIndices.push_back(loopIdx);
}
// mostly one sharded loop index is accepted
if (shardedLoopIndices.size() > 1)
return failure();
if (shardedLoopIndices.size() == 1) {
splitAxes[idx].append(
shardingOption.shardingArray[shardedLoopIndices[0]]);
}
}
removeTrailingEmptySubArray(splitAxes);
return Sharding::get(
shardingOption.grid,
fromArrayOfVector(opOperand.get().getContext(), splitAxes));
}
FailureOr<std::vector<Sharding>> shard::detail::defaultGetShardingAnnotations(
Operation *op, const ShardingOption &shardingOption) {
std::vector<Sharding> res;
ShardingInterface shardingOp = llvm::cast<ShardingInterface>(op);
SmallVector<utils::IteratorType> loopTypes =
shardingOp.getLoopIteratorTypes();
SmallVector<AffineMap> maps = shardingOp.getIndexingMaps();
unsigned numOperands = op->getNumOperands();
for (OpOperand &opOperand : op->getOpOperands()) {
FailureOr<Sharding> shardingAttr = ::getSharding(
opOperand, shardingOption, maps[opOperand.getOperandNumber()]);
if (failed(shardingAttr))
return failure();
res.push_back(*shardingAttr);
}
for (OpResult result : op->getResults()) {
res.push_back(::getSharding(result, shardingOption,
maps[numOperands + result.getResultNumber()],
loopTypes));
}
return res;
}
//===----------------------------------------------------------------------===//
// detail::defaultAddShardingAnnotations
//===----------------------------------------------------------------------===//
// To add a `shard.shard` op for the given result, based on the details provided
// in `shardingOption`, `map`, and `loopTypes`.
static LogicalResult addShardOp(OpBuilder &b, OpResult result,
const ShardingOption &shardingOption,
AffineMap map,
ArrayRef<utils::IteratorType> loopTypes) {
Sharding sharding = getSharding(result, shardingOption, map, loopTypes);
maybeInsertTargetShardingAnnotation(sharding, result, b);
return success();
}
// To add a `shard.shard` op for the given operand, based on the details
// provided in `shardingOption`, `map`, and `loopTypes`.
static LogicalResult addShardOp(OpBuilder &b, OpOperand &opOperand,
const ShardingOption &shardingOption,
AffineMap map) {
FailureOr<Sharding> sharding = getSharding(opOperand, shardingOption, map);
if (failed(sharding)) {
return failure();
}
OpBuilder::InsertionGuard guard(b);
maybeInsertSourceShardingAnnotation(sharding.value(), opOperand, b);
return success();
}
LogicalResult shard::detail::defaultAddShardingAnnotations(
Operation *op, OpBuilder &b, const ShardingOption &shardingOption) {
assert(!shardingOption.empty && shardingOption.grid);
ShardingInterface shardingOp = llvm::cast<ShardingInterface>(op);
SmallVector<utils::IteratorType> loopTypes =
shardingOp.getLoopIteratorTypes();
SmallVector<AffineMap> maps = shardingOp.getIndexingMaps();
unsigned numOperands = op->getNumOperands();
// 1. add shard.shard ops for all op results
for (OpResult result : op->getResults()) {
if (failed(addShardOp(b, result, shardingOption,
maps[numOperands + result.getResultNumber()],
loopTypes)))
return failure();
}
// 2. add shard.shard ops for all operands
for (OpOperand &opOperand : op->getOpOperands()) {
if (failed(addShardOp(b, opOperand, shardingOption,
maps[opOperand.getOperandNumber()])))
return failure();
}
return success();
}
#ifndef NDEBUG
static bool isValueCompatibleWithFullReplicationSharding(Value value,
Sharding sharding) {
if (isa<RankedTensorType>(value.getType())) {
return isFullReplication(sharding);
}
return !sharding;
}
template <typename ValueRange, typename ShardingRage>
static bool
areValuesCompatibleWithFullReplicationShardings(ValueRange &&values,
ShardingRage &&shardings) {
if (std::size(values) != std::size(shardings)) {
return false;
}
return llvm::all_of(llvm::zip_equal(std::forward<ValueRange>(values),
std::forward<ShardingRage>(shardings)),
[](auto valueAndSharding) {
return isValueCompatibleWithFullReplicationSharding(
std::get<0>(valueAndSharding),
std::get<1>(valueAndSharding));
});
}
#endif // NDEBUG
void shard::partitionFullyReplicatedOperation(
Operation &op, ArrayRef<Value> partitionedOperands,
ArrayRef<Sharding> operandShardings, ArrayRef<Sharding> resultShardings,
IRMapping &partitionMap, SymbolTableCollection &symbolTable,
OpBuilder &builder) {
assert(partitionedOperands.size() == operandShardings.size());
assert(areValuesCompatibleWithFullReplicationShardings(op.getOperands(),
operandShardings));
assert(areValuesCompatibleWithFullReplicationShardings(op.getResults(),
resultShardings));
// `clone` will populate the mapping of old to new results.
builder.clone(op, partitionMap);
}
static void updateGridAxisAssignmentForLoopIterators(
ArrayRef<GridAxis> gridAxesAssignmentForTensorAxis, AffineExpr indexingExpr,
SmallVector<std::optional<SmallVector<GridAxis>>>
&gridAxesAssignmentForLoopIterators) {
AffineDimExpr affineDimExpr = cast<AffineDimExpr>(indexingExpr);
unsigned loopIteratorIdx = affineDimExpr.getPosition();
if (gridAxesAssignmentForLoopIterators[loopIteratorIdx]) {
assert(llvm::equal(gridAxesAssignmentForTensorAxis,
*gridAxesAssignmentForLoopIterators[loopIteratorIdx]));
} else {
gridAxesAssignmentForLoopIterators[loopIteratorIdx] =
llvm::to_vector(gridAxesAssignmentForTensorAxis);
}
}
ShardingArray shard::getGridAxisAssignmentForLoopIterators(
ArrayRef<Sharding> operandShardings, ArrayRef<Sharding> resultShardings,
ArrayRef<utils::IteratorType> loopIteratorTypes,
ArrayRef<AffineMap> indexingMaps) {
SmallVector<std::optional<SmallVector<GridAxis>>>
gridAxisAssignmentForLoopIterators(loopIteratorTypes.size());
std::vector<Sharding> operatorAndResultShardings;
operatorAndResultShardings.reserve(operandShardings.size() +
resultShardings.size());
llvm::append_range(operatorAndResultShardings, operandShardings);
for (auto [sharding, affineMap] :
llvm::zip_equal(operatorAndResultShardings, indexingMaps)) {
if (!sharding) {
continue;
}
for (auto [gridAxesAssignmentForTensorAxis, indexingExpr] :
llvm::zip(sharding.getSplitAxes(), affineMap.getResults())) {
updateGridAxisAssignmentForLoopIterators(
gridAxesAssignmentForTensorAxis.asArrayRef(), indexingExpr,
gridAxisAssignmentForLoopIterators);
}
// Missing trailing split axes means replication on those tensor dimensions.
for (unsigned i = sharding.getSplitAxes().size();
i < affineMap.getNumResults(); ++i) {
updateGridAxisAssignmentForLoopIterators(
{}, affineMap.getResults()[i], gridAxisAssignmentForLoopIterators);
}
}
ShardingArray res;
llvm::transform(gridAxisAssignmentForLoopIterators, std::back_inserter(res),
[](std::optional<SmallVector<GridAxis>> &axes) {
if (!axes) {
return SmallVector<GridAxis>();
};
return std::move(*axes);
});
return res;
}
bool shard::isAtLeastOneReductionIteratorSharded(
ArrayRef<utils::IteratorType> loopIteratorTypes,
ArrayRef<SmallVector<GridAxis>> gridAxisAssignmentForLoopIterators) {
for (auto [loopIteratorType, gridAxisAssignment] :
llvm::zip_equal(loopIteratorTypes, gridAxisAssignmentForLoopIterators)) {
if (loopIteratorType == utils::IteratorType::reduction &&
!gridAxisAssignment.empty()) {
return true;
}
}
return false;
}
SmallVector<GridAxis> shard::getReductionGridAxes(
ArrayRef<utils::IteratorType> loopIteratorTypes,
ArrayRef<SmallVector<GridAxis>> gridAxisAssignmentForLoopIterators) {
SmallVector<GridAxis> gridAxes;
for (auto [loopIteratorType, gridAxisAssignment] :
llvm::zip_equal(loopIteratorTypes, gridAxisAssignmentForLoopIterators)) {
if (loopIteratorType == utils::IteratorType::reduction) {
llvm::append_range(gridAxes, gridAxisAssignment);
}
}
return gridAxes;
}
void shard::partitionTriviallyShardableOperation(
Operation &op, ArrayRef<Value> partitionedOperands,
ArrayRef<Sharding> operandShardings, ArrayRef<Sharding> resultShardings,
IRMapping &partitionMap, SymbolTableCollection &symbolTable,
OpBuilder &builder) {
// `clone` will populate the mapping of old to new results.
Operation *newOp = builder.clone(op, partitionMap);
// Set the result types to the sharded counterparts.
for (auto [oldResult, newResult, sharding] :
llvm::zip_equal(op.getResults(), newOp->getResults(), resultShardings)) {
newResult.setType(shardType(
newResult.getType(),
getGridOrNull(&op, sharding.getGridAttr(), symbolTable), sharding));
}
}